
Technical Standard1

2 Extended API Set Part 1 (SANITY DRAFT)

3 The Open Group

4

5 © April 2006, The Open Group

6 All rights reserved.

7 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
8 any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
9 without the prior permission of the copyright owners.

10 Technical Standard

11 Extended API Set Part 1 (SANITY DRAFT)

12 Document Number: <doc_no>

13 Published in the U.K. by The Open Group, April 2006.

14 Any comments relating to the material contained in this document may be submitted to:

15 The Open Group
16 Thames Tower
17 37-45 Station Road
18 Reading
19 Berkshire, RG1 1LX
20 United Kingdom

21 or by Electronic Mail to:

22 OGSpecs@opengroup.org

ii Technical Standard (2006) (Draft April 24, 2006)

23
Contents

24 Chapter 1 Introduction... 1
25 1.1 Scope.. 1
26 1.2 Relationship to Other Formal Standards ... 1

27 Chapter 2 Changes to the Base Definitions Volume............................... 3
28 2.1 Section 1.5.1, Codes .. 3
29 2.2 Section 3.362, Stream.. 3
30 2.3 Chapter 13, Headers... 3

31 Chapter 3 Changes to the Shell and Utilities Volume............................ 5

32 Chapter 4 Changes to the System Interfaces Volume............................. 7
33 4.1 Section 2.5, Standard I/O Streams .. 7
34 4.2 fclose() and fflush() ... 7
35 4.3 Reference Pages... 8
36 alphasort () .. 9
37 dirfd().. 11
38 dprintf().. 13
39 fmemopen()... 14
40 getdelim() ... 17
41 mbsnrtowcs().. 19
42 mkdtemp() .. 21
43 open_memstream() .. 23
44 psiginfo () .. 25
45 stpcpy()... 26
46 stpncpy() .. 27
47 strndup() .. 28
48 strnlen().. 29
49 strsignal()... 30
50 wcpcpy() ... 31
51 wcpncpy()... 32
52 wcscasecmp().. 33
53 wcsdup() ... 34
54 wcsncasecmp() ... 35
55 wcsnlen() .. 36
56 wcsnrtombs().. 37

57 Index... 39

Extended API Set Part 1 (SANITY DRAFT) iii

Contents

iv Technical Standard (2006) (Draft April 24, 2006)

58
Preface

59 The Open Group

60 The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
61 Boundaryless Information Flow will enable access to integrated information within and between
62 enterprises based on open standards and global interoperability. The Open Group works with
63 customers, suppliers, consortia, and other standards bodies. Its role is to capture, understand,
64 and address current and emerging requirements, establish policies, and share best practices; to
65 facilitate interoperability, develop consensus, and evolve and integrate specifications and Open
66 Source technologies; to offer a comprehensive set of services to enhance the operational
67 efficiency of consortia; and to operate the industry’s premier certification service, including
68 UNIX certification.

69 Further information on The Open Group is available at www.opengroup.org.

70 The Open Group has over 15 years’ experience in developing and operating certification
71 programs and has extensive experience developing and facilitating industry adoption of test
72 suites used to validate conformance to an open standard or specification.

73 More information is available at www.opengroup.org/certification.

74 The Open Group publishes a wide range of technical documentation, the main part of which is
75 focused on development of Technical and Product Standards and Guides, but which also
76 includes white papers, technical studies, branding and testing documentation, and business
77 titles. Full details and a catalog are available at www.opengroup.org/bookstore.

78 As with all live documents, Technical Standards and Specifications require revision to align with
79 new developments and associated international standards. To distinguish between revised
80 specifications which are fully backwards-compatible and those which are not:

81 • A new Version indicates there is no change to the definitive information contained in the
82 previous publication of that title, but additions/extensions are included. As such, it replaces
83 the previous publication.

84 • A new Issue indicates there is substantive change to the definitive information contained in
85 the previous publication of that title, and there may also be additions/extensions. As such,
86 both previous and new documents are maintained as current publications.

87 Readers should note that Corrigenda may apply to any publication. Corrigenda information is
88 published at www.opengroup.org/corrigenda.

89 This Document

90 This document has been prepared by The Open Group Base Working Group. The Open Group
91 Base Working Group is considering submitting a number of API sets to the Austin Group as
92 input to the revision of the Base Specifications, Issue 6.

93 This is the first document in that set.

Extended API Set Part 1 (SANITY DRAFT) v

94
Trademarks

95 Boundaryless Information Flow TM is a trademark and UNIX® and The Open Group® are
96 registered trademarks of The Open Group in the United States and other countries.

97 All other trademarks are the property of their respective owners.

vi Technical Standard (2006) (Draft April 24, 2006)

98
Acknowledgements

99 The contributions of the following to the development of this document are gratefully
100 acknowledged:

101 • The Open Group Base Working Group

Extended API Set Part 1 (SANITY DRAFT) vii

Acknowledgements

viii Technical Standard (2006) (Draft April 24, 2006)

Chapter 1

Introduction1

2 1.1 Scope
3 The purpose of this document is to define a set of new API extensions to further increase
4 application capture and hence portability for systems built upon the Single UNIX Specification,
5 Version 3.

6 The scope of this set of extensions has been to consider interfaces from existing open source
7 implementations, such as the GNU C library.

8 1.2 Relationship to Other Formal Standards
9 No decision has been made on whether these interfaces will be added to a future Technical
10 Standard of The Open Group, how these interfaces would announce themselves in the name
11 space, or whether related interfaces should be merged with existing reference pages. This
12 Technical Standard is being forwarded to the Austin Group for consideration as input to the
13 revision of the Base Specifications, Issue 6.

Extended API Set Part 1 (SANITY DRAFT) 1

Introduction

2 Technical Standard (2006) (Draft April 24, 2006)

14

Chapter 2

Changes to the Base Definitions Volume

15 It is proposed that these additions comprise a new Option Group called Extended Interfaces.

16 2.1 Section 1.5.1, Codes
17 Add a new margin code as follows:

18 UX Extended Interfaces

19 The functionality described is optional. The functionality described is also an extension to
20 the ISO C standard.

21 Where applicable, functions are marked with the UX margin legend in the SYNOPSIS
22 section. Where additional semantics apply to a function, the material is identified by use of
23 the UX margin legend.

24 Notes:

25 1. This section is repeated in XBD, XSH, and XCU and therefore will in XBD (Section 1.5.1),
26 XSH (Section 1.8.1), and XCU (Section 1.8.1).

27 2. The use of UX as a margin code is a placeholder and may change in the final publication.

28 2.2 Section 3.362, Stream
29 Add fmemopen() and open_memstream() to the list of functions that can create a stream, marked
30 with the UX margin legend and shaded.

31 2.3 Chapter 13, Headers
32 The following header file reference pages will need the following additions, marked with the UX
33 margin legend and shaded as part of the Extended Interfaces Option Group.

34 <dirent.h>

35 The following shall be declared as functions and may also be defined as macros. Function
36 prototypes shall be provided.

37 int alphasort(const struct dirent **, const struct dirent **);
38 int dirfd (DIR *);
39 int scandir (const char *, struct dirent ***,
40 int (*) (const struct dirent *),
41 int (*) (const struct dirent **, const struct dirent **));

Extended API Set Part 1 (SANITY DRAFT) 3

Chapter 13, Headers Changes to the Base Definitions Volume

42 <signal.h>

43 The following shall be declared as functions and may also be defined as macros. Function
44 prototypes shall be provided.

45 void psignal (int, const char *);
46 void psiginfo (siginfo_t *, const char *);

47 <stdio.h>

48 The following shall be declared as functions and may also be defined as macros. Function
49 prototypes shall be provided.

50 int dprintf (int, const char *, ...);
51 FILE *fmemopen(void *,size_t, const char *);
52 ssize_t getdelim (char **, size_t *, int, FILE *);
53 ssize_t getline (char **, size_t *, FILE *);
54 FILE *open_memstream(char **, size_t *);

55 <stdlib.h>

56 The following shall be declared as functions and may also be defined as macros. Function
57 prototypes shall be provided.

58 char *mkdtemp(char *);

59 <string.h>

60 The following shall be declared as functions and may also be defined as macros. Function
61 prototypes shall be provided.

62 char *stpcpy (char *, const char *);
63 char *stpncpy (char *, const char *, size_t);
64 char *strndup (const char *, size_t);
65 size_t strnlen (const char *, size_t);
66 char *strsignal(int signum);

67 <wchar.h>

68 The following shall be declared as functions and may also be defined as macros. Function
69 prototypes shall be provided.

70 size_t mbsnrtowcs (wchar_t *, const char **, size_t, size_t, mbstate_t *);
71 wchar_t *wcpcpy (wchar_t *, const wchar_t *);
72 wchar_t *wcpncpy (wchar_t *, const wchar_t *, size_t);
73 int wcscasecmp (const wchar_t *, const wchar_t *);
74 wchar_t *wcsdup (const wchar_t *);
75 int wcsncasecmp (const wchar_t *, const wchar_t *, size_t);
76 size_t wcsnlen (const wchar_t *, size_t);
77 size_t wcsnrtombs (char *, const wchar_t **, size_t, size_t, mbstate_t *);

4 Technical Standard (2006) (Draft April 24, 2006)

78

Chapter 3

Changes to the Shell and Utilities Volume

79 It is proposed that the following changes are made to Chapter 4, Utilities, the ls command.

80 Note: All page and line numbers in this proposal refer to the Shell and Utilities volume of
81 IEEE Std 1003.1-2001, 2004 Edition.

82 SYNOPSIS

83 In the SYNOPSIS section on Page 571, Line 22014 add the −S option by changing the SYNOPSIS
84 from:

85 UX ls [−CFRacdilqrtu1][−H | −L][−fgmnopsx][file...]

86 to:

87 UX ls [−CFRSacdilqrtu1][−H | −L][−fgmnopsx][file...]

88 OPTIONS

89 In the OPTIONS section after Page 571, Line 22054 add a description of the new −S option as
90 follows:

91 −S Sort with the primary key being file size (in decreasing order) and the secondary
92 key being filename in the collating sequence (in increasing order).

93 On Page 572, Lines 22065-22067 specify the interaction between the −f and −S options by
94 changing the description of the −f option from:

95 UX −f Force each argument to be interpreted as a directory and list the name found in
96 each slot. This option shall turn off −l, −t, −s, and −r, and shall turn on −a; the order
97 is the order in which entries appear in the directory.

98 to:

99 UX −f Force each argument to be interpreted as a directory and list the name found in
100 each slot. This option shall turn off −l, −t, −S, −s, and −r, and shall turn on −a; the
101 order is the order in which entries appear in the directory.

102 On Page 572, Line 22082 note the interaction between −S and −r by changing the description of
103 the −r option from:

104 −r Reverse the order of the sort to get reverse collating sequence or oldest first.

105 to:

106 −r Reverse the order of the sort to get reverse collating sequence oldest first, or
107 smallest file size first depending on the other options given.

108 On Page 572, Lines 22092-22094 add −t and −S to the list of mutually-exclusive options by
109 changing from:

110 Specifying more than one of the options in the following mutually-exclusive pairs shall not be
111 UX considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell), −C and −1 (one), −H and −L,
112 −c and −u. The last option specified in each pair shall determine the output format.

113 to:

Extended API Set Part 1 (SANITY DRAFT) 5

Changes to the Shell and Utilities Volume

114 Specifying more than one of the options in the following mutually-exclusive pairs shall not be
115 UX considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell), −C and −1 (one), −H and −L,
116 −c and −u, −t and −S. The last option specified in each pair shall determine the output format.

117 RATIONALE

118 Add a new paragraph after Page 577, Line 22291:

119 The −S option was added to the standard in Issue 7, but had been provided by several
120 implementations for many years. The description given in the standard documents historic
121 practice, but does not match much of the documentation that described its behavior. Historical
122 documentation typically described it as something like:

123 −S Sort by size (largest size first) instead of by name. Special character devices (listed
124 last) are sorted by name.

125 even though the file type was never considered when sorting the output. Character special files
126 do typically sort close to the end of the list because their file size on most implementations is
127 zero. But they are sorted alphabetically with any other files that happen to have the same file
128 size (zero), not sorted separately and added to the end.

6 Technical Standard (2006) (Draft April 24, 2006)

129

Chapter 4

Changes to the System Interfaces Volume

130 It is proposed that the following changes are made to Section 2.5, Standard I/O Streams.

131 Note: The text described in this proposal refers to the System Interfaces volume of IEEE Std 1003.1,
132 2004 Edition.

133 4.1 Section 2.5, Standard I/O Streams
134 Change the first sentence to:

135 UX A stream is associated with an external file (which may be a physical device) or memory buffer
136 UX by ‘‘opening’’ a file or buffer. This may involve ‘‘creating’’ a new file.

137 Add the following to the end:

138 UX A stream associated with a memory buffer shall have the same operations for text files that a
139 stream associated with an external file would have. In addition, the stream orientation shall be
140 determined in exactly the same fashion.

141 Input and output operations on a stream associated with a memory buffer by a call to
142 fmemopen() shall be constrained by the implementation to take place within the bounds of the
143 memory buffer. In the case of a stream opened by open_memstream() or open_wmemstream(), the
144 memory area shall grow dynamically to accommodate write operations as necessary. For output,
145 data is moved from the buffer provided by setvbuf() to the memory stream during a flush or
146 close operation.

147 4.2 fclose() and fflush()
148 Add the following to the ‘‘shall fail’’ section within the ERRORS section:

149 [ENOMEM] The underlying stream was created by open_memstream() or
150 open_wmemstream() and insufficient memory is available.

151 Update the [ENOSPC] error condition to:

152 [ENOSPC] There was no free space remaining on the device containing the file or in the
153 buffer used by the fmemopen() function.

Extended API Set Part 1 (SANITY DRAFT) 7

Reference Pages Changes to the System Interfaces Volume

154 4.3 Reference Pages
155 Add the following new system interface descriptions in alphabetical order with the existing
156 system interface descriptions in Chapter 3, System Interfaces.

8 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume alphasort()

157 NAME
158 alphasort, scandir — scan a directory

159 SYNOPSIS
160 UX #include <dirent.h>

161 int alphasort(const struct dirent **d1, const struct dirent **d2);

162 int scandir(const char *dir, struct dirent ***namelist,
163 int (*sel)(const struct dirent *),
164 int (*compar)(const struct dirent **, const struct dirent **));
165

166 DESCRIPTION
167 The alphasort () function can be used as the comparison function for the scandir() function to sort
168 the directory entries into alphabetical order, as if by the strcoll() function. Its parameters are the
169 two directory entries, d1 and d2, to compare.

170 The scandir() function shall scan the directory dir, calling the function referenced by sel on each
171 directory entry. Entries for which the function referenced by sel returns non-zero shall be stored
172 in strings allocated as if by a call to malloc (), and sorted using qsort() with the comparison
173 function compar(), and collected in array namelist which shall be allocated as if by a call to
174 malloc (). If sel is a null pointer, all entries shall be selected.

175 RETURN VALUE
176 Upon successful completion, alphasort () shall return an integer greater than, equal to, or less
177 than 0, according to whether the name of the directory entry pointed to by d1 is lexically greater
178 than, equal to, or less than the directory pointed to by d2 when both are interpreted as
179 appropriate to the current locale. There is no return value reserved to indicate an error.

180 Upon successful completion, the scandir() function shall return the number of entries in the
181 array and a pointer to the array through the parameter namelist. Otherwise, the scandir()
182 function shall return −1.

183 ERRORS
184 The scandir() function shall fail if:

185 [EACCES] Search permission is denied for the component of the path prefix of dir or read
186 permission is denied for dir .

187 [ELOOP] A loop exists in symbolic links encountered during resolution of the dir
188 argument.

189 [ENAMETOOLONG]
190 The length of the dir argument exceeds {PATH_MAX} or a pathname
191 component is longer than {NAME_MAX}.

192 [ENOENT] A component of dir does not name an existing directory or dir is an empty
193 string.

194 [ENOMEM] Insufficient storage space is available.

195 [ENOTDIR] A component of dir is not a directory.

196 The scandir() function may fail if:

197 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
198 resolution of the dir argument.

199 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

Extended API Set Part 1 (SANITY DRAFT) 9

alphasort() Changes to the System Interfaces Volume

200 [ENAMETOOLONG]
201 As a result of encountering a symbolic link in resolution of the dir argument,
202 the length of the substituted pathname string exceeded {PATH_MAX}.

203 [ENFILE] Too many files are currently open in the system.

204 EXAMPLES
205 An example to print the files in the current directory:

206 #include <dirent.h>
207 #include <stdio.h>
208 ...
209 struct dirent **namelist;
210 int i,n;

211 n = scandir(".", &namelist, 0, alphasort);
212 if (n < 0)
213 perror("scandir");
214 else {
215 for (i = 0; i < n; i++) {
216 printf("%s\n", namelist[i]->d_name);
217 free(namelist[i]);
218 }
219 }
220 free(namelist);
221 ...

222 APPLICATION USAGE
223 These functions are part of the Extended Interfaces Option Group and need not be available on
224 all implementations.

225 RATIONALE
226 None.

227 FUTURE DIRECTIONS
228 None.

229 SEE ALSO
230 compar(), malloc (), qsort(), strcoll(), the Base Definitions volume of IEEE Std 1003.1-2001,
231 <dirent.h>

CHANGE232 HISTORY
233 First released in Issue X.

10 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume dirfd()

234 NAME
235 dirfd — extract the file descriptor used by a DIR stream

236 SYNOPSIS
237 UX #include <dirent.h>

238 int dirfd(DIR *dirp);
239

240 DESCRIPTION
241 The dirfd() function shall return a file descriptor referring to the same directory as the dirp
242 argument. This file descriptor shall be closed by a call to closedir(). The behavior of future calls
243 to readdir() and readdir_r() is undefined if the application attempts to alter the file position
244 indicator using the returned file descriptor. The behavior of future calls to closedir(), readdir(),
245 and readdir_r() is undefined if the application attempts to close the file descriptor.

246 RETURN VALUE
247 Upon successful completion, the dirfd() function shall return an integer which contains a file
248 descriptor for the stream pointed to by dirp. Otherwise, it shall return −1 and may set errno to
249 indicate the error.

250 ERRORS
251 The dirfd() function may fail if:

252 [EINVAL] The dirp argument does not refer to a valid directory stream.

253 [ENOTSUP] The implementation does not support the association of a file descriptor with
254 a directory.

255 EXAMPLES
256 None.

257 APPLICATION USAGE
258 The dirfd() function is part of the Extended Interfaces Option Group and need not be available
259 on all implementations.

260 The dirfd() function is intended to be a mechanism by which an application may obtain a file
261 descriptor to use for the fchdir() function.

262 RATIONALE
263 This interface was introduced because the Base Definitions volume of IEEE Std 1003.1-2001 does
264 not make public the DIR data structure. Applications tend to use the fchdir() function on the file
265 descriptor returned by this interface, and this has proven useful for security reasons; in
266 particular, it is a better technique than others where directory names might change.

267 The description uses the term ‘‘a file descriptor’’ rather than ‘‘the file descriptor’’. The
268 implication intended is that an implementation that does not use an fd for diropen() could still
269 open() the directory to implement the dirfd() function. Such a descriptor must be closed later
270 during a call to closedir().

271 An implementation that does not support file descriptors referring to directories may fail with
272 [ENOTSUP].

273 If it is necessary to allocate an fd to be returned by dirfd(), it should be done at the time of a call
274 to opendir().

Extended API Set Part 1 (SANITY DRAFT) 11

dirfd() Changes to the System Interfaces Volume

275 FUTURE DIRECTIONS
276 None.

277 SEE ALSO
278 closedir(), diropen(), fchdir(), fileno (), open(), opendir(), readdir(), readdir_r(), the Base Definitions
279 volume of IEEE Std 1003.1-2001, <dirent.h>, <stdio.h>

CHANGE280 HISTORY
281 First released in Issue X.

12 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume dprintf()

282 NAME
283 dprintf — formatted output conversion to a file descriptor

284 SYNOPSIS
285 UX #include <stdio.h>

286 int dprintf(int fildes, const char *format, ...);
287

288 DESCRIPTION
289 The dprintf() function shall be equivalent to the fprintf () function, except that dprintf() shall
290 write output to the file associated with the file descriptor specified by the fildes argument rather
291 than place output on a stream.

292 RETURN VALUE
293 Upon successful completion, the dprintf() function shall return the number of bytes transmitted.
294 If an output error was encountered, it shall return a negative value.

295 ERRORS
296 Refer to fprintf ().

297 In addition, the dprintf() function may fail if:

298 [EBADF] The fildes argument is not a valid file descriptor.

299 EXAMPLES
300 None.

301 APPLICATION USAGE
302 The dprintf() function is part of the Extended Interfaces Option Group and need not be available
303 on all implementations.

304 RATIONALE
305 None.

306 FUTURE DIRECTIONS
307 None.

308 SEE ALSO
309 fprintf (), the Base Definitions volume of IEEE Std 1003.1-2001, <stdio.h>

CHANGE310 HISTORY
311 First released in Issue X.

Extended API Set Part 1 (SANITY DRAFT) 13

fmemopen() Changes to the System Interfaces Volume

312 NAME
313 fmemopen — open a memory buffer stream

314 SYNOPSIS
315 UX #include <stdio.h>

316 FILE *fmemopen(void *restrict buf, size_t size,
317 const char *restrict mode);
318

319 DESCRIPTION
320 The fmemopen() function shall associate the buffer given by the buf and size arguments with a
321 stream. The buf argument shall be either a null pointer or point to a buffer that is at least size
322 bytes long.

323 The mode argument is a character string having one of the following values:

324 r or rb Open the stream for reading.

325 w or wb Open the stream for writing.

326 a or ab Append; open the stream for writing at the first null byte.

327 r+ or rb+ or r+b Open the stream for update (reading and writing).

328 w+ or wb+ or w+b Open the stream for update (reading and writing). Truncate the buffer
329 contents.

330 a+ or ab+ or a+b Append; open the stream for update (reading and writing); the initial
331 position is at the first null byte.

332 The character ’b’ shall have no effect.

333 If a null pointer is specified as the buf argument, fmemopen() shall allocate size bytes of memory
334 as if by a call to malloc (). This buffer shall be automatically freed when the stream is closed.
335 Because this feature is only useful when the stream is opened for updating (because there is no
336 way to get a pointer to the buffer) the fmemopen() call may fail if the mode argument does not
337 include a ’+’.

338 The stream maintains a current position in the buffer. This position is initially set to either the
339 beginning of the buffer (for r and w modes) or to the first null byte in the buffer (for a modes). If
340 no null byte is found in append mode, the initial position is set to one byte after the end of the
341 buffer.

342 If buf is a null pointer, the initial position shall always be set to the beginning of the buffer.

343 The stream also maintains the size of the current buffer contents. For modes r and r+ the size is
344 set to the value given by the size argument. For modes w and w+ the initial size is zero and for
345 modes a and a+ the initial size is either the position of the first null byte in the buffer or the value
346 of the size argument if no null byte is found.

347 A read operation on the stream cannot advance the current buffer position behind the current
348 buffer size. Reaching the buffer size in a read operation counts as ‘‘end-of-file’’. Null bytes in the
349 buffer have no special meaning for reads. The read operation starts at the current buffer position
350 of the stream.

351 A write operation starts either at the current position of the stream (if mode has not specified
352 ’a’ as the first character) or at the current size of the stream (if mode had ’a’ as the first
353 character). If the current position at the end of the write is larger than the current buffer size, the
354 current buffer size is set to the current position. A write operation on the stream cannot advance
355 the current buffer size behind the size given in the size argument.

14 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume fmemopen()

356 When a stream open for writing is flushed or closed, a null byte is written at the current position
357 or at the end of the buffer, depending on the size of the contents. If a stream open for update is
358 flushed or closed and the last write has advanced the current buffer size, a null byte is written at
359 the end of the buffer if it fits.

360 An attempt to seek a memory buffer stream to a negative position or to a position larger than the
361 buffer size given in the size argument shall fail.

362 RETURN VALUE
363 Upon successful completion, fmemopen() shall return a pointer to the object controlling the
364 stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

365 ERRORS
366 The fmemopen() function shall fail if:

367 [EINVAL] The size argument specifies a buffer size of zero.

368 The fmemopen() function may fail if:

369 [EINVAL] The value of the mode argument is not valid.

370 [EINVAL] The buf argument is a null pointer and the mode argument does not include a
371 ’+’ character.

372 [ENOMEM] The buf argument is a null pointer and the allocation of a buffer of length size
373 has failed.

374 [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

375 EXAMPLES

376 #include <stdio.h>

377 static char buffer[] = "foobar";

378 int
379 main (void)
380 {
381 int ch;
382 FILE *stream;

383 stream = fmemopen(buffer, strlen (buffer), "r");
384 if (stream == NULL)
385 /* handle error */;

386 while ((ch = fgetc(stream)) != EOF)
387 printf("Got %c\n", ch);

388 fclose(stream);
389 return (0);
390 }

391 This program produces the following output:

392 Got f
393 Got o
394 Got o
395 Got b
396 Got a
397 Got r

Extended API Set Part 1 (SANITY DRAFT) 15

fmemopen() Changes to the System Interfaces Volume

398 APPLICATION USAGE
399 The fmemopen() function is part of the Extended Interfaces Option Group and need not be
400 available on all implementations.

401 RATIONALE
402 This interface has been introduced to eliminate many of the errors encountered in the
403 construction of strings, notably overflowing of strings. This interface prevents overflow.

404 FUTURE DIRECTIONS
405 None.

406 SEE ALSO
407 fdopen(), fopen(), freopen(), malloc (), the Base Definitions volume of IEEE Std 1003.1-2001,
408 <stdio.h>

CHANGE409 HISTORY
410 First released in Issue X.

16 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume getdelim()

411 NAME
412 getdelim, getline — read a delimited record from stream

413 SYNOPSIS
414 UX #include <stdio.h>

415 ssize_t getdelim(char **lineptr, size_t *n, int delimiter,
416 FILE *stream);

417 ssize_t getline(char **lineptr, size_t *n, FILE *stream);
418

419 DESCRIPTION
420 The getdelim() function shall read from stream until it encounters a character matching the
421 delimiter character. The argument delimiter (when converted to a char) shall specify the character
422 that terminates the read process.

423 The delimiter argument is an int, the value of which the application shall ensure is a character
424 representable as an unsigned char or equal value to the macro EOF. If the delimiter argument has
425 any other value, the behavior is undefined.

426 The application shall ensure that *lineptr is a valid argument that could be passed to the free()
427 function. If *n is non-zero, the application shall ensure that *lineptr points to an object of size at
428 least *n bytes.

429 The size of the object pointed to by *lineptr shall be increased to fit the incoming line, if it isn’t
430 already large enough. The characters read shall be stored in the string pointed to by the lineptr
431 argument.

432 The getline() function shall be equivalent to the getdelim() function with the delimiter character
433 equal to the <newline> character.

434 RETURN VALUE
435 Upon successful completion, the getdelim() function shall return the number of characters
436 written into the buffer, including the delimiter character if one was encountered before EOF.
437 Otherwise, it shall return −1 and set errno to indicate the error.

438 ERRORS
439 These functions shall fail if:

440 [EINVAL] When lineptr or n are a null pointer.

441 [ENOMEM] Insufficient memory is available.

442 These functions may fail if:

443 [EINVAL] stream is not a valid file descriptor.

444 [EOVERFLOW] More than {SSIZE_MAX} characters were read without encountering the
445 delimiter character.

Extended API Set Part 1 (SANITY DRAFT) 17

getdelim() Changes to the System Interfaces Volume

446 EXAMPLES

447 #include <stdio.h>
448 #include <stdlib.h>

449 int main(void)
450 {
451 FILE * fp;
452 char * line = NULL;
453 size_t len = 0;
454 ssize_t read;
455 fp = fopen("/etc/motd", "r");
456 if (fp == NULL)
457 exit(1);
458 while ((read = getline(&line, &len, fp)) != -1) {
459 printf("Retrieved line of length %zu :\n", read);
460 printf("%s", line);
461 }
462 if (line)
463 free(line);
464 fclose(fp);
465 return 0;
466 }

467 APPLICATION USAGE
468 These functions are part of the Extended Interfaces Option Group and need not be available on
469 all implementations.

470 Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
471 parsing a file.

472 RATIONALE
473 These functions are widely used to solve the problem that the fgets() function has with long
474 lines. The functions automatically enlarge the target buffers if needed. These are especially
475 useful since they reduce code needed for applications.

476 FUTURE DIRECTIONS
477 None.

478 SEE ALSO
479 fgets(), free(), the Base Definitions volume of IEEE Std 1003.1-2001, <stdio.h>

CHANGE480 HISTORY
481 First released in Issue X.

18 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume mbsnrtowcs()

482 NAME
483 mbsnrtowcs — convert a multi-byte string to a wide-character string

484 SYNOPSIS
485 UX #include <wchar.h>

486 size_t mbsnrtowcs(wchar_t *restrict dst, const char **restrict src,
487 size_t nmc, size_t len, mbstate_t *restrict ps);
488

489 DESCRIPTION
490 The mbsnrtowcs() function works like the mbsrtowcs() function, except that the conversion of
491 characters pointed to by src is limited to at most nmc bytes (the size of the input buffer).

492 If dst is not a null pointer, then mbsnrtowcs() shall attempt to convert nmc bytes from the multi-
493 byte string pointed to by src into a wide-character string starting at dst. No more than len wide
494 characters shall be written to dst. The shift state, pointed at by ps, is updated by the conversion.
495 Each conversion shall take place, as if by repeated calls to mbrtowc(dest, *src, n, ps), where n is a
496 positive number. As long as this call succeeds, it is repeated, each time incrementing dst by one
497 and *src by the number of bytes converted.

498 Conversion shall stop early if any of the following cases occurs:

499 1. An invalid sequence of bytes was encountered in the src buffer. Under these conditions *src
500 is left pointing to the bytes which caused the conversion to halt. −1 is returned, and errno is
501 set to [EILSEQ].

502 2. Either the nmc limit has been reached, or len non-null wide characters have already been
503 stored in dst. Here, *src is left to point to the next multi-byte sequence that has not been
504 converted, and the total number of wide characters written to dst is returned.

505 3. The conversion of the multi-byte buffer pointed to by src has been completed by
506 encountering a null byte. In this case *src is set to a null pointer, *ps is returned to its initial
507 state, and the number of wide characters written to dst, excluding the terminating null
508 character, is returned.

509 When dst is a null pointer, the conversion proceeds as above, except that no wide characters are
510 written to memory, and the len argument is ignored, so no destination length limit is imposed.

511 In either case, if ps is a null pointer, mbsnrtowcs() shall use its own internal mbstate_t object,
512 which is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
513 object pointed to by ps shall be used to completely describe the current conversion state of the
514 associated character sequence.

515 It is the responsibility of the calling program to ensure that dst is large enough to hold at least len
516 wide characters.

517 RETURN VALUE
518 The mbsnrtowcs() function shall return the number of characters successfully converted, not
519 including the terminating null (if any). If an error occurs, mbsnrtowcs() shall return −1 and may
520 set errno to indicate the error.

521 ERRORS
522 The mbsnrtowcs() function may fail if:

523 [EILSEQ] An invalid multi-byte sequence was encountered.

Extended API Set Part 1 (SANITY DRAFT) 19

mbsnrtowcs() Changes to the System Interfaces Volume

524 EXAMPLES
525 None.

526 APPLICATION USAGE
527 The mbsnrtowcs() function is part of the Extended Interfaces Option Group and need not be
528 available on all implementations.

529 RATIONALE
530 None.

531 FUTURE DIRECTIONS
532 None.

533 SEE ALSO
534 iconv(), mbsrtowcs(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE535 HISTORY
536 First released in Issue X.

20 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume mkdtemp()

537 NAME
538 mkdtemp — create a unique directory

539 SYNOPSIS
540 UX #include <stdlib.h>

541 char *mkdtemp(char *template);
542

543 DESCRIPTION
544 The mkdtemp() function uses the contents of template to construct a unique directory name. The
545 string provided in template shall be a filename ending with six trailing ’X’s. The mkdtemp()
546 function shall replace each ’X’ with a character from the portable filename character set. The
547 characters are chosen such that the resulting name does not duplicate the name of an existing
548 file at the time of a call to mkdtemp(). The unique directory name is used to attempt to create the
549 directory using mode 0700 as modified by the file creation mask.

550 RETURN VALUE
551 Upon successful completion, the mkdtemp() function shall return a pointer to the string
552 containing the directory name if it was created. Otherwise, it shall return a null pointer and shall
553 set errno to indicate the error.

554 ERRORS
555 The mkdtemp() function shall fail if:

556 [EACCES] Search permission is denied on a component of the path prefix, or write
557 permission is denied on the parent directory of the directory to be created.

558 [EINVAL] The string pointed to by template does not end in "XXXXXX".

559 [ELOOP] A loop exists in symbolic links encountered during resolution of the path of
560 the directory to be created.

561 [EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

562 [ENAMETOOLONG]
563 The length of the template argument exceeds {PATH_MAX} or a pathname
564 component is longer than {NAME_MAX}.

565 [ENOENT] A component of the path prefix specified by the template argument does not
566 name an existing directory or path is an empty string.

567 [ENOSPC] The file system does not contain enough space to hold the contents of the new
568 directory or to extend the parent directory of the new directory.

569 [ENOTDIR] A component of the path prefix is not a directory.

570 [EROFS] The parent directory resides on a read-only file system.

571 The mkdtemp() function may fail if:

572 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
573 resolution of the path of the directory to be created.

574 [ENAMETOOLONG]
575 As a result of encountering a symbolic link in resolution of the path of the
576 directory to be created, the length of the substituted pathname string
577 exceeded {PATH_MAX}.

Extended API Set Part 1 (SANITY DRAFT) 21

mkdtemp() Changes to the System Interfaces Volume

578 EXAMPLES
579 None.

580 APPLICATION USAGE
581 The mkdtemp() function is part of the Extended Interfaces Option Group and need not be
582 available on all implementations.

583 RATIONALE
584 None.

585 FUTURE DIRECTIONS
586 None.

587 SEE ALSO
588 mkdir(), the Base Definitions volume of IEEE Std 1003.1-2001, <stdlib.h>

CHANGE589 HISTORY
590 First released in Issue X.

22 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume open_memstream()

591 NAME
592 open_memstream, open_wmemstream — open a dynamic memory buffer stream

593 SYNOPSIS
594 UX #include <stdio.h>

595 FILE *open_memstream(char **bufp, size_t *sizep);

596 #include <wchar.h>

597 FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);
598

599 DESCRIPTION
600 The open_memstream() and open_wmemstream() functions shall create an I/O stream associated
601 with a dynamically allocated memory buffer. The stream shall be opened for writing and shall
602 be seekable.

603 The stream associated with a call to open_memstream() shall be byte-oriented.

604 The stream associated with a call to open_wmemstream() shall be wide-oriented.

605 The stream shall maintain a current position in the allocated buffer and a current buffer length.
606 The position shall be initially set to zero (the start of the buffer). Each write to the stream shall
607 start at the current position and move this position by the number of successfully written bytes
608 for open_memstream() or the number of successfully written wide characters for
609 open_wmemstream(). The length shall be initially set to zero. If a write moves the position to a
610 value larger than the current length, the current length shall be set to this position. In this case a
611 null character for open_memstream() or a null wide character for open_wmemstream() shall be
612 appended to the current buffer. For both functions the terminating null is not included in the
613 calculation of the buffer length.

614 After a successful fflush() or fclose(), the pointer referenced by bufp shall contain the address of
615 the buffer, and the variable pointed to by sizep shall contain the number of successfully written
616 bytes for open_memstream() or the number of successfully written wide characters for
617 open_wmemstream(). The buffer shall be terminated by a null character for open_memstream() or a
618 null wide character for open_wmemstream().

619 After a successful fflush() the pointer referenced by bufp and the variable referenced by sizep
620 remain valid only until the next write operation on the stream or a call to fclose().

621 RETURN VALUE
622 Upon successful completion, these functions shall return a pointer to the object controlling the
623 stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

624 ERRORS
625 These functions may fail if:

626 [EINVAL] bufp or sizep are NULL.

627 [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

628 [ENOMEM] Memory for the stream or the buffer could not be allocated.

Extended API Set Part 1 (SANITY DRAFT) 23

open_memstream() Changes to the System Interfaces Volume

629 EXAMPLES

630 #include <stdio.h>
631 int main (void)
632 {
633 FILE *stream;
634 char *buf;
635 size_t len;

636 stream = open_memstream(&buf, &len);

637 if (stream == NULL)
638 /* handle error */;

639 fprintf(stream, "hello my world");
640 fflush(stream);
641 printf("buf=%s, len=%zu\n", buf, len);
642 fseeko(stream, 0, SEEK_SET);
643 fprintf(stream, "good-bye");
644 fclose(stream);
645 printf("buf=%s, len=%zu\n", buf, len);
646 free(buf);
647 return 0;
648 }

649 This program produces the following output:

650 buf=hello my world, len=14
651 buf=good-bye world, len=14

652 APPLICATION USAGE
653 These functions are part of the Extended Interfaces Option Group and need not be available on
654 all implementations.

655 The buffer created by these functions should be freed by the application after closing the stream,
656 by means of a call to free().

657 RATIONALE
658 These functions are similar to fmemopen() except that the memory is always allocated
659 dynamically by the function, and the stream is opened only for output.

660 FUTURE DIRECTIONS
661 None.

662 SEE ALSO
663 fclose(), fdopen(), fflush(), fopen(), fmemopen(), free(), freopen(), the Base Definitions volume of
664 IEEE Std 1003.1-2001, <stdio.h>

CHANGE665 HISTORY
666 First released in Issue X.

24 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume psiginfo()

667 NAME
668 psiginfo, psignal — print signal information to standard error

669 SYNOPSIS
670 UX #include <signal.h>

671 void psiginfo(siginfo_t *pinfo, const char *message);

672 void psignal(int signum, const char *message);
673

674 DESCRIPTION
675 The psiginfo () and psignal () functions shall print a message out on stderr associated with a signal
676 number. If message is not null and is not the empty string, then the string pointed to by the
677 message argument shall be printed first, followed by a colon, a space, and the signal description
678 string indicated by signum, or by the signal associated with pinfo. If the message argument is null
679 or points to an empty string, then only the signal description shall be printed. For psiginfo (), the
680 argument pinfo references a valid siginfo_t structure. For psignal (), if signum is not a valid signal
681 number, the behavior is implementation-defined.

682 RETURN VALUE
683 These functions shall not return a value.

684 ERRORS
685 No errors are defined.

686 EXAMPLES
687 None.

688 APPLICATION USAGE
689 These functions are part of the Extended Interfaces Option Group and need not be available on
690 all implementations.

691 RATIONALE
692 System V historically has psignal () and psiginfo () in <siginfo.h>. However, the <siginfo.h>
693 header is not specified in the Base Definitions volume of IEEE Std 1003.1-2001, and the type
694 siginfo_t is defined in <signal.h>.

695 FUTURE DIRECTIONS
696 None.

697 SEE ALSO
698 perror(), strsignal(), the Base Definitions volume of IEEE Std 1003.1-2001, <signal.h>

CHANGE699 HISTORY
700 First released in Issue X.

Extended API Set Part 1 (SANITY DRAFT) 25

stpcpy() Changes to the System Interfaces Volume

701 NAME
702 stpcpy — copy a string and return a pointer to the end of the result

703 SYNOPSIS
704 UX #include <string.h>

705 char *stpcpy(char *restrict dst, const char *restrict src);
706

707 DESCRIPTION
708 The stpcpy() function shall be equivalent to strcpy(), copying the string pointed to by src into the
709 array pointed to by dst, with the exception that stpcpy() shall return a pointer to the terminating
710 null byte in dst, rather than the beginning of this array, allowing succeeding calls to add
711 additional text to the dst array.

712 If copying takes place between objects that overlap, the behavior is undefined.

713 RETURN VALUE
714 The stpcpy() function shall return a pointer to the terminating null byte at the end of the dst
715 buffer. No return values are reserved to indicate an error.

716 ERRORS
717 No errors are defined.

718 EXAMPLES
719 The following example demonstrates the construction of a multi-part message in a single buffer.

720 #include <string.h>
721 #include <stdio.h>

722 int
723 main (void)
724 {
725 char buffer [10];
726 char *name = buffer;

727 name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
728 puts (buffer);
729 return 0;
730 }

731 APPLICATION USAGE
732 The stpcpy() function is part of the Extended Interfaces Option Group and need not be available
733 on all implementations.

734 RATIONALE
735 None.

736 FUTURE DIRECTIONS
737 None.

738 SEE ALSO
739 strcpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE740 HISTORY
741 First released in Issue X.

26 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume stpncpy()

742 NAME
743 stpncpy — copy fixed length string, returning a pointer to the array end

744 SYNOPSIS
745 UX #include <string.h>

746 char *stpncpy(char *restrict dst, const char *restrict src, size_t size);
747

748 DESCRIPTION
749 The stpncpy() function shall be equivalent to the stpcpy() function, with the added restriction
750 that it shall copy at most size bytes from src into dst.

751 If size is less than or equal to the length of the string pointed to by src then no termination null
752 byte shall be inserted into the dst array after the size bytes have been copied.

753 If size is greater than the length of the string pointed to by src then all of the bytes in src are
754 copied into the dst array. As many terminating null bytes are inserted as are needed to bring the
755 total bytes transferred equal to size.

756 If copying takes place between objects that overlap, the behavior is undefined.

757 RETURN VALUE
758 If a null byte is written to the destination, the stpncpy() function shall return the address of the
759 first such null byte. Otherwise, it shall return &src[size]. No return values are reserved to
760 indicate an error.

761 ERRORS
762 No errors are defined.

763 EXAMPLES

A764 PPLICATION USAGE
765 The stpncpy() function is part of the Extended Interfaces Option Group and need not be
766 available on all implementations.

767 Applications must provide the space in dst for the size bytes to be transferred, as well as ensure
768 that the src and dst arrays do not overlap.

769 RATIONALE
770 None.

771 FUTURE DIRECTIONS
772 None.

773 SEE ALSO
774 stpcpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE775 HISTORY
776 First released in Issue X.

Extended API Set Part 1 (SANITY DRAFT) 27

strndup() Changes to the System Interfaces Volume

777 NAME
778 strndup — duplicate a specific number of bytes from a string

779 SYNOPSIS
780 UX #include <string.h>

781 char *strndup(const char *string, size_t size);
782

783 DESCRIPTION
784 The strndup() function shall be equivalent to the strdup() function, duplicating the provided
785 string in a new block of memory allocated as if by using malloc (), with the exception being that
786 strndup() copies at most size plus one bytes into the newly allocated memory, terminating the
787 new string with a null byte.

788 If the length of string is larger than size, only size bytes shall be duplicated. If size is larger than
789 the length of string, all bytes in string shall be copied into the new memory buffer, including the
790 terminating null byte. The newly created string shall always be properly terminated.

791 RETURN VALUE
792 Upon successful completion, the strndup() function shall return a pointer to the newly allocated
793 memory containing the duplicated string. Otherwise, it shall return a null pointer and set errno
794 to indicate the error.

795 ERRORS
796 The strndup() function shall fail if:

797 [ENOMEM] Insufficient memory available for the target string.

798 EXAMPLES
799 None.

800 APPLICATION USAGE
801 The strndup() function is part of the Extended Interfaces Option Group and need not be
802 available on all implementations.

803 RATIONALE
804 None.

805 FUTURE DIRECTIONS
806 None.

807 SEE ALSO
808 malloc (), strdup(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE809 HISTORY
810 First released in Issue X.

28 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume strnlen()

811 NAME
812 strnlen — determine length of fixed size string

813 SYNOPSIS
814 UX #include <string.h>

815 size_t strnlen(const char *s, size_t maxlen);
816

817 DESCRIPTION
818 The strnlen() function shall compute the smaller of the number of bytes in the string to which s
819 points, not including the terminating null byte, or the value of the maxlen argument. The
820 strnlen() function shall never examine more than maxlen bytes of the string pointed to by s.

821 RETURN VALUE
822 The strnlen() function shall return an integer containing the smaller of either the length of the
823 string pointed to by s or maxlen.

824 ERRORS
825 No errors are defined.

826 EXAMPLES
827 None.

828 APPLICATION USAGE
829 The strnlen() function is part of the Extended Interfaces Option Group and need not be available
830 on all implementations.

831 RATIONALE
832 None.

833 FUTURE DIRECTIONS
834 None.

835 SEE ALSO
836 strlen(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE837 HISTORY
838 First released in Issue X.

Extended API Set Part 1 (SANITY DRAFT) 29

strsignal() Changes to the System Interfaces Volume

839 NAME
840 strsignal — get name of signal

841 SYNOPSIS
842 UX #include <string.h>

843 char *strsignal(int signum);
844

845 DESCRIPTION
846 The strsignal() function shall map the signal number in signum to an implementation-defined
847 string and shall return a pointer to it. It shall use the same set of messages as the psignal ()
848 function.

849 The string pointed to shall not be modified by the application, but may be overwritten by a
850 subsequent call to strsignal() or setlocale ().

851 The contents of the message strings returned by strsignal() should be determined by the setting
852 of the LC_MESSAGES category in the current locale.

853 The implementation shall behave as if no function defined in this standard calls strsignal().

854 Since no return value is reserved to indicate an error, an application wishing to check for error
855 situations should set errno to 0, then call strsignal(), then check errno.

856 The strsignal() function need not be reentrant. A function that is not required to be reentrant is
857 not required to be thread-safe.

858 RETURN VALUE
859 Upon successful completion, strsignal() shall return a pointer to a string. Otherwise, if signum is
860 not a valid signal number, the return value is unspecified.

861 ERRORS
862 No errors are defined.

863 EXAMPLES
864 None.

865 APPLICATION USAGE
866 The strsignal() function is part of the Extended Interfaces Option Group and need not be
867 available on all implementations.

868 RATIONALE
869 If signum is not a valid signal number, some implementations return NULL, while for others the
870 strsignal() function returns a pointer to a string containing an unspecified message denoting an
871 unknown signal. This standard leaves this return value unspecified.

872 FUTURE DIRECTIONS
873 None.

874 SEE ALSO
875 perror(), psignal (), setlocale (), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE876 HISTORY
877 First released in Issue X.

30 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume wcpcpy()

878 NAME
879 wcpcpy — copy a wide-character string, returning a pointer to its end

880 SYNOPSIS
881 UX #include <wchar.h>

882 wchar_t *wcpcpy(wchar_t *restrict dst, const wchar_t *restrict src);
883

884 DESCRIPTION
885 The wcpcpy() function is the wide-character equivalent of the stpcpy() function. It shall copy the
886 wide-character string pointed to by src, including the terminating null wide-character code, into
887 the array pointed to by dst.

888 The application shall ensure that there is room for at least wcslen(src)+1 wide characters in the
889 dst array, and that the src and dst arrays do not overlap.

890 RETURN VALUE
891 The wcpcpy() function shall return a pointer to the last wide character written into the dst array
892 that is a pointer to the terminating null wide-character code. No return value is reserved to
893 indicate an error.

894 ERRORS
895 No errors are defined.

896 EXAMPLES
897 None.

898 APPLICATION USAGE
899 The wcpcpy() function is part of the Extended Interfaces Option Group and need not be available
900 on all implementations.

901 RATIONALE
902 None.

903 FUTURE DIRECTIONS
904 None.

905 SEE ALSO
906 stpcpy(), strcpy(), wcscpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE907 HISTORY
908 First released in Issue X.

Extended API Set Part 1 (SANITY DRAFT) 31

wcpncpy() Changes to the System Interfaces Volume

909 NAME
910 wcpncpy — copy a fixed-size wide-character string, returning a pointer to its end

911 SYNOPSIS
912 UX #include <wchar.h>

913 wchar_t *wcpncpy(wchar_t restrict *dst, const wchar_t *restrict src,
914 size_t n);
915

916 DESCRIPTION
917 The wcpncpy() function is the wide-character equivalent of the stpncpy() function. It shall copy
918 at most n wide characters from the string pointed to by src, including the terminating null wide-
919 character code, into the array pointed to by dst. Exactly n wide characters shall be written into
920 dst. If the length of src is smaller than n, remaining characters for dst are filled in using the
921 terminating null wide-character code. If the src array length is greater than or equal to n, then n
922 characters from src shall be copied to dst with no terminating null wide-character code in the dst
923 array.

924 The application shall ensure that there is room for at least n wide characters in the dst array, and
925 that the src and dst arrays do not overlap.

926 RETURN VALUE
927 If any null wide-character codes were written into the dst array, the wcpncpy() function shall
928 return the address of the first such null wide-character code. Otherwise, it shall return &dst[n].
929 No return values are reserved to indicate an error.

930 ERRORS
931 No errors are defined.

932 EXAMPLES
933 None.

934 APPLICATION USAGE
935 The wcpncpy() function is part of the Extended Interfaces Option Group and need not be
936 available on all implementations.

937 RATIONALE
938 None.

939 FUTURE DIRECTIONS
940 None.

941 SEE ALSO
942 stpncpy(), wcpcpy(), wcsncpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE943 HISTORY
944 First released in Issue X.

32 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume wcscasecmp()

945 NAME
946 wcscasecmp — compare two wide-character strings, ignoring case

947 SYNOPSIS
948 UX #include <wchar.h>

949 int wcscasecmp(const wchar_t *st1, const wchar_t *st2);
950

951 DESCRIPTION
952 The wcscasecmp() function is the wide-character equivalent of the strcasecmp() function.

953 The wcscasecmp() function shall compare, while ignoring differences in case, the string pointed
954 to by st1 to the string pointed to by st2.

955 In the POSIX locale, wcscasecmp() shall behave as if the strings had been converted to lowercase
956 and then a character comparison performed. The results are unspecified in other locales.

957 RETURN VALUE
958 Upon completion, the wcscasecmp() function shall return an integer greater than, equal to, or less
959 than 0 if the wide-character string pointed to by st1 is, ignoring case, greater than, equal to, or
960 less than the wide-character string pointed to by st2, respectively. No return value is reserved to
961 indicate an error.

962 ERRORS
963 No errors are defined.

964 EXAMPLES
965 None.

966 APPLICATION USAGE
967 The wcscasecmp() function is part of the Extended Interfaces Option Group and need not be
968 available on all implementations.

969 RATIONALE
970 None.

971 FUTURE DIRECTIONS
972 None.

973 SEE ALSO
974 strcasecmp(), wcscmp(), wcsncasecmp(), the Base Definitions volume of IEEE Std 1003.1-2001,
975 <wchar.h>

CHANGE976 HISTORY
977 First released in Issue X.

Extended API Set Part 1 (SANITY DRAFT) 33

wcsdup() Changes to the System Interfaces Volume

978 NAME
979 wcsdup — duplicate a wide-character string

980 SYNOPSIS
981 UX #include <wchar.h>

982 wchar_t *wcsdup(const wchar_t *string);
983

984 DESCRIPTION
985 The wcsdup() function is the wide-character equivalent of the strdup() function.

986 The wcsdup() function shall return a pointer to a new wide-character string, which is the
987 duplicate of the wide-character string string. The returned pointer can be passed to free(). A null
988 pointer is returned if the new wide-character string cannot be created.

989 RETURN VALUE
990 Upon successful completion, the wcsdup() function shall return a pointer to the newly allocated
991 wide-character string. Otherwise, it shall return a null pointer and set errno to indicate the error.

992 ERRORS
993 The wcsdup() function shall fail if:

994 [ENOMEM] Memory large enough for the duplicate string could not be allocated.

995 EXAMPLES
996 None.

997 APPLICATION USAGE
998 The wcsdup() function is part of the Extended Interfaces Option Group and need not be available
999 on all implementations.

1000 RATIONALE
1001 None.

1002 FUTURE DIRECTIONS
1003 None.

1004 SEE ALSO
1005 free(), strdup(), wcscpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE1006 HISTORY
1007 First released in Issue X.

34 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume wcsncasecmp()

1008 NAME
1009 wcsncasecmp — compare two fixed-size wide-character strings, ignoring case

1010 SYNOPSIS
1011 UX #include <wchar.h>

1012 int wcsncasecmp(const wchar_t *st2, const wchar_t *st2, size_t n);
1013

1014 DESCRIPTION
1015 The wcsncasecmp() function is the wide-character equivalent of the strncasecmp() function.

1016 The wcsncasecmp() function shall compare, while ignoring differences in case, not more than n
1017 characters from the wide-character string pointed to by st1 to the wide-character string pointed
1018 to by st2.

1019 In the POSIX locale, wcsncasecmp() shall behave as if the strings had been converted to lowercase
1020 and then a character comparison performed. The results are unspecified in other locales.

1021 RETURN VALUE
1022 Upon completion, the wcsncasecmp() function shall return an integer greater than, equal to, or
1023 less than 0 if the possibly null wide-character terminated string pointed to by st1 is, ignoring
1024 case, greater than, equal to, or less than the possibly null wide-character terminated string
1025 pointed to by st2, respectively. No return value is reserved to indicate an error.

1026 ERRORS
1027 No errors are defined.

1028 EXAMPLES
1029 None.

1030 APPLICATION USAGE
1031 The wcsncasecmp() function is part of the Extended Interfaces Option Group and need not be
1032 available on all implementations.

1033 RATIONALE
1034 None.

1035 FUTURE DIRECTIONS
1036 None.

1037 SEE ALSO
1038 strncasecmp(), wcscasecmp(), wcsncmp(), the Base Definitions volume of IEEE Std 1003.1-2001,
1039 <wchar.h>

CHANGE1040 HISTORY
1041 First released in Issue X.

Extended API Set Part 1 (SANITY DRAFT) 35

wcsnlen() Changes to the System Interfaces Volume

1042 NAME
1043 wcsnlen — determine the length of a fixed-sized wide-character string

1044 SYNOPSIS
1045 UX #include <wchar.h>

1046 size_t wcsnlen(const wchar_t *wcs, size_t maxlen);
1047

1048 DESCRIPTION
1049 The wcsnlen() function is the wide-character equivalent of the strnlen() function.

1050 The wcsnlen() function shall compute the smaller of the number of wide characters in the string
1051 to which wcs points, not including the terminating null wide-character code, and the value of
1052 maxlen. The wcsnlen() function shall never examine more than the first maxlen characters of the
1053 wide-character string pointed to by wcs.

1054 RETURN VALUE
1055 The wcsnlen() function shall return an integer containing the smaller of either the length of the
1056 wide-character string pointed to by wcs or maxlen. No return value is reserved to indicate an
1057 error.

1058 ERRORS
1059 No errors are defined.

1060 EXAMPLES
1061 None.

1062 APPLICATION USAGE
1063 The wcsnlen() function is part of the Extended Interfaces Option Group and need not be
1064 available on all implementations.

1065 RATIONALE
1066 None.

1067 FUTURE DIRECTIONS
1068 None.

1069 SEE ALSO
1070 strnlen(), wcslen(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE1071 HISTORY
1072 First released in Issue X.

36 Technical Standard (2006) (Draft April 24, 2006)

Changes to the System Interfaces Volume wcsnrtombs()

1073 NAME
1074 wcsnrtombs — convert wide-character string to multi-byte string

1075 SYNOPSIS
1076 UX #include <wchar.h>

1077 size_t wcsnrtombs(char *dst, const wchar_t **src, size_t nwc,
1078 size_t len, mbstate_t *ps);
1079

1080 DESCRIPTION
1081 The wcsnrtombs() function shall be equivalent to the wcsrtombs() function, except that the
1082 conversion is limited to the first nwc wide characters.

1083 The wcsnrtombs() function shall convert a sequence of at most nwc wide characters from the
1084 array indirectly pointed to by src into a sequence of corresponding characters, beginning in the
1085 conversion state described by the object pointed to by ps. If dst is not a null pointer, the
1086 converted characters shall then be stored into the array pointed to by dst. Conversion continues
1087 up to and including a terminating null wide character, which shall also be stored. Conversion
1088 shall stop earlier in the following cases:

1089 • When a code is reached that does not correspond to a valid character

1090 • When the next character would exceed the limit of len total bytes to be stored in the array
1091 pointed to by dst (and dst is not a null pointer)

1092 • When nwc wide characters from src have been converted

1093 Each conversion shall take place as if by a call to the wcrtomb() function.

1094 If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
1095 pointer (if conversion stopped due to reaching a terminating null wide character) or the address
1096 just past the last wide character converted (if any). If conversion stopped due to reaching a
1097 terminating null wide character, the resulting state described shall be the initial conversion state.

1098 If ps is a null pointer, the wcsnrtombs() function shall use its own internal mbstate_t object,
1099 which is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
1100 object pointed to by ps shall be used to completely describe the current conversion state of the
1101 associated character sequence. The implementation shall behave as if no function defined in
1102 System Interfaces volume of IEEE Std 1003.1-2001 calls wcsnrtombs().

1103 UX CX If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
1104 functions, the application shall ensure that the wcsnrtombs() function is called with a non-NULL
1105 ps argument.

1106 The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

1107 RETURN VALUE
1108 Refer to wcsrtombs().

1109 ERRORS
1110 Refer to wcsrtombs().

Extended API Set Part 1 (SANITY DRAFT) 37

wcsnrtombs() Changes to the System Interfaces Volume

1111 EXAMPLES
1112 None.

1113 APPLICATION USAGE
1114 The wcsnrtombs() function is part of the Extended Interfaces Option Group and need not be
1115 available on all implementations.

1116 RATIONALE
1117 None.

1118 FUTURE DIRECTIONS
1119 None.

1120 SEE ALSO
1121 wcrtomb(), wcsrtombs(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE1122 HISTORY
1123 First released in Issue X.

38 Technical Standard (2006) (Draft April 24, 2006)

Index1

2 alphasort() ...9
3 dirent.h..3

d4 irfd()..11
5 dprintf()..13
6 fmemopen()...14
7 FOPEN_MAX ..15

g8 etdelim() ..17
9 mbsnrtowcs() ..19
10 mkdtemp()...21
11 NAME_MAX ...9

O12 PEN_MAX...9
o13 pen_memstream() ...23

14 PATH_MAX...9
p15 siginfo()..25

16 signal.h..4
s17 tdio.h..4
s18 tdlib.h...4
s19 tpcpy() ..26

20 stpncpy() ..27
21 string.h ..4

s22 trndup() ..28
23 strnlen() ..29
24 strsignal() ...30
25 wchar.h ...4

w26 cpcpy() ..31
27 wcpncpy()..32
28 wcscasecmp()..33
29 wcsdup() ..34
30 wcsncasecmp() ...35
31 wcsnlen()..36
32 wcsnrtombs() ..37

33 Extended API Set Part 1 (SANITY DRAFT) 39

Index

34 40 Technical Standard (2006) (Draft April 24, 2006)

