
Appears in 8th International Symposium on Recent Advances in Intrusion Detection (RAID 2005)
September 7-9, 2005, Seattle, Washington

Empirical Analysis of Rate Limiting Mechanisms
Cynthia Wong, Stan Bielski, Ahren Studer, Chenxi Wang

Carnegie Mellon University

Abstract

One class of worm defense techniques that received
attention of late is to “rate limit” outbound traffic to
contain fast spreading worms. Several proposals of rate
limiting techniques have appeared in the literature, each
with a different take on the impetus behind rate limiting.
This paper presents an empirical analysis on different
rate limiting schemes using real traffic and attack traces
from a sizable network. In the analysis we isolate
and investigate the impact of the critical parameters
for each scheme and seek to understand how these
parameters might be set in realistic network settings.
Analysis shows that using DNS-based rate limiting has
substantially lower error rates than schemes based on
other traffic statistics. The analysis additionally brings
to light a number of issues with respect to rate limiting
at large. We explore the impact of these issues in the
context of general worm containment.

Keywords: Rate Limiting, Internet Worms, Worm
Containment

1 Introduction

Fast-spreading worms such as Blaster [16], and So-
Big [11] wreaked havoc on the Internet and caused mil-
lions of dollars in downtime and IT expenses. In addi-
tion to consuming valuable network and computing re-
sources, worms provide potential vehicles for DDoS at-
tacks, as seen in the case of SoBig and Blaster [11, 16].
The need to mitigate worm spread is apparent and press-
ing.

Researchers have proposed various techniques for worm
defense, both in detection [7, 22, 9, 13] and response
[23, 21, 1, 12, 4]. Automatic response techniques are of
particular interest because methods that require human
intervention simply cannot match the speed and vorac-
ity of modern day worms. One class of automated re-
sponse techniques seeks to rate limit the outbound spread
of worm traffic [23, 1, 12] while allowing the contin-
ued operation of legitimate applications. These rate lim-
iting schemes offer a gentler alternative to the simple
detect-and-block-the-host approach, and therefore are
more palatable to actual deployment. A recent analyti-
cal study also showed that when deployed at appropriate

points in the network, rate limiting can substantially re-
duce the spread of infection [25].

In this work, we undertake an empirical analysis of ex-
isting rate limiting mechanisms, with the goal of under-
standing the relative performance of the various schemes.
Our study is based on real traffic traces collected from the
border of a network with 1200 hosts. The trace data in-
cludes real attack traffic of Blaster and Welchia, which
infected over 100 hosts. We implement each scheme
against the trace data and analyze their performance in
terms of false positive and false negative rates. In the
case of worm defense, it is particularly important that
false positives are kept at a minimum without greatly im-
pacting false negatives.

We analyze the efficacy of the various schemes on
both worm traces and normal traffic. The inclusion
of real worm data allows us to draw insights without
having to consider the limitations of simulated attacks.
We study three rate limiting schemes, Williamson’s IP
throttling [23], Chen’s failed-connection-based scheme
[1] and Schechter’s credit-based rate limiting [12].
Williamson’s throttling scheme limits the rate of distinct
IP connections from an end host [23]. Chen et al. [1] and
Schechter et al. [12] both apply rate limiting to hosts that
exhibit an abnormally high number of failed connections.
In addition, we study an alternative rate limiting strategy
based on DNS statistics—namely limiting outgoing con-
nections without prior DNS translations, thereby restrict-
ing the contact rate of scanning worms. Ganger et al.
made the first observation that DNS-based statistics can
be used to detect and contain malicious worms [4]. Re-
cently Whyte et al. showed that DNS-based worm de-
tection can be extended to a network setting [22]. The
DNS-based rate limiting mechanism we study is a mod-
ified version of [4]. One goal of this study is to investi-
gate using DNS behavior as a basis for rate limiting and
its relative performance with respect to other schemes.

In addition to studying DNS-based rate limiting, the
other components of our analysis seek to understand the
fundamentals of rate limiting technology. For instance,
we evaluate the impact of dynamic vs. static rates. We
study the effect of host vs. edge-based deployment.
Some of these issues were not explored adequately in the
studies of the individual schemes.

Our analysis is the first that we are aware of that offers

evaluation of the different rate limiting schemes on an
equal footing—running against the same traffic traces.
The trace data we use in this study is from an open net-
work without strict traffic policies. Since most of the
rate limiting mechanisms target enterprise networks with
stricter traffic settings, we believe that our analysis pro-
vides reasonable insights into how well these schemes
might perform in practice.

2 Related Work

The rate limiting schemes by Williamson et al. [23],
Chen et al. [1], and Schechter et al. [12] are the target
of our analysis. We defer discussions of these schemes
to later sections of the paper.

Our work aims to provide a study of rate-limiting tech-
niques as a defense against Internet worm propagation.
Worm defense is a richly studied field; there exist many
schemes outside rate limiting [21, 7, 9, 22, 18, 13, 3].
Some are complimentary to rate limiting at large, which
can be combined in practice. For instance, the scan de-
tection work by Weaver et al. [21] and Jung et al. [7]
can be used to protect enterprise networks from incoming
infections while rate limiting seeks to contain outbound
propagations. Also of interest are the various forms of
worm detection work [22, 13, 9, 3]. In this paper we
choose to focus on analysis of automated response tech-
niques. We find it beneficial to limit our discussion to
a set of similar technologies so as to permit meaningful
comparisons.

We note that there exists a rich body of worm modeling
and analysis work [15, 26, 8, 19, 20, 10, 14] that offers
theoretical understanding of and technical insights into
worm defense. Our goal is not to study worm propaga-
tion in a broad sense, but rather we seek to evaluate and
understand the impact and limitations of a particular de-
fense strategy, rate limiting. We believe that rate limiting
is a lightweight technique that can be readily deployed
and administered, and therefore represents a promising
defense strategy.

Our study is the first that offers a direct comparison of
different rate limiting technologies, using real traffic and
attack traces. The analysis part of our study is similar
in spirit to the DDoS filter analysis by Collins et. al. [2],
though the target of our analysis is different and therefore
offers different insights and conclusions.

3 Trace Data

The study in this paper is conducted using traffic traces
collected from the border of an academic department.

The network has 1200 externally routable hosts and
serves approximately 1500 users. Hosts are used for
research, administration, and general computing (web
browsing, mail, etc). There is a diverse mix of operating
systems on the network. Since May 2003 we recorded
in an anonymized form all IP and common second layer
headers of packets (e.g., TCP or UDP) leaving and enter-
ing the network. We also recorded DNS traffic payloads
for use in the experiment in Section 8.

During the course of tracing, we recorded two worm
attacks: Blaster and Welchia [16, 17]. Both are scan-
ning worms that exploited the Windows DCOM RPC
vulnerability. For each attack recorded, we conducted
post-mortem analysis to identify the set of infected hosts
within the network. We further identified outbound
worm traffic as those from infected hosts with a partic-
ular destination port (e.g., port 135 for Blaster). When-
ever possible, a payload size identical or similar to those
publicized in Symantec’s worm advisories is used as ad-
ditional evidence to identify worm traffic. It is impor-
tant to note that infected hosts in our network were ex-
clusively Windows clients that, under normal circum-
stances, rarely (if ever) made any outbound port 135 con-
nections to external addresses. Once infected, these hosts
initiated tens of thousands of outbound connections to
port 135. As such, the task of identifying worm traffic is
made relatively easy.

For the purpose of this analysis, we use a period of 24-
day outbound trace, from August 6th to August 30th
2003. This period contains the first documented infec-
tion of Blaster in our network, which occurred on August
11th. Welchia hit the network on the 18th. Collectively,
Blaster and Welchia infected 100 hosts in the network.
Since hosts infected by Blaster and Welchia exhibited
similar traffic patterns during the overlapping time pe-
riod, we do not attempt to separate the two attacks. Our
data suggests that residual effects of the worms lingered
on for months but the effects of the infection are most
prominent during the first two weeks of the attack.

Figure 1(a) shows the daily volume of outgoing traffic
as seen by the edge router for the trace period. Fig-
ure 1(b) shows the number of distinct IP addresses daily.
As shown, the aggregate outgoing traffic experienced a
large spike as Blaster hits the network on day 6. At its
peak, the edge router saw 11 million outbound flows in a
day. This is in contrast to the normal 500,000 flows/day.
The increase in traffic is predominantly due to worm ac-
tivities.

Unless otherwise noted, the trace data refers to aggre-
gate traffic as seen by the edge router. In some of the
later analysis (e.g., Williamson’s host-based throttling),
we use host-level traffic from the aggregate trace. In

2

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5 10 15 20

N
um

be
r

of
 T

C
P

 F
lo

w
s

Days

Number of TCP Flows at the Edge Router per day

Total Flows
Total Worm Flows

Total Nonworm Flows
Blaster hits

Welchia hits

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 5 10 15 20

D
is

tin
ct

 D
es

tin
at

io
n

IP
 A

dd
re

ss
es

Days

Distinct Destination IP Addresses Per Day

Distinct IP Addresses

(a) Daily outgoing flows (b) Daily volume of distinct IPs

Figure 1: Traffic Statistics for the Blaster/Welchia Trace

those cases we will differentiate between infected host
traffic and normal host traffic.

4 Analysis Methodology

As previously mentioned, we use a period of 24-day out-
bound traces collected at the border of a 1200-host net-
work with documented Blaster and Welchia activities.
Our goal is to evaluate the performance of various pro-
posed rate limiting schemes. The performance criteria
we use in the analysis is error rates (e.g., false positives
and false negatives) of the different schemes. We define
the false positive rate as the percentage of normal traf-
fic misidentified as worm traffic and subsequently rate
limited. False negative rate is the percentage of worm
traffic that is not affected by the rate limiting mechanism
and permitted through without delay. Rate limited traffic
can be either blocked or delayed. In the analysis that fol-
low, we differentiate between these two cases and present
error rates accordingly. Note the false negative rate is
only meaningful during infection, while false positives
are considered throughout the entire trace period. When-
ever appropriate, we present Receiver Operator Curves
(ROC) to contrast false negatives with false positives.

For each scheme analyzed, there exists a set of parame-
ters that impact the performance of the mechanism. We
identify these parameters and evaluate the sensitivity of
the error rates with respect to each parameter. In some
cases, the impact of the parameters has not been studied
previously. A contribution of our study is to understand
precisely how these parameters might be implemented in
practice.

One factor that we were unable to evaluate fully in our
work was the placement of RL mechanisms within the
network. Our trace does not include internal traffic and
due to the anonymized nature of our trace data, we were
unable to reconstruct the internal network topology.

5 Williamson’s IP Throttling

Williamson’s IP throttling scheme operates on the as-
sumption that normal applications typically exhibit a
stable contact rate to a limited number of external
hosts (e.g., web servers, file servers) [23]. Restricting
host-level contact rates to unique IPs can limit rapid
connections to random addresses (e.g., worm traffic).
Williamson accomplishes this by keeping a working set
of addresses for each host, which models the normal con-
tact behavior of the host. The throttling mechanism per-
mits outgoing connections for addresses in the working
set, but delays other packets by placing them in a de-
lay queue. If the delay queue is full, further packets are
simply dropped. The packets in the delay queue are de-
queued and processed at a constant rate (one per second,
as suggested by [23]). At the same rate, the least recently
used address in the working set is evicted to make room
for the new connection. As a result, connections to fre-
quently contacted addresses are allowed through with a
high probability while connections to random addresses
(as those initiated by scanning worms) are likely delayed
and possibly dropped.

For this scheme, the size of the working set and the
delay queue are important. A larger working set per-
mits a higher contact rate while the delay queue length
determines how liberal (or restrictive) the scheme is.
Williamson recommends a five-address working set and
a delay queue length of 100 for host-based implementa-
tions. Our analysis reports on the impact of these param-
eter settings. We also analyze a version of Williamson’s
throttling on the edge router.

End Host Throttling To analyze Williamson’s end host
IP throttling, we reconstructed end-host traffic from our
trace and simulated Williamson’s rate limiting scheme
using these traces.

Figure 2(a) shows the daily false positive rate for in-
fected hosts with the size of the working set ranging

3

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

F
al

se
 P

os
iti

ve
(%

)

Days

FP for End Host MW RL w/ varying Working Set len. Infected Host

Aset len. 4
Aset len. 5
Aset len. 6
Aset len. 7
Aset len. 8
Aset len. 9

Aset len. 10
 0

 20

 40

 60

 80

 100

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

FP for End Host MW RL w/ varying Working Set len. Normal Host

Aset len 4
Aset len 5
Aset len 6
Aset len 7
Aset len 8
Aset len 9

Aset len 10

(a) FP per day for Infected Hosts (b) FP per day for Normal Hosts

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e(

%
)

Days

FN for End Host MW RL w/ varying Working Set len. Infected Host

Aset len. 4
Aset len. 5
Aset len. 6
Aset len. 7
Aset len. 8
Aset len. 9

Aset len. 10

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Days

Average Delay Queue Length for MW End Host RL Infected Hosts

Aset len. 4
Aset len. 5
Aset len. 6
Aset len. 7
Aset len. 8
Aset len. 9

Aset len. 10

(c) FN per day for Infected Hosts (d) Avg. Delay Queue Length(Infected Hosts)

Figure 2: Results for Williamson’s End Host RL mechanism

from 4 to 10. Again, false positive rates are calculated
as the percentage of benign traffic subjected to rate lim-
iting. The data points in Figure 2(a) show daily false
positive statistics as averages across infected hosts while
the host stayed infected. For comparison reasons, we
tested Williamson’s scheme on normal hosts, the result
of which are shown in Figure 2(b).

A few high-level insights are important here: First, Fig-
ure 2 suggests that false positives are low during normal
operation (about 15%). Once infection occurs, however,
Williamson’s scheme yields false positive rates nearly
90%. This is undesirable as during the worm outbreak,
essentially all benign traffic is subjected to delay incurred
by the throttling scheme. Figure 2(d) shows the aver-
age queue length for infected hosts. As shown, when
infection hit on day 6, the average queue length quickly
reached the maximum (100 in this case) and remained
in the neighborhood of 90%. This means that during in-
fection, delay for each fresh IP connection was approxi-
mately 90 seconds or greater if the queue was filled with
distinct hosts, which is likely to be the case due to the
random scanning nature of the worms.

We note, however, the way we define false positives is
slightly unfair; we label every delayed non-worm SYN
packet a false positive. In reality, many applications can
tolerate a slight delay. Table 1 shows the delay statis-
tics for a normal host during a 3-hour period. As shown,
all delays were less than 10 seconds, which may be en-
tirely acceptable for certain applications. In contrast, Ta-

ble 2 shows the worst case delay statistics for an infected
host for the same time period. As shown, once a host is
infected, the delay queue becomes saturated with worm
packets and legitimate applications on the host are sub-
jected to excessive delays and blockage.

Another observation is that the size of the working set
(at least for the values experimented here) has very lit-
tle effect on the error rates of the scheme. This is at
least partially due to the fact that we averaged statis-
tics across hosts. However, our experiments suggest that
Williamson’s throttling scheme exhibits a bimodal be-
havior with respect to legitimate traffic: minimal im-
pact during normal operation and greatly restrictive if in-
fected. This behavior, we conjecture, is inherent to the
scheme regardless of the size of the working set, pro-
vided that the working set permits at least the host’s nor-
mal contact rate. In practice, one can observe the con-
nection pattern of a host for some period of time before
determining the normal contact rate.

Figure 2(c) shows the false negative rates, which are pre-
dominantly below 1%. This means that Williamson’s
scheme is effective against worm spread, though it also
incurs large delays for legitimate applications running on
the same host. The strength of Williamson’s scheme lies
in its logical simplicity and ease of management. One
can imagine a more complex data structure than a simple
queue to deal with delayed connections. Alternatively,
one can employ a dynamic rate scheme that changes the
dequeuing rate accordingly with the length of the delay

4

Delay Amount. Number of Flows

No delay 1759
1 - 10 sec. 385
11 - 20 sec. 0
Total number of benign flows 2144

Table 1: Delay statistics for a normal host during a 3-hour period

queue. Schemes such as these can potentially reduce the
false positive rates, but at the price of increased complex-
ity.

Throttling at the Edge Router: Previous studies [10,
25] showed that end-host rate limiting is ineffective un-
less deployment is universal. As part of this study, we
investigate the effect of applying Williamson’s throt-
tling to the aggregate traffic at the edge of the network.
Aggregate, edge-based throttling is attractive because it
requires the instrumentation of only the ingress/egress
point of the subnet. Furthermore, aggregate throttling
dose not require per-host state to be kept. We note that
the logic of aggregate throttling can be extended to the
border point of a network cell within an enterprise, as
shown in [14], which can provide a finer protection gran-
ularity.

In a previous traffic study, we identified a candidate rate
of 16 addresses per five seconds for edge throttling for
a similar network [25]. In the analysis that follow, we
present results obtained with five aggregate rate limits:
10, 16, 20, 25 and 50 IPs per every five-second window.

Figure 3(a) shows the false positive rates for edge-router
rate limiting using various rate limits. The corresponding
false negative rates are shown in Figure 3(b). Compared
with the end-host case, edge-based rate limiting exhibits
significantly higher false positive rates during normal op-
eration. This is primarily due to the fact that aggregate
throttling penalizes hosts with atypical traffic patterns,
thereby contributing to a higher false positive rate. We
can increase the working set size at the edge to reduce the
false positives, but false positives will increase accord-
ingly. As such, Williamson’s throttling is best suited for
end-host rate limiting where behavior of a host is some-
what predictable.

6 Failed Connection Rate Limiting
(FC)

Chen et al. proposed another rate limiting scheme based
on the assumption that a host infected by a scanning
worm will generate a large number of failed TCP re-

quests [1]. Their scheme attempts to rate limit hosts that
exhibit such behavior. In the discussions that follow, we
refer to this scheme as FC (for Failed Connection).

FC is an edge-router based scheme that consists of two
phases. The first phase identifies the potential “infected”
hosts. During this phase a highly contended hash table
is used to store failure statistics for hosts. The hash ta-
ble is used to limit the amount of per-host state kept at
the router. Once the failure rate for a hash entry ex-
ceeds a certain threshold, the algorithm enters the second
phase, which attempts to rate limit the hosts in the entry.
Chen proposed a “basic” and “temporal” rate limiting al-
gorithm. We analyze both in this study.

The basic FC algorithm focuses on a short-term fail-
ure rate, λ. Chen recommends a λ value of one fail-
ure per second. Once a hash entry exceeds λ, the rate-
limiting engine attempts to limit the failure rate of each
host in the entry to at most λ, using a leaky bucket to-
ken algorithm—a token is removed from the bucket for
each failed connection and every λ seconds a new token
is added to the bucket. Once the bucket for a particu-
lar host is empty, further connections from that host are
dropped.

Temporal FC attempts to limit both the short term failure
rate λ and a longer term rate Ω. Chen suggested Ω be
a daily rate and λ a per second rate. The value of Ω
is intended to be significantly smaller than λ * (seconds
in a day). Hosts in a hash table entry are subjected to
rate limiting if the failure rate of the entry exceeds λ per
second or Ω per day. The objective of temporal FC is to
catch prolonged but somewhat less aggressive scanning
behavior—worms that spread under the short-term rate
of λ.

To evaluate these two algorithms we conducted exper-
iments with the border trace, with varying values of λ
and Ω. Figure 4(a) and (b) show the error rates for ba-
sic and temporal FC, with λ equaling 1 and Ω equaling
300, as recommended by Chen. Figure 4(a) shows an in-
crease in the false positive rates during the first week of
infection. This increase is due to the fact that a worm
generates rapid failed connections and quickly depletes
the available tokens. Until more tokens become avail-
able, legitimate traffic is stopped altogether, as seen in

5

Delay Amount. Benign Malicious

No delay 1 12
1 - 30 sec. 1 36
31 - 60 sec. 1 36
61 - 90 sec. 0 50
91 - 100 sec. 141 10115

Dropped 866 107080
Total 1010 117314

Table 2: Delay Statistics for an infected host during a 3-hour period

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

F
al

se
 P

os
iti

ve
(%

)

Days

False Positive for Edge Router MW RL w/ varying Working Set len.

Aset len 10
Aset len 16
Aset len 20
Aset len 25
Aset len 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20
F

al
se

 N
eg

at
iv

e(
%

)
Days

False Negative for Edge Router MW RL w/ varying Working Set len.

Aset len 10
Aset len 16
Aset len 20
Aset len 25
Aset len 50

(a) FP per day at Edge Router (b) FN per day at Edge Router

Figure 3: Results for Williamson’s RL mechanism at Edge Router

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positive per day for FC

Basic lambda = 1.0
Temporal lambda = 1.0, omega = 300

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e

(%
)

Days

False Negative per day for FC

Basic lambda = 1.0
Temporal lambda = 1.0, omega = 300

(a) FP per day (b) FN per day

Figure 4: Error rates per day for Basic and Temporal FC with λ = 1.0 & Ω = 300.

the third and forth row of Table 3.

In Figure 4(b) there is a pronounced initial jump in the
false negative rates as Blaster hits on day 6, and in a
few days the false negatives decrease significantly. The
bulk of false negatives can be attributed to the fact that
Chen’s scheme uses only TCP RST as an indication of
a failed connection. Since many firewalls simply drop
packets instead of responding with TCP RSTs, using
TCP RSTs exclusively underestimates the number of
failed connections. Figure 5(b) shows the error rates in-
cluding TCP TIMEOUTs. As shown, false negative rates
of FC are reduced significantly when Timeouts are con-
sidered. The drop in false negative rate on day 10 in

Figure 4(b) is correlated with the onset of the Welchia
outbreak. Blaster scanning generates a substantial num-
ber of TCP TIMEOUTs while Welchia tends to generate
TCP RSTs (Welchia scans via ICMP ECHO). As more
and more Blaster hosts are patched and Welchia makes
up a greater portion of the worm traffic, the false nega-
tives are reduced.

Figure 5 plots the false positive rates against the false
negative rates with varying values for λ and Ω. The data
points in this graph are averaged daily statistics over the
entire trace period. In temporal FC, when failures reach
Ω/2, the rate limiting algorithm proceeds to rate limit
hosts in a much more aggressive fashion than the basic

6

IP # Good Flows Dropped Total # Good Flows Cause
Basic Temporal

188.139.199.15 32896 56979 57336 eDonkey Client
188.139.202.79 25990 32945 33961 BearShare Client
188.139.173.123 5386 13457 15108 HTTP Client
188.139.173.104 4852 6175 6254 Good Flows(Inf. Client)

Table 3: False Positives and Cause for Day 6 λ = 1.0 and Ω = 300

scheme. This strategy results in a significant amount of
non-worm traffic from ”infected” hosts being dropped.
In the third row of Table 3, temporal FC dropped ap-
proximately 2.5 times more benign traffic compared to
basic FC. Since a typical worm outbreak will quickly
reach Ω/2 failures, temporal FC is more restrictive and
thus renders higher false positives.

Comparing FC results to host-based Williamson’s, we
can see that FC renders significantly lower false positives
during infection but yields slightly higher false negatives.
In fact, with FC’s drop-only approach and Williamson’s
tendency to saturate the delay queue, both closely ap-
proximate a detect-and-block approach, which is less in-
teresting from the standpoint of rate limiting.

7 Credit-based Rate Limiting (CB)

Another rate limiting scheme based on failed con-
nection statistics is the credit-based scheme by
Schechter et. al. [12]. We refer to it as CB (for
Credit Based). CB differs from Chen’s in two significant
ways. First, it performs rate limiting exclusively on
first contact connections—outgoing connections for
destination IPs that have not been visited previously.
The underlying rationale is that scanning worms produce
a large volume of failed connections, but more specif-
ically they produce failed first-contact connections,
therefore anomalous first-contact statistics are indicative
of scanning behavior. The notion of first contact is
fundamental to CB and as we show later is instrumental
to its success. Second, CB considers both failed and
successful connection statistics. Simply described, CB
allocates a certain number of connection credits per
host; each failed first-contact connection depletes one
credit while a successful one adds a credit. A host is
only allowed to make first-contact connections if its
credit balance is positive.

It is straightforward to see that CB limits the first-contact
failure rate at each host, but does not restrict the num-
ber of successful connections if the credit balance re-
mains positive. Further, non-first-contact connections
(typically legitimate traffic) are permitted through irre-

spective of the credit balance. Consequently, a scanning
worm producing a large number of failed first contacts
will quickly exhaust its credit balance and be contained.
Legitimate applications typically contact previously seen
addresses, thereby are largely unaffected by the rate lim-
iting mechanism.

In order to determine whether an outgoing TCP request
is a first contact, CB maintains a PCH (Previously Con-
tacted Host) list for each host. Additionally, a failure-
credit balance is maintained for each host. We imple-
mented the CB algorithm and experimented with the per-
host trace data. Schechter suggested a 64-address PCH
and a 10-credit initial balance. We conducted experi-
ments with PCH ranging from 8 to 128 entries with Least
Recently Used (LRU) replacement. Our experience sug-
gests that the level of the initial credit balance has min-
imal impact on the performance of the scheme, as that
only approximates the number of failures that can occur
within a time period; in reality a host can accrue more
credits by initiating successful first contacts. For the ex-
periments, we use an initial credit balance of 10 per host.

Figure 6(a) shows CB’s daily false positive and false neg-
ative rates with a 64-address PCH. The data points in
this graph are averages across all hosts. As shown, the
average false positive and false negative rates are be-
tween 5% and 15% during the infection period. The
false positive results significantly outperform both FC
and Williamson’s. CB’s false negative results are com-
parable to those of Williamson’s. These results speak
strongly of CB’s insight of rate limiting first contacts
rather than distinct IPs or straightforward failed connec-
tions. Since worm scanning consists primarily of first-
contact connections, CB’s strategy gives rise to a more
precise means of rate limiting.

Table 4 shows the false positive data for the top two false-
positive-generating hosts. Both clients that incurred high
false positives are P2P clients. The data show that the
worst case false positive rate is rather high—nearly 40%
for the host in row one. For comparison reasons, here we
also include the HTTP client discussed previously (row
3 from Table 3). As shown, CB is able to accommodate
this bursty web client while FC dropped a significant por-

7

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40 45

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curves for FC w/ varying lambda and omega

λ=2.0

λ=0.1

Ω=10

Ω=1000

Basic lambda=0.1-2.0
Temporal lambda=0.5, omega=10-1000
Temporal lambda=1.0, omega=10-1000
Temporal lambda=1.5, omega=10-1000

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curves for Chen et al. RL w/ and w/o Timeout Enhancement

Basic lambda=0.1-2.0
Temporal lambda=1.0,omega=10-1000

adding Timeout Basic same values
adding Timeout Temporal same values

(a) ROC w/ diff. values of λ and Ω (b) ROC and timeout enhancement

Figure 5: ROC for different λ and Ω values for Basic and Temporal RL algorithms

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

P
er

ce
nt

 (
%

)

Days

False Positive and False Negative per day for CB w/ PCH = 64

CB False Positive
CB False Negative

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curve for CB w/ 95% Conf. Intervals for Infection Period

pch = 128

pch = 8

CB

(a) Error rates (PCH = 64) (b) ROC w/ varying PCH sizes

Figure 6: Results of Error Rates for CB RL

tion of the client’s traffic.

Figure 6(b) plots the average false positive rates against
the corresponding false negative rates for PCH of 8, 16,
32, 64, and 128. The data points in this graph are ob-
tained by averaging per-host statistics over the entire
24-day trace period (sans the pre-infection days). As
shown, CB’s error rates are not particularly sensitive to
the length of the PCH’s. A 6% increase in the false pos-
itive value is observed when PCH is reduced from 128
entries to 8. As the PCH size increased so did the false
negative rate, which is a peculiar phenomenon. We are
unable to find a satisfactory explanation for this. We con-
jecture that a possible error in the Blaster mutex code
allowed multiple instances of Blaster to execute on the
same machine, thereby generating repeated scanning to
the same addresses.

Note that CB is essentially a host-based scheme since
states are kept for each host. Aggregating and correlat-
ing connection statistics across the network can reduce
the amount of state kept. For example, if host A makes
a successful first-contact connection to an external ad-
dress, further connections for that address could be per-
mitted through regardless of the identity of the originat-
ing host. This optimizes for the scenario that legitimate
applications (e.g., web browsing) on different hosts may

visit identical external addresses (e.g., cnn.com). A more
detailed investigation of aggregate CB can be found later
in Section 9.

8 DNS-based Rate Limiting

In this section we analyze a rate limiting scheme based
on DNS statistics. The underlying principle is that worm
programs induce visibly different DNS statistics from
those of legitimate applications [24, 22, 4]. For instance,
the non-existence of DNS lookups is a telltale sign for
scanning activity. This observation was first made by
Ganger et al. [4]. The scheme we analyze here is a mod-
ification of Ganger’s NIC-based DNS detection scheme.

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

Time

 t

Distinct q
 IPs

Packets

n Buckets

Dropped
Packets

Figure 7: Cascading Bucket RL Scheme

8

IP # Good Flows Dropped Total # of Good Flows Cause

188.139.199.15 22907 57336 eDonkey Client
188.139.202.79 13269 33961 BearShare Client
188.139.173.123 0 15108 HTTP Client

Table 4: Per Host False Positives and Cause for Day 6 for PCH = 64

The high-level strategy of the DNS rate limiting scheme
(hereafter refer to as DNS RL) is simple: for every out-
going TCP SYN, the rate limiting scheme permits it
through if there exists a prior DNS translation for the des-
tination IP, otherwise the SYN packet is rate limited. The
algorithm uses a cascading bucket scheme to contain un-
translated IP connections. A graphical illustration of the
algorithm is shown in Figure 7. In this scheme, there ex-
ists a set of n buckets, each capable of holding q distinct
IPs. The buckets are placed contiguously along the time
axis and each spans a time interval t.

The algorithm works as follows: When a TCP SYN is
sent to an address that does not have a prior DNS trans-
lation, the destination IP is added into the bucket for the
current time interval and the packet is delayed. When a
bucket is filled with q distinct IPs, new connection re-
quests are placed into the subsequent bucket, thus each
bucket cascades into the next one. Requests in the i-th
bucket are delayed until the beginning of the i+1 time in-
terval. The n-th bucket, the last in line, has no overflow
bucket and once it is full, new TCP SYN packets without
DNS translations are simply dropped. At the end of the
n*t time periods, we reinstate another n buckets for the
next n∗t time period. This algorithm permits a maximum
of q distinct IPs (without DNS translations) per time in-
terval t and packets (if not dropped) are delayed at most
n ∗ t.

The notion of the buckets provides an abstraction, with
which an administrator could define rules such as “Per-
mit 10 new flows every 30 seconds dropping anything
over 120 seconds.” This example rule, then, would trans-
late to 4 buckets (30 seconds * 4 = 2 minutes) with q = 10
and t = 30. Expressing rate limiting rules in this manner
is more intuitive and easier than attempting to character-
ize network traffic in terms of working sets or the failure
rate of connections.

This scheme can be implemented at the host level or at
the edge router of a network. A host-level implemen-
tation requires keeping DNS-related statistics on each
host. Edge-router-based implementation would require
the border router to keep a shadow DNS cache for the
entire network.

In our study, we tested DNS RL both at the host level and
at the edge, using DNS server cache information and all

DNS traffic recorded at the network border. More specif-
ically, we mirrored the DNS cache (and all TTLs) at the
edge and updated the cache as new DNS queries/replies
are recorded. Traffic to destination addresses with an un-
expired DNS record is permitted through, while all oth-
ers are delayed.

8.1 Analysis

The critical parameter for the cascading-bucket scheme
is the rate limit, which manifests in the values of q (the
size of each bucket), t (the time interval), and n (number
of buckets). To simplify our analysis, we varied the value
of q and kept n and t constant1. Additionally, the value
of n∗ t was set to 120 seconds to model the TCP timeout
period. This scheme allows a certain number of untrans-
lated IP connections to exit the network, which intends
to accommodate legitimate direct-IP connections. In our
data set, we observed some direct server-server commu-
nication and direct-IP connections due to peer-to-peer,
streaming audio and passive FTP traffic. These were the
main cause of false positives observed. One can attempt
to maintain a white list to allow legitimate direct-IP con-
nections and thus further reduce false positives. How-
ever, as observed in [22], a comprehensive white list for
an open network may not be feasible.

We first analyze the host-level DNS throttling scheme.
For this, we maintain a set of cascading buckets for each
host. Figure 8(a) and (b) show the false positive and false
negative rates for infected hosts. The data in these graphs
are daily error rates averaged over all infected hosts. Fig-
ure 8(c) plots the analogous false positive rates for nor-
mal hosts. In addition, Table 5 presents the delay statis-
tics for a normal host and Table 6 shows the worst case
delay statistics for an infected host.

These results yield a number of observations: First,
host-level DNS throttling significantly outperforms the
other mechanisms analyzed previously. As seen in Fig-
ure 8, the average false positive rates fall in the range
of 0.1% to 1.7% with corresponding false negative rates
between 0.1% to 3.2%, both significantly lower than the
error statistics of the others. We also observed that ap-

1By varying q and leaving n and t constant, we can achieve the goal
of regulating the rate limits

9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positives for End Host DNS RL w/ varying distinct IPs per 5 secs

3 Distinct IPs/5secs
5 Distinct IPs/5secs
7 Distinct IPs/5secs

10 Distinct IPs/5secs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e

(%
)

Days

False Negative for End Host DNS RL w/ varying distinct IPs per 5 secs

3 Distinct IPs/5secs
5 Distinct IPs/5secs
7 Distinct IPs/5secs

10 Distinct IPs/5secs

(a) FP for DNS-based RL (Infected Clients) (b) FN for DNS-based RL (Infected Clients)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positives for Normal Traffic using End Host DNS RL mechanism

3 Distinct IP / 5 sec
5 Distinct IP / 5 sec
7 Distinct IP / 5 sec

10 Distinct IP / 5 sec

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5 10 15 20

F
lo

w
s

Days

Traffic Patterns for End Host DNS RL mechanism

Total Non-worm traffic
Total worm traffic

Delayed worm flows
Dropped worm flows

(c) FP for DNS-based RL (Normal Clients) (d) Flows Dropped / Delayed

Figure 8: Results for DNS-based End Host RL

Delay Amount. # of Flows

No delay 2136
1 - 10 sec. 8
> 10 sec. 0
Total number of benign flows 2144

Table 5: DNS RL delay statistics for a normal host (3-hour period).

plications that do experience false positives here tend
to be those that fall outside of the security policies of
an enterprise network (e.g., peer-to-peer applications)—
disruption of such applications are generally considered
not critical to the network operation.

Table 5 shows the delay statistics for a normal host. As
shown, DNS RL delayed 8 total flows for this host, as
opposed to the 385 flows using Williamson’s (Table 2
in Section 5). Also note that all the delays in Table 5
are less than 10 seconds, which are not significant. Ta-
ble 6 shows the worst case delay statistics for an infected
host during the peak of its infection period. The statis-
tics show that DNS RL dropped approximately 17% of
the host’s benign traffic, compared to over 90% when us-
ing Williamson’s. In addition, DNS RL delays less flows
for normal hosts than Williamson’s. Also note in Table 6,
nearly delayed malicious flows are subjected to the max-
imum allowed delay and over 95% of the malicious flows
are dropped.

During the outbreak period, the false positives for in-

fected hosts included both dropped and delayed traffic
flows. A q value of 5 would drop approximately 0.075%
and delay 0.375% of the legitimate traffic. Figure 8(d)
shows summarized statistics from our analysis for a lib-
eral value of q = 10. During Blaster’s outbreak, on aver-
age 97% of the worm traffic was rate limited— approxi-
mately 82% dropped and the other 18% delayed with an
average delay of one minute each.

Our results also show that DNS rate limiting is capa-
ble of containing slow spreading worms. As a compar-
ison, Weaver’s Approximate TRW containment mecha-
nism can block worms that scan faster than 1 scan per
second [21]. Using the DNS scheme, with value of q = 3
and t = 5 for instance (3 direct-IP connections in 5-
second window), we can contain worms that scan at the
rate of 0.6 scans per second (or more) with 99% accu-
racy.

To test the effect of aggregate throttling, we implemented
a single set of cascading buckets for the entire network.
For this set of experiments, the value of q was set to

10

Delay Amount. Benign Malicious

No delay 806 1
1 - 30 sec. 4 34
31 - 60 sec. 2 35
61 - 100 sec. 12 40
> 100 sec. 11 4903
Dropped 172 112862
Total 1007 117875

Table 6: DNS RL Delay Statistics for an infected host during a 3-hour period

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positives for Edge Router DNS RL

20 Distinct IPs / 5sec
50 Distinct IPs / 5sec

100 Distinct IPs / 5sec

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20
F

al
se

 N
eg

at
iv

e
(%

)
Days

False Negatives for Edge Router DNS RL

20 Distinct IPs / 5sec
50 Distinct IPs / 5sec

100 Distinct IPs / 5sec

(a) FP for DNS-based RL (b)FN for DNS-based RL

Figure 9: Results for DNS-based RL at the Edge Router

20, 50, and 100 IPs per five second window. Figure 9
shows the error rates for the aggregate implementation.
As shown, a q value of 20 or 50 IPs yielded few false
negatives and a false positive rate of approximately three
to five percent. Note that when q is set to 20 or 50, the
false negative rates of edge-based rate limiting are lower
than the host-level scheme. This is because the aggregate
traffic limit is more restrictive overall than the collective
limit in the host-based case. Although the false positive
rates for the aggregate case are slightly higher than the
host-level case, overall the error rates are fairly low—5%
false positive and < 1% false positive.

9 Discussions

Analysis in the previous sections brought to light a num-
ber of issues with respect to rate limiting technology. In
this section we attempt to extrapolate from these results
and discuss some general insights.

DNS-based RL vs. others: A summary comparison of
the DNS-based scheme with the others is in Figure 10.
The parameters here are consistent with the values used
in the previous sections. As shown, DNS-based rate
limiting has the best performing false positive and false
negative rates. Host-based DNS throttling renders an av-
erage false positive and false negative rate below 1%.

These results present a strong case for DNS-based rate
limiting.

Recall that the q value in DNS throttling allows for q
untranslated IP connections per host to exit the network
every t seconds. To put things in perspective, for the
first day of infection, the network had a total of 468,300
outbound legitimate flows. When q = 7 a total of 463 le-
gitimate flows are dropped, which yields a false positive
rate of 0.099%. This is less than 1 dropped flow per host
per day. As a comparison, CB dropped 3767 legitimate
flows for the same day, a false positive rate of 7.8%.

The success of DNS RL can be attributed primarily to the
fact that DNS traffic patterns (or the lack thereof), com-
pared to other statistics, more precisely delineate worm
traffic from normal behavior. DNS-based RL can thus
impose severe limitations on worm traffic without visi-
bly impacting normal traffic.

One of the reasons that scanning worms are successful
is because they are able to probe the numeric IP space
extremely rapidly in their search for potential victims.
Navigating the DNS name space is a far more difficult
process to automate, since the name space is less pop-
ulated and has poorer locality properties. DNS-based
throttling forces scanning worms to probe the DNS name
space, thereby reducing the scan hit rate and substan-
tially raising the level of difficulties for scanning worms

11

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curves for all RL schemes

FC Basic
FC Temporal

CB
CB Edge Router

MW End Host
DNS End Host

DNS Edge Router

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

P
er

ce
nt

 (
%

)

Days

False Positive and False Negative for CB Edge Router w/ PCH = 4096

CB Edge Router False Positive
CB Edge Router False Negative

(a) Avg error rates (b) Edge CB Results for PCH = 4096

Figure 10: Avg. error rates for all RL schemes and Edge CB Results

to propagate.

We note that although our trace data reflects a simple
worm that does not attempt to mask itself, extending the
DNS RL scheme to more sophisticated worms is straight-
forward. We plan to address this in future work.

Issues with DNS-based rate limiting: An attacker can
attempt to circumvent the DNS rate limiting mechanism
in a number of ways:

First, a worm could use reverse DNS-lookups (PTR
lookups) to “pretend” that it has received a DNS trans-
lation for a destination IP. Jung et. al. [6] characterizes
that PTR lookups are primarily for incoming TCP con-
nections or lookups related to reverse blacklist services.
These types of lookups can be easily filtered and not con-
sidered as valid entries in the DNS cache. In addition,
a PTR lookup prior to an infection attempt will signifi-
cantly reduce the infection speed.

Second, an attacker could setup a fake external DNS
server and issue a DNS query for each IP. We can al-
leviate this threat by establishing a “white-list” of legit-
imate external DNS servers. Also, the attacker needs
a server with a substantial bandwidth to accommodate
the scan speed, which is not trivial. A case of inter-
est here is SOHO (Small office Home office) users who
may set up their own routers and use legitimate external
DNS servers. To accommodate such usage, we can use
a packet scrubber such as Hogwash [5] to help correlate
DNS queries to responses.

Another attack against DNS throttling is to equip each
worm with a dictionary of host names and domains. This
effectively turns a scanning worm into a worm with a
hit-list. Hit-list worms are significantly more difficult to
engineer. If the only viable means to bypass DNS-based
throttling is for the worm to carry a hit-list, that in itself
is a positive testimony for DNS-based throttling.

Dynamic vs static rates: Rate limiting schemes im-
pact the rate of both legitimate and malicious connec-
tions. Williamson’s imposes a strictly static rate, e.g.,
five distinct IPs per second, irrespective of the traffic de-
mand. FC is predominately static while CB allows for a
dynamic traffic rate by rewarding successful connection
and penalizing failed connections. Results in Figure 10
show that CB outperforms FC. This is partially due to
CB’s dynamic rates which render a more graceful filter-
ing scheme that permits both bursty application behavior
and temporarily abnormal-but-benign traffic patterns. As
we briefly discussed in Section 5, mechanisms that im-
pose a static rate can benefit from incorporating dynamic
rate limits. Dynamic rate limiting is an interesting topic
worth further study.

Host vs aggregate: An issue of significance is host ver-
sus aggregate rate limiting. The general wisdom is that
host-level throttling is more precise but is at the same
time more costly because per host state must be main-
tained. Indeed, Williamson’s IP throttling, when applied
at the edge, rendered visibly higher false positives than
its host-based counterpart. This is because IP contact
behavior at the host-level is more fine-grained and thus
more likely to be stable. In contrast, aggregate traffic at
the edge includes hosts whose behavior may vary signif-
icantly from each other, thereby contributing to a higher
error rate. A similar case was observed with CB when
applied to the aggregate traffic, the results of which are
shown in Figure 10(b). As shown, the false positive rates
reach approximately 30%, compared to the 10% with
the host-based deployment. Edge-based DNS throttling,
however, appears to be an exception. Figure 10(a) shows
that a carefully chosen rate limit, e.g., 50 IPs per five
seconds, yields excellent accuracy for edge-based DNS
throttling. It has lower false positive and false negative
rates than other host-based schemes. The fundamental
reason behind this is that DNS statistics, in particular the
presence (or the lack) of IP translations, remain largely

12

invariant from host to the aggregate level.

This result is extremely encouraging, as aggregate rate
limiting has a lower storage overhead and is typically
easier to deploy and maintain than host-based schemes.
Note that our study did not include an analysis on pro-
cessing overhead. Readers should be reminded that
edge-based schemes in general imply processing a larger
amount of data per connection, therefore a trade-off be-
tween storage and processing overhead exists. The ag-
gregate DNS throttling result allude to the possibility of
pushing rate limiting deeper into the core where a sin-
gle instrumentation can cover many IP-to-IP paths and
potentially achieve a greater impact.

We note that edge-based throttling in itself does not
defend against internal infection. One way to protect
against internal infection (and not pay the cost of host-
level throttling) is to divide an enterprise network into
various cells (as suggested by Staniford [14]) and ap-
ply the aggregate throttling at the border of each cell.
We leave the analysis of more fine-grained, intra-network
protection as future work.

10 Summary

A number of rate limiting schemes have been proposed
recently to mitigate scanning worms. In this paper,
we present the first empirical analysis of the different
schemes, using real traffic and attack traces from an
open network environment. We believe that the scheme
that performs well in an open network and will perform
equally well (if not better) in an environment with strict
traffic policies (e.g., enterprise network).

We evaluate and contrast the false positive and false
negative rates for each scheme. Our analysis reveals
these insights. First, the subject of rate limiting is by
far the most significant ”parameter”—failed-connection
behavior alone is too restrictive as evidenced by FC;
rate limiting first-contacts renders better results and DNS
behavior-based rate limiting is by far the most accurate
strategy. Second, it is feasible to delineate worm behav-
ior from normal traffic even at an aggregate level, as in-
dicated by the DNS analysis. This is an interesting re-
sult because aggregate rate limiting alleviates the univer-
sal participation requirement thought necessary for worm
containment [10, 25]. This result also suggests that it
may be possible to apply rate limiting deeper into the
core of the network, a subject that is of great interest to
many. Third, preliminary investigation suggests that in-
corporating dynamic rates results in increased accuracy.
As most of rate limiting schemes to-date focus on static
rates, an immediate follow-up research is dynamic rate
limiting and how that can be implemented in practice.

11 Acknowledgments

We thank the members and companies of the PDL Con-
sortium (including APC, EMC, EqualLogic, Hewlett-
Packard, Hitachi, IBM, Intel, Microsoft, Network Ap-
pliance, Oracle, Panasas, Seagate, Sun, and Veritas) for
their interest, insights, feedback, and support. This ma-
terial is based upon work supported by the National
Science Foundation under Grant No. 0326472 and by
the Air Force Research Laboratory via grant number
FA8750-04-01-0238 and also by the Army Research Of-
fice via grant number DAAD19-02-1-0389. The authors
thank Greg Ganger and Mike Reiter for providing in-
sightful feedback on preliminary versions of this work.
We also thank Matthew Williamson for technical discus-
sions about this work.

References
[1] S. Chen and Y. Tang. Slowing Down Internet Worms.

[2] M. Collins and M. Reiter. An Empirical Analysis of Target-
Resident DoS Filters.

[3] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. Tenaglia. A Be-
havioral Approach to Worm Detection. ACM Press.

[4] G. Ganger, G. Economou, and S. Bielski. Self-securing Network
Interfaces: What, Why and How.

[5] Hogwash. Inline packet scrubber.

[6] H. B. J. Jung, E. Sit and R. Morris. DNS Performance and the
Effectiveness of Caching.

[7] J. Jung, V. Paxon, A. W. Berger, and H. Balakrishman. Fast
Portscan Detection Using Sequential Hypothesis Testing.

[8] J. Kephart and S. White. Directed-Graph Epidemiological Mod-
els of Computer Viruses. Pages 343-359.

[9] H. Kim and B. Karp. Autograph: Toward Automated, Distributed
Worm Signature Detection.

[10] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quar-
antine: Requirements for Containing Self-Propagating Code.

[11] Network-Associates.

[12] S. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scan-
ning Worm Infections.

[13] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm
Fingerprinting. Proceedings of the 6th ACM/USENIX Sympo-
sium on Operating System Design and Implementation.

[14] S. Staniford. Containment of Scanning Worms in Enterprise Net-
works. Journal of Computer Science.

[15] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet
in Your Spare Time.

[16] Symantec. W32.Blaster.Worm, August 11, 2003.

[17] Symantec. W32.Welchia.Worm, August 18, 2003.

[18] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
vulnerability-driven network filters for preventing known vulner-
ability exploits. Pages 193–204. ACM Press.

[19] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic
Spreading in Real Networks: An Eigenvalue Viewpoint.

[20] Y. Wang and C. Wang. Modeling the effects of timing parameters
on virus propagation. Pages 61–66. ACM Press.

[21] N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment
of Scanning Worms.

13

[22] D. Whyte, E. Kranakis, and P. van Oorschot. DNS-based Detec-
tion of Scanning Worms in an Enterprise Network.

[23] M. Williamson. Throttling Viruses: Restricting propagation to
defeat malicious mobile code.

[24] C. Wong, S. Bielski, J. McCune, and C. Wang. A Study of Mass-
mailing Worms. ACM Press.

[25] C. Wong, C. Wang, D. Song, S. Bielski, and G. Ganger. Dynamic
Quarantine of Internet Worms.

[26] C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagation
Modeling and Analysis.

14

	Introduction
	Related Work
	Trace Data
	Analysis Methodology
	Williamson's IP Throttling
	Failed Connection Rate Limiting (FC)
	Credit-based Rate Limiting (CB)
	DNS-based Rate Limiting
	Analysis

	Discussions
	Summary
	Acknowledgments

