
Original ACL related man pages
NAME
 getfacl - get file access control lists

SYNOPSIS
 getfacl [-dRLPvh] file ...

 getfacl [-dRLPvh] -

DESCRIPTION
 For each file, getfacl displays the file name, owner, the group, and
 the Access Control List (ACL). If a directory has a default ACL, get-
 facl also displays the default ACL. Non-directories cannot have default
 ACLs.

 If getfacl is used on a file system that does not support ACLs, getfacl
 displays the access permissions defined by the traditional file mode
 permission bits.

 The output format of getfacl is as follows:
 1: # file: somedir/
 2: # owner: lisa
 3: # group: staff
 4: user::rwx
 5: user:joe:rwx #effective:r-x
 6: group::rwx #effective:r-x
 7: group:cool:r-x
 8: mask:r-x
 9: other:r-x
 10: default:user::rwx
 11: default:user:joe:rwx #effective:r-x
 12: default:group::r-x
 13: default:mask:r-x
 14: default:other:---

 Lines 4, 6 and 9 correspond to the user, group and other fields of the
 file mode permission bits. These three are called the base ACL entries.
 Lines 5 and 7 are named user and named group entries. Line 8 is the
 effective rights mask. This entry limits the effective rights granted
 to all groups and to named users. (The file owner and others permis-
 sions are not affected by the effective rights mask; all other entries
 are.) Lines 10--14 display the default ACL associated with this direc-
 tory. Directories may have a default ACL. Regular files never have a
 default ACL.

 The default behavior for getfacl is to display both the ACL and the
 default ACL, and to include an effective rights comment for lines where
 the rights of the entry differ from the effective rights.

 If output is to a terminal, the effective rights comment is aligned to
 column 40. Otherwise, a single tab character separates the ACL entry
 and the effective rights comment.

 The ACL listings of multiple files are separated by blank lines. The
 output of getfacl can also be used as input to setfacl.

 PERMISSIONS
 Process with search access to a file (i.e., processes with read access
 to the containing directory of a file) are also granted read access to
 the file's ACLs. This is analogous to the permissions required for
 accessing the file mode.

 OPTIONS
 --access
 Display the file access control list.

 -d, --default
 Display the default access control list.

 --omit-header
 Do not display the comment header (the first three lines of each
 file's output).

 --all-effective
 Print all effective rights comments, even if identical to the
 rights defined by the ACL entry.

 --no-effective
 Do not print effective rights comments.

 --skip-base
 Skip files that only have the base ACL entries (owner, group, oth-
 ers).

 -R, --recursive
 List the ACLs of all files and directories recursively.

 -L, --logical
 Logical walk, follow symbolic links. The default behavior is to
 follow symbolic link arguments, and to skip symbolic links encoun-
 tered in subdirectories.

 -P, --physical
 Physical walk, skip all symbolic links. This also skips symbolic
 link arguments.

 --tabular
 Use an alternative tabular output format. The ACL and the default
 ACL are displayed side by side. Permissions that are ineffective
 due to the ACL mask entry are displayed capitalized. The entry tag
 names for the ACL_USER_OBJ and ACL_GROUP_OBJ entries are also dis-
 played in capital letters, which helps in spotting those entries.

 --absolute-names
 Do not strip leading slash characters (`/'). The default behavior
 is to strip leading slash characters.

 --version
 Print the version of getfacl and exit.

 --help
 Print help explaining the command line options.

 -- End of command line options. All remaining parameters are inter-
 preted as file names, even if they start with a dash character.

 - If the file name parameter is a single dash character, getfacl
 reads a list of files from standard input.

CONFORMANCE TO POSIX 1003.1e DRAFT STANDARD 17
 If the environment variable POSIXLY_CORRECT is defined, the default
 behavior of getfacl changes in the following ways: Unless otherwise
 specified, only the ACL is printed. The default ACL is only printed if
 the -d option is given. If no command line parameter is given, getfacl
 behaves as if it was invoked as ``getfacl -''.

AUTHOR
 Andreas Gruenbacher, <a.gruenbacher@computer.org>.

 Please send your bug reports and comments to the above address.

SEE ALSO
 setfacl(1), acl(5)

NAME
 setfacl - set file access control lists

SYNOPSIS
 setfacl [-bkndRLPvh] [{-m|-x} acl_spec] [{-M|-X} acl_file] file ...

 setfacl --restore=file

DESCRIPTION
 This utility sets Access Control Lists (ACLs) of files and directories.
 On the command line, a sequence of commands is followed by a sequence
 of files (which in turn can be followed by another sequence of com-
 mands, ...).

 The options -m, and -x expect an ACL on the command line. Multiple ACL
 entries are separated by comma characters (`,'). The options -M, and -X
 read an ACL from a file or from standard input. The ACL entry format is
 described in Section ACL ENTRIES.

 The --set and --set-file options set the ACL of a file or a directory.
 The previous ACL is replaced. ACL entries for this operation must
 include permissions.

 The -m (--modify) and -M (--modify-file) options modify the ACL of a
 file or directory. ACL entries for this operation must include permis-
 sions.

 The -x (--remove) and -X (--remove-file) options remove ACL enries.
 Only ACL entries without the perms field are accepted as parameters,
 unless POSIXLY_CORRECT is defined.

 When reading from files using the -M, and -X options, setfacl accepts
 the output getfacl produces. There is at most one ACL entry per line.
 After a Pound sign (`#'), everything up to the end of the line is
 treated as a comment.

 If setfacl is used on a file system which does not support ACLs, set-
 facl operates on the file mode permission bits. If the ACL does not fit
 completely in the permission bits, setfacl modifies the file mode per-
 mission bits to reflect the ACL as closely as possible, writes an error
 message to standard error, and returns with an exit status greater than
 0.

 PERMISSIONS
 The file owner and processes capable of CAP_FOWNER are granted the
 right to modify ACLs of a file. This is analogous to the permissions
 required for accessing the file mode. (On current Linux systems, root
 is the only user with the CAP_FOWNER capability.)

 OPTIONS
 -b, --remove-all
 Remove all extended ACL entries. The base ACL entries of the owner,
 group and others are retained.

 -k, --remove-default
 Remove the Default ACL. If no Default ACL exists, no warnings are
 issued.

 -n, --no-mask
 Do not recalculate the effective rights mask. The default behavior
 of setfacl is to recalculate the ACL mask entry, unless a mask
 entry was explicitly given. The mask entry is set to the union of
 all permissions of the owning group, and all named user and group
 entries. (These are exactly the entries affected by the mask
 entry).

 --mask
 Do recalculate the effective rights mask, even if an ACL mask entry
 was explicitly given. (See the -n option.)

 -d, --default
 All operations apply to the Default ACL. Regular ACL entries in the
 input set are promoted to Default ACL entries. Default ACL entries
 in the input set are discarded. (A warning is issued if that hap-
 pens).

 --restore=file
 Restore a permission backup created by `getfacl -R' or similar. All
 permissions of a complete directory subtree are restored using this
 mechanism. If the input contains owner comments or group comments,
 and setfacl is run by root, the owner and owning group of all files
 are restored as well. This option cannot be mixed with other
 options except `--test'.

 --test
 Test mode. Instead of changing the ACLs of any files, the resulting
 ACLs are listed.

 -R, --recursive
 Apply operations to all files and directories recursively. This
 option cannot be mixed with `--restore'.

 -L, --logical
 Logical walk, follow symbolic links. The default behavior is to
 follow symbolic link arguments, and to skip symbolic links encoun-
 tered in subdirectories. This option cannot be mixed with
 `--restore'.

 -P, --physical
 Physical walk, skip all symbolic links. This also skips symbolic
 link arguments. This option cannot be mixed with `--restore'.

 --version
 Print the version of setfacl and exit.

 --help
 Print help explaining the command line options.

 -- End of command line options. All remaining parameters are inter-
 preted as file names, even if they start with a dash.

 - If the file name parameter is a single dash, setfacl reads a list
 of files from standard input.

 ACL ENTRIES
 The setfacl utility recognizes the following ACL entry formats (blanks
 inserted for clarity):

 [d[efault]:] [u[ser]:]uid [:perms]
 Permissions of a named user. Permissions of the file owner if
 uid is empty.

 [d[efault]:] g[roup]:gid [:perms]
 Permissions of a named group. Permissions of the owning group if
 gid is empty.

 [d[efault]:] m[ask][:] [:perms]
 Effective rights mask

 [d[efault]:] o[ther][:] [:perms]
 Permissions of others.

 Whitespace between delimiter characters and non-delimiter characters is
 ignored.

 Proper ACL entries including permissions are used in modify and set
 operations. (options -m, -M, --set and --set-file). Entries without
 the perms field are used for deletion of entries (options -x and -X).

 For uid and gid you can specify either a name or a number.

 The perms field is a combination of characters that indicate the per-
 missions: read (r), write (w), execute (x), execute only if the file is
 a directory or already has execute permission for some user (X).
 Alternatively, the perms field can be an octal digit (0-7).

 AUTOMATICALLY CREATED ENTRIES

 Initially, files and directories contain only the three base ACL
 entries for the owner, the group, and others. There are some rules that
 need to be satisfied in order for an ACL to be valid:

 * The three base entries cannot be removed. There must be exactly one
 entry of each of these base entry types.

 * Whenever an ACL contains named user entries or named group objects,
 it must also contain an effective rights mask.

 * Whenever an ACL contains any Default ACL entries, the three Default
 ACL base entries (default owner, default group, and default others)
 must also exist.

 * Whenever a Default ACL contains named user entries or named group
 objects, it must also contain a default effective rights mask.

 To help the user ensure these rules, setfacl creates entries from
 existing entries under the following conditions:

 * If an ACL contains named user or named group entries, and no mask
 entry exists, a mask entry containing the same permissions as the
 group entry is created. Unless the -n option is given, the permis-
 sions of the mask entry are further adjusted to include the union
 of all permissions affected by the mask entry. (See the -n option
 description).

 * If a Default ACL entry is created, and the Default ACL contains no
 owner, owning group, or others entry, a copy of the ACL owner, own-
 ing group, or others entry is added to the Default ACL.

 * If a Default ACL contains named user entries or named group
 entries, and no mask entry exists, a mask entry containing the same
 permissions as the default Default ACL's group entry is added.
 Unless the -n option is given, the permissions of the mask entry
 are further adjusted to inclu de the union of all permissions
 affected by the mask entry. (See the -n option description).

EXAMPLES
 Granting an additional user read access
 setfacl -m u:lisa:r file

 Revoking write access from all groups and all named users (using the
 effective rights mask)
 setfacl -m m::rx file

 Removing a named group entry from a file's ACL
 setfacl -x g:staff file

 Copying the ACL of one file to another
 getfacl file1 | setfacl --set-file=- file2

 Copying the access ACL into the Default ACL
 getfacl -a dir | setfacl -d -M- dir

CONFORMANCE TO POSIX 1003.1e DRAFT STANDARD 17
 If the environment variable POSIXLY_CORRECT is defined, the default
 behavior of setfacl changes as follows: All non-standard options are
 disabled. The ``default:'' prefix is disabled. The -x and -X options
 also accept permission fields (and ignore them).

AUTHOR
 Andreas Gruenbacher, <a.gruenbacher@computer.org>.

 Please send your bug reports, suggested features and comments to the
 above address.

SEE ALSO
 getfacl(1),chmod(1),umask(1), acl(5)

NAME
 chacl - change the access control list of a file or directory

SYNOPSIS
 chacl acl pathname...
 chacl -b acl dacl pathname...
 chacl -d dacl pathname...
 chacl -R pathname...
 chacl -D pathname...
 chacl -B pathname...
 chacl -l pathname...
 chacl -r pathname...

DESCRIPTION
 chacl is an IRIX-compatibility command, and is maintained for those
 users who are familiar with its use from either XFS or IRIX. Refer to
 the SEE ALSO section below for a description of tools which conform
 more closely to the (withdrawn draft) POSIX 1003.1e standard which
 describes Access Control Lists (ACLs).

 chacl changes the ACL(s) for a file or directory. The ACL(s) specified
 are applied to each file in the pathname arguments.

 Each ACL is a string which is interpreted using the acl_from_text(3)
 routine. These strings are made up of comma separated clauses each of
 which is of the form, tag:name:perm. Where tag can be:

 "user" (or "u")
 indicating that the entry is a user ACL entry.

 "group" (or "g")
 indicating that the entry is a group ACL entry.

 "other" (or "o")
 indicating that the entry is an other ACL entry.

 "mask" (or "m")
 indicating that the entry is a mask ACL entry.

 name is a string which is the user or group name for the ACL entry. A
 null name in a user or group ACL entry indicates the file's owner or
 file's group. perm is the string "rwx" where each of the entries may
 be replaced by a "-" indicating no access of that type, e.g. "r-x",
 "--x", "---".

OPTIONS
 -b Indicates that there are two ACLs to change, the first is the
 file access ACL and the second the directory default ACL.

 -d Used to set only the default ACL of a directory.

 -R Removes the file access ACL only.

 -D Removes directory default ACL only.

 -B Remove all ACLs.

 -l Lists the access ACL and possibly the default ACL associated
 with the specified files or directories. This option was added
 during the Linux port of XFS, and is not IRIX compatible.

 -r Set the access ACL recursively for each subtree rooted at path-
 name(s). This option was also added during the Linux port of
 XFS, and is not compatible with IRIX.

EXAMPLES
 A minimum ACL:

 chacl u::rwx,g::r-x,o::r-- file

 The file ACL is set so that the file's owner has "rwx", the file's

 group has read and execute, and others have read only access to the
 file.

 An ACL that is not a minimum ACL, that is, one that specifies a user or
 group other than the file's owner or owner's group, must contain a mask
 entry:

 chacl u::rwx,g::r-x,o::r--,u:bob:r--,m::r-x file1 file2

 To set the default and access ACLs on newdir to be the same as on old-
 dir, you could type:

 chacl -b `chacl -l olddir | \
 sed -e 's/.*\[//' -e 's#/# #' -e 's/]$//'` newdir

CAUTIONS
 chacl can replace the existing ACL. To add or delete entries, you must
 first do chacl -l to get the existing ACL, and use the output to form
 the arguments to chacl.

 Changing the permission bits of a file will change the file access ACL
 settings (see chmod(1)). However, file creation mode masks (see
 umask(1)) will not affect the access ACL settings of files created
 using directory default ACLs.

 ACLs are filesystem extended attributes and hence are not typically
 archived or restored using the conventional archiving utilities. See
 attr(5) for more information about extended attributes and see xfsdump(8)
 for a method of backing them up under XFS.

SEE ALSO
 getfacl(1),setfacl(1),chmod(1),umask(1), acl_from_text(3), acl(5),
 xfsdump(8)

Currently help from NFSv4_acl commands
Man pages coming summer CY05.
bfields@puzzle:~$ nfs4_getfacl -h
Useage: nfs4_getfacl [-f <outputfile>] <path>
Prints the NFSv4 acl entry for the given path.
 Permission letter mapping:
 r - NFS4_ACE_READ_DATA
 w - NFS4_ACE_WRITE_DATA
 a - NFS4_ACE_APPEND_DATA
 x - NFS4_ACE_EXECUTE
 d - NFS4_ACE_DELETE
 l - NFS4_ACE_LIST_DIRECTORY
 f - NFS4_ACE_ADD_FILE
 s - NFS4_ACE_ADD_SUBDIRECTORY
 n - NFS4_ACE_READ_NAMED_ATTRS
 N - NFS4_ACE_WRITE_NAMED_ATTRS
 D - NFS4_ACE_DELETE_CHILD
 t - NFS4_ACE_READ_ATTRIBUTES
 T - NFS4_ACE_WRITE_ATTRIBUTES
 c - NFS4_ACE_READ_ACL
 C - NFS4_ACE_WRITE_ACL
 o - NFS4_ACE_WRITE_OWNER

 y - NFS4_ACE_SYNCHRONIZE
bfields@puzzle:~$ nfs4_getfacl FOO
1: A::OWNER@:rwatTcCy
2: D::OWNER@:x
3: A:g:GROUP@:rtcy
4: D:g:GROUP@:waxTC
5: A::EVERYONE@:rtcy
6: D::EVERYONE@:waxTC

stat

NAME

stat, fstat, lstat - get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *file_name, struct stat *buf);
int fstat(int filedes, struct stat *buf);
int lstat(const char *file_name, struct stat *buf);

DESCRIPTION

These functions return information about the specified file. You do not need any access rights
to the file to get this information but you need search rights to all directories named in the
path leading to the file.

stat stats the file pointed to by file_name and fills in buf.

lstat is identical to stat, except in the case of a symbolic link, where the link itself is stat-ed,
not the file that it refers to.

fstat is identical to stat, only the open file pointed to by filedes (as returned by open(2)) is
stat-ed in place of file_name.

They all return a stat structure, which contains the following fields:

struct stat {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */

 dev_t st_rdev; /* device type (if inode device)
*/
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
};

The value st_size gives the size of the file (if it is a regular file or a symlink) in bytes. The size
of a symlink is the length of the pathname it contains, without trailing NUL.

The value st_blocks gives the size of the file in 512-byte blocks. (This may be smaller than
st_size/512 e.g. when the file has holes.) The value st_blksize gives the "preferred" blocksize
for efficient file system I/O. (Writing to a file in smaller chunks may cause an inefficient read-
modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some file system types allow
mounting in such a way that file accesses do not cause an update of the st_atime field. (See
`noatime' in mount(8).)

The field st_atime is changed by file accesses, e.g. by execve(2), mknod(2), pipe(2),
utime(2) and read(2) (of more than zero bytes). Other routines, like mmap(2), may or may
not update st_atime.

The field st_mtime is changed by file modifications, e.g. by mknod(2), truncate(2),
utime(2) and write(2) (of more than zero bytes). Moreover, st_mtime of a directory is
changed by the creation or deletion of files in that directory. The st_mtime field is not changed
for changes in owner, group, hard link count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group,
link count, mode, etc.).

The following POSIX macros are defined to check the file type:

S_ISREG(m)
is it a regular file?
S_ISDIR(m)
directory?
S_ISCHR(m)
character device?
S_ISBLK(m)
block device?
S_ISFIFO(m)
fifo?
S_ISLNK(m)
symbolic link? (Not in POSIX.1-1996.)
S_ISSOCK(m)
socket? (Not in POSIX.1-1996.)

The following flags are defined for the st_mode field:

S_IFMT 0170000 bitmask for the file type bitfields

S_IFSOCK 0140000 socket

S_IFLNK 0120000 symbolic link

S_IFREG 0100000 regular file

S_IFBLK 0060000 block device

S_IFDIR 0040000 directory

S_IFCHR 0020000 character device

S_IFIFO 0010000 fifo

S_ISUID 0004000 set UID bit

S_ISGID 0002000 set GID bit (see below)

S_ISVTX 0001000 sticky bit (see below)

S_IRWXU 00700 mask for file owner permissions

S_IRUSR 00400 owner has read permission

S_IWUSR 00200 owner has write permission

S_IXUSR 00100 owner has execute permission

S_IRWXG 00070 mask for group permissions

S_IRGRP 00040 group has read permission

S_IWGRP 00020 group has write permission

S_IXGRP 00010 group has execute permission

S_IRWXO 00007 mask for permissions for others (not in group)

S_IROTH 00004 others have read permission

S_IWOTH 00002 others have write permisson

S_IXOTH 00001 others have execute permission

The set GID bit (S_ISGID) has several special uses: For a directory it indicates that BSD
semantics is to be used for that directory: files created there inherit their group ID from the
directory, not from the effective gid of the creating process, and directories created there will
also get the S_ISGID bit set. For a file that does not have the group execution bit (S_IXGRP)
set, it indicates mandatory file/record locking. The `sticky' bit (S_ISVTX) on a directory means
that a file in that directory can be renamed or deleted only by the owner of the file, by the
owner of the directory, and by root.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

EBADF
filedes is bad.

ENOENT
A component of the path file_name does not exist, or the path is an empty string.

ENOTDIR
A component of the path is not a directory.

ELOOP
Too many symbolic links encountered while traversing the path.

EFAULT
Bad address.

EACCES
Permission denied.

ENOMEM
Out of memory (i.e. kernel memory).

ENAMETOOLONG

File name too long.

CONFORMING TO

The stat and fstat calls conform to SVr4, SVID, POSIX, X/OPEN, BSD 4.3. The lstat call
conforms to 4.3BSD and SVr4. SVr4 documents additional fstat error conditions EINTR,
ENOLINK, and EOVERFLOW. SVr4 documents additional stat and lstat error conditions
EACCES, EINTR, EMULTIHOP, ENOLINK, and EOVERFLOW. Use of the st_blocks and st_blksize
fields may be less portable. (They were introduced in BSD. Are not specified by POSIX. The
interpretation differs between systems, and possibly on a single system when NFS mounts are
involved.)

POSIX does not describe the S_IFMT, S_IFSOCK, S_IFLNK, S_IFREG, S_IFBLK, S_IFDIR,
S_IFCHR, S_IFIFO, S_ISVTX bits, but instead demands the use of the macros S_ISDIR(), etc.
The S_ISLNK and S_ISSOCK macros are not in POSIX.1-1996, but both will be in the next
POSIX standard; the former is from SVID 4v2, the latter from SUSv2.

Unix V7 (and later systems) had S_IREAD, S_IWRITE, S_IEXEC, where POSIX prescribes the
synonyms S_IRUSR, S_IWUSR, S_IXUSR.

OTHER SYSTEMS

Values that have been (or are) in use on various systems:
hex name ls octal description

f000 S_IFMT 170000 mask for file type

0000 000000 SCO out-of-service inode, BSD unknown type

SVID-v2 and XPG2 have both 0 and 0100000 for ordinary file

1000 S_IFIFO p| 010000 fifo (named pipe)

2000 S_IFCHR c 020000 character special (V7)

3000 S_IFMPC 030000 multiplexed character special (V7)

4000 S_IFDIR d/ 040000 directory (V7)

5000 S_IFNAM 050000 XENIX named special file

with two subtypes, distinguished by st_rdev values 1, 2:

0001 S_INSEM s 000001 XENIX semaphore subtype of IFNAM

0002 S_INSHD m 000002 XENIX shared data subtype of IFNAM

6000 S_IFBLK b 060000 block special (V7)

7000 S_IFMPB 070000 multiplexed block special (V7)

8000 S_IFREG - 100000 regular (V7)

9000 S_IFCMP 110000 VxFS compressed

9000 S_IFNWK n 110000 network special (HP-UX)

a000 S_IFLNK l@ 120000 symbolic link (BSD)

b000 S_IFSHAD 130000 Solaris shadow inode for ACL (not seen by userspace)

c000 S_IFSOCK s= 140000 socket (BSD; also "S_IFSOC" on VxFS)

d000 S_IFDOOR D> 150000 Solaris door

e000 S_IFWHT w% 160000 BSD whiteout (not used for inode)

0200 S_ISVTX 001000 `sticky bit': save swapped text even after use (V7)

reserved (SVID-v2)

On non-directories: don't cache this file (SunOS)

On directories: restricted deletion flag (SVID-v4.2)

0400 S_ISGID 002000 set group ID on execution (V7)

for directories: use BSD semantics for propagation of gid

0400 S_ENFMT 002000 SysV file locking enforcement (shared w/ S_ISGID)

0800 S_ISUID 004000 set user ID on execution (V7)

0800 S_CDF 004000 directory is a context dependent file (HP-UX)

A sticky command appeared in Version 32V AT&T UNIX.

SEE ALSO

chmod(2), chown(2), readlink(2), utime(2)

