PDL Abstract

Comparing Performance of Solid State Devices and Mechanical Disks

Proceedings of the 3rd Petascale Data Storage Workshop held in conjunction with Supercomputing '08, November 17, 2008, Austin, TX.

Milo Polte, Jiri Simsa, Garth A. Gibson

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

In terms of performance, solid state devices promise to be superior technology to mechanical disks. This study investigates performance of several up-to-date high-end consumer and enterprise Flash solid state devices (SSDs) and relates their performance to that of mechanical disks. For the purpose of this evaluation, the IOZone benchmark is run in single-threaded mode with varying request size and access pattern on an ext3 filesystem mounted on these devices. The price of the measured devices is then used to allow for comparison of price per performance. Measurements presented in this study offer an evaluation of cost-effectiveness of a Flash based SSD storage
solution over a range of workloads. In particular, for sequential access pattern the SSDs are up to 10 times faster for reads and up to 5 times faster than the disks. For random reads, the SSDs provide up to 200x performance advantage. For random writes the SSDs provide up to 135x performance advantage. After weighting these numbers against the prices of the tested devices, we can conclude that SSDs are approaching price per performance of magnetic disks for sequential access patterns workloads and are superior technology to magnetic disks for random access patterns.