Let $R^{\prime}(x)$ be the polynomial representation of the magic value of $0 \times 1 \mathrm{c} 2 \mathrm{~d} 19 \mathrm{ed}$ (as in the paper). Straight division on both counts, on an augmented message (last 4 bytes are 0). k is the message length in bits, $n=\operatorname{deg} G(x)=32$.

Prefixing: Prefixing the message with 32 1's.

$$
\begin{aligned}
M^{\prime}(x) & =x^{n} M(x)+x^{k} x^{n} I(x) \\
& \equiv \underbrace{x^{n} M(x)}_{\operatorname{deg}=n+k-1}+\underbrace{x^{k} R^{\prime}(x)}_{\operatorname{deg}=n+k-1}(\bmod G(x)) .
\end{aligned}
$$

That is, initializing the CRC register to all ones is equivalent to XOR-ing the 32 MSb of the message, $M(x)$, with the magic value, and then computing the remainder of that. I've verified it by software. I.e. the $\mathrm{CRC}=\mathrm{MAGIC}$ XOR 32 MSb , and then start division.

Adding: Complementing the the first 32 MSb of the message.

$$
\begin{aligned}
M^{\prime}(x) & =x^{n} M(x)+x^{k} I(x) \\
& =x^{n} M(x)+x^{-n} x^{k} x^{n} I(x) \\
& \equiv x^{n} M(x)+x^{-n} x^{k} R^{\prime}(x) \quad(\bmod G(x)) \\
& =x^{n} M(x)+x^{k-n} R^{\prime}(x) \\
& =\underbrace{x^{n} M(x)}_{\operatorname{deg}=n+k-1}+\underbrace{\sum_{i=\max (0, n-k)}^{n-1} r_{i}^{\prime} x^{k-n+i}}_{\operatorname{deg}=k-1}
\end{aligned}
$$

Now, this means that complementing the 32 MSb of the message is equivalent to XOR-ing the second batch of $32 \mathrm{MSb}^{1}$ of the message with the magic value, and then computing the remainder of that. I.e. the $\mathrm{CRC}=32 \mathrm{MSb}$, but the next 32 bits of the message have been XOR-ed with the magic value.

[^0]
[^0]: ${ }^{1} \mathrm{Or}$ as much as is available, if the message length is less than $n(n=32)$.

