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Abstract

SALSA examines system logs to derive state-machine views of the sytem’s execution, along with control-flow, data-flow models
and related statistics. Exploiting SALSA’s derived views and statistics, we caneffectively construct higher-level useful analyses.
We demonstrate SALSA’s approach by analyzing system logs generatedin a Hadoop cluster, and then illustrate SALSA’s value
by developing visualization and failure-diagnosis techniques, for three different Hadoop workloads, based on our derived state-
machine views and statistics.
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Figure 1: SALSA’s approach.

1 Introduction

Most software systems collect logs of programmer-generated messages for various uses, such as trou-
bleshooting, tracking user requests (e.g. HTTP access logs), etc. These logs typically contain relatively
unstructured, free-form text messages, making them relatively more difficult to analyze than numerical
system-data (e.g., CPU usage). However, logs can often contain more semantically rich information than
numerical system/resource utilization statistics, particularly since the log messages often capture the intent
of the developer or programmer of the system to record events of interest.

SALSA, our approach to automated system-log analysis, involves examining the logs totrace control-
flow and data-flow execution in a distributed system, and toderive state-machine-like views of the system’s
execution on each node. Figure1 represents the core of SALSA’s approach. Because log data is only as
accurate as the developer/programmer who implemented the logging points in the system under inspection,
we can only infer the state-machines that execute within the target system. We cannot (from the logs), and
do not, attempt to verify whether our derived state-machines faithfully capture the actual ones executing
within the system. Instead, we leverage these derived state-machines to support different kinds of useful
analyses: to understand/visualize the system’s execution better, to discover data-flows in the system, to
pinpoint performance bottlenecks, to discover bugs, and to localize performance problems and failures.

To the best of our knowledge, SALSA is the first log-analysis technique that aims to derive state-
machine views from unstructured text-based logs, to support visualization, failure-diagnosis and other uses.
In this paper, we apply SALSA’s approach to the logs generated by Hadoop [7], the open-source imple-
mentation of Map/Reduce [4]. Concretely, our contributions are: (i) a log-analysis approach that extracts
state-machine views of a distributed system’s execution, with both control-flowand data-flow, (ii) a usage
scenario where SALSA is beneficial in preliminary failure diagnosis for Hadoop, and (iii) a second usage
scenario where SALSA enables the visualization of Hadoop’s distributed behavior.

2 SALSA’s Approach

SALSA aims to analyze the target system’s logs to see whether we can derivethe control-flow on each node,
the data-flow across nodes, and the state-machine execution of the systemon each node. In this process
of parsing the logs, SALSA also extracts key statistics (state durations, inter-arrival times of events, etc.)
of interest. To demonstrate SALSA’s value, we exploit the SALSA-derived state-machine views and their
related statistics for visualization and failure diagnosis. SALSA does not require any modification of the
hosted applications, middleware or operating system.

To describe SALSA’s high-level operation, consider a distributed system with many producers,P1,P2, ...,
and many consumers,C1,C2, ..... Many producers and consumers can be running on any host at any point in
time. Consider one execution trace of two tasks,P1 andC1 on a hostX (and taskP2 on hostY) as captured
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by a sequence of time-stamped log entries at hostX:

[ t 1 ] Begin Task P1
[ t 2 ] Begin Task C1
[ t 3 ] Task P1 does some work
[ t 4 ] Task C1 w a i t s f o r d a t a from P1 and P2
[ t 5 ] Task P1 produces d a t a
[ t 6 ] Task C1 consumes d a t a from P1 on h o s t X
[ t 7 ] Task P1 ends
[ t 8 ] Task C1 consumes d a t a from P2 on h o s t Y
[ t 9 ] Task C1 ends

:

From the log, it is clear that the executions (control-flows) ofP1 andC1 interleave on hostX. It is also
clear that the log captures a data-flow forC1 with P1 andP2.

SALSA interprets this log of events/activities as a sequence ofstates. For example, SALSA considers
the period[t1, t6] to represent the duration of stateP1 (where a state has well-defined entry and exit points
corresponding to the start and the end, respectively, of taskP1). Other states that can be derived from this
log include the stateC1, the data-consume state forC1 (basically, the period during whichC1 is consuming
data from its producers,P1 andP2), etc. Based on these derived state-machines (in this case, one forP1 and
another forC1), SALSA can derive interesting statistics, such as the durations of states.

SALSA can then compare these statistics and the sequences of states across hosts in the system. In
addition, SALSA can extract data-flow models, e.g., the fact thatP1 depends on data from its local host,
X, as well as a remote host,Y. The data-flow model can be useful to visualize and examine any data-flow
bottlenecks or dependencies that can cause failures to escalate acrosshosts.

Discussion. On the stronger side, SALSA provides a picture of the system’s progress(control-flow and
data-flow) on various hosts, and models the sequence of logged events as state machines. SALSA also
extracts statistics that can be compared across different hosts, and canalso be compared historically on the
same host, for useful capabilities such as failure diagnosis.

On the weaker side, SALSA’s views might not be accurate, since the control-flow, data-flow and state-
machines are derived/inferred purely from the log data. SALSA has no way of determining what the system
is actually doing. Thus, SALSA’s inferences are undoubtedly affectedby the quality of the log data. Another
constraint of using the log data, as-is, is the fact that SALSA might need to be upgraded for every new version
of the target system, if system’s log messages or its logging points are modified by the developers.

Regardless of all these drawbacks, the fundamental research question that we sought to ask was:how
can we leverage log data, as-is, to construct state-machine views, control-flow and data-flow models of the
target system’s execution, in order to support analyses for problem diagnosis, visualization, etc.?

Non-Goals. We do not seek to validate or improve the accuracy or the completeness of thelogs, nor to
validate our derived state-machines against the actual ones of the targetsystem. Rather, our focus has been
on the analyses that we can perform on the logs in their existing form.

It is not our goal, either, to demonstrate complete use cases for SALSA. For example, while we demon-
strate one application of SALSA for failure diagnosis, we do not claim that this failure-diagnosis technique
is complete or perfect. It is merely illustrative of the sorts of useful analyses that SALSA can support.

Finally, while we can support an online version of SALSA that would analyze log entries generated
as the system executes, the goal of this paper is not to describe such an online log-analysis technique or its
runtime overheads. In this paper, we use SALSA in an offline manner, to analyze logs incrementally and to
generate the derived state-machines accordingly.

Assumptions.We assume that the logs faithfully capture events and their causality in the system’s execution.
For instance, if the log declares that eventX happened before eventY, we assume that is indeed the case, as
the system executes. We assume that the logs record each event’s timestamp with integrity, and as close in
time (as possible) to when the event actually occurred in the sequence of thesystem’s execution. Again, we
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recognize that, in practice, the preemption of the system’s execution might cause a delay in the occurrence
of an eventX and the corresponding log message (and timestamp generation) for entry intothe log. We do
not expect the occurrence of an event and the recording of its timestamp/log-entry to be atomic. We do not
expect the clocks to be synchronized across the different hosts.

3 Related Work

Event-based analysis.Many studies of system logs treat them as sources of failure events. Loganalysis of
system errors typically involves classifying log messages based on the preset severity level of the reported
error, and on tokens and their positions in the text of the message [14] [13]. More sophisticated analysis has
included the study of the statistical properties of reported failure events to localize and predict faults [15]
[13] [11] and mining patterns from multiple log events [10].

Our treatment of system logs differs from such techniques that treat logsas purely a source of events:
we impose additional semantics on the log events of interest, to identify durationsin which the system is
performing a specific activity. This provides context of the temporal state of the system that a purely event-
based treatment of logs would miss, and this context alludes to the operationalcontext suggested in [14],
albeit at the level of the control-flow context of the application rather than at a managerial level. Also, since
our approach takes the log semantics into consideration, we are able to produce views of the data that can be
intuitively understood by users. However, we note that our log analysis isamenable only to logs that capture
both normal system activity and errors.

Request tracing. Our view of system logs as providing a control-flow perspective of system execution,
when coupled with log messages with unique identifier of the relevant request or processing task, allows
us to extract request-flow views of the system. Much work has been doneto extract request-flow views of
systems, and these request flow views have then been used to diagnose and debug performance problems in
distributed systems [2] [1]. However, [2] used instrumentation in the application and middleware to track
requests and explicitly monitor the states that the system goes through, while [1] extracted causal flows from
messages in a distributed system using J2EE instrumentation developed by [3]. Our work differs from these
request-flow tracing techniques in that we can causally extract requestflows of the system without added
instrumentation given system logs, as described in §7.

Log-analysis tools.Splunk [12] treats logs as searchable text indexes, and generates visualizations ofthe
log; Splunk treats logs similarly to other log-analysis techniques, consideringeach log entry as an event.
There exist commercial open-source [6] tools for visualizing the data in logs based on standardized logging
mechanisms, such aslog4j [8]. To the best of our knowledge, none of these tools derive the control-flow,
data-flow and state-machine views that SALSA does.

4 Hadoop’s Architecture

Hadoop [7] is an open-source implementation of Google’s Map/Reduce [4] framework that enables dis-
tributed, data-intensive, parallel applications by decomposing a massive job into smaller tasks and a massive
data-set into smaller partitions, such that each task processes a different partition in parallel. The main
abstractions are (i)Map tasks that process the partitions of the data-set using key/value pairs to generate
a set of intermediate results, and (ii)Reduce tasks that merge all intermediate values associated with the
same intermediate key. Hadoop uses the Hadoop Distributed File System (HDFS), an implementation of the
Google Filesystem [16], to share data amongst the distributed tasks in the system. HDFS splits and stores
files as fixed-size blocks (except for the last block).

Hadoop uses a master-slave architecture to implement the Map/Reduce programming paradigm. As
shown in Figure2, there exists a unique master host and multiple slave hosts, typically configured as follows.
The master host runs two daemons: (1) the JobTracker, which schedules and manages all of the tasks
belonging to a running job; and (2) the NameNode, which manages the HDFS namespace by providing a
filename to block mapping, and regulates access to files by clients (which are typically the executing tasks).
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Figure 2: Architecture of Hadoop, showing the locations of the system logsof interest to us.

Hadoop source-code

LOG. i n f o ( " LaunchTaskAct ion : " + t . g e t T a s k I d ( ) ) ;
LOG. i n f o ( r e d u c e I d + " Copying " + l o c . getMapTaskId ( )

+ " o u t p u t from " + l o c . ge tHos t ( ) + " . " ) ;

⇓ TaskTracker log

2008−08−23 17 :12 :32 ,466 INFO
org . apache . hadoop . mapred . TaskTracker :
LaunchTaskAct ion : task_0001_m_000003_0

2008−08−23 17 :13 :22 ,450 INFO
org . apache . hadoop . mapred . TaskRunner :
task_0001_r_000002_0 Copying
task_0001_m_000001_0 o u t p u t from fp30 . pd l . cmu . l o c a l

Figure 3:log4j-generated TaskTracker log entries. Dependencies on task executionon local and remote
hosts are captured by the TaskTracker log.

Each slave host runs two daemons: (1) the TaskTracker, which launches tasks on its host, based on
instructions from the JobTracker; the TaskTracker also keeps track of the progress of each task on its host;
and (2) the DataNode, which serves data blocks (that are stored on its local disk) to HDFS clients.

4.1 Logging Framework

Hadoop uses the Java-basedlog4j logging utility to capture logs of Hadoop’s execution on every host.
log4j is a commonly used mechanism that allows developers to generate log entries byinserting statements
into the code at various points of execution. By default, Hadoop’slog4j configuration generates a separate
log for each of the daemons– the JobTracker, NameNode, TaskTracker and DataNode–each log being stored
on the local file-system of the executing daemon (typically, 2 logs on each slave host and 2 logs on the
master host).

Typically, logs (such as syslogs) record events in the system, as well as error messages and exceptions.
Hadoop’s logging framework is somewhat different since it also checkpoints execution because it captures
the execution status (e.g., what percentage of aMap or aReduce has been completed so far) of all Hadoop
jobs and tasks on every host.

Hadoop’s defaultlog4j configuration generates time-stamped log entries with a specific format. Fig-
ure3 shows a snippet of a TaskTracker log, and Figure4 a snippet of a DataNode log.
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Hadoop source-code

LOG. debug ( " Number o f a c t i v e c o n n e c t i o n s i s : "+ x ce i v e r C o un t ) ;
LOG. i n f o ( " Rece ived b lock " + b + " from " +

s . g e t I n e t A d d r e s s ( ) + " and m i r r o r e d t o "
+ m i r r o r T a r g e t ) ;

LOG. i n f o ( " Served b lock " + b + " t o " + s . g e t I n e t A d d r e s s ( ) ) ;

⇓ DataNode log

2008−08−25 16 :24 :12 ,603 INFO
org . apache . hadoop . d f s . DataNode :
Number o f a c t i v e c o n n e c t i o n s i s : 1

2008−08−25 16 :24 :12 ,611 INFO
org . apache . hadoop . d f s . DataNode :
Rece ived b lock blk_8410448073201003521 from
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 1 and m i r r o r e d t o
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 9 : 5 0 0 1 0

2008−08−25 16 :24 :13 ,855 INFO
org . apache . hadoop . d f s . DataNode :
Served b lock blk_2709732651136341108 t o
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 1

Figure 4:log4j-generated DataNode log. Local and remote data dependencies are captured.

5 Log Analysis

To demonstrate Salsa’s approach, we focus on the logs generated by Hadoop’s TaskTracker and DataNode
daemons. The number of these daemons (and, thus, the number of corresponding logs) increases with the
size of a Hadoop cluster, inevitably making it more difficult to analyze the associated set of logs manually.
Thus, the TaskTracker and DataNode logs are attractive first targets for Salsa’s automated log-analysis.

At a high level, each TaskTracker log records events/activities related tothe TaskTracker’s execution of
Map andReduce tasks on its local host, as well as any dependencies between locally executing Reduces and
Map ouputs from other hosts. On the other hand, each DataNode log recordsevents/activities related to the
reading or writing (by both local and remoteMap andReduce tasks) of HDFS data-blocks that are located
on the local disk. This is evident in Figure3 and Figure4.

5.1 Derived Control-Flow

TaskTracker log. The TaskTracker spawns a new JVM for eachMap or Reduce task on its host. EachMap
thread is associated with aReduce thread, with theMap’s output being consumed by its associatedReduce.
TheMap andReduce tasks are synchronized to theMapReduceCopy andReduceCopy activities in each of
the two types of tasks, when theMap task’s output is copied from its host to the host executing the associated
Reduce.

The Maps on one node can be synchronized to aReduce on a different node–SALSA derives this
distributed control-flow across all Hadoop hosts in the cluster by collectively parsing all of the hosts’ Task-
Tracker logs. Based on the TaskTracker log, SALSA derives a state-machine for each uniqueMap or Reduce
in the system. Each log-delineated activity within a task corresponds to a state.

DataNode log.The DataNode daemon runs three main types of data-related threads: (i)ReadBlock, which
serves blocks to HDFS clients, (ii)WriteBlock, which receives blocks written by HDFS clients, and (iii)
WriteBlock_Replicated, which receives blocks written by HDFS clients that are subsequently transferred
to another DataNode for replication. The DataNode daemon runs in its own independent JVM, and the
daemon spawns a new JVM thread for each thread of execution. Based on the DataNode log, SALSA derives
a state-machine for each of the unique data-related threads on each host.Each log-delineated activity within
a data-related thread corresponds to a state.
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Figure 5: Derived Control-Flow for Hadoop’s execution.

Processing Activity Start Token End Token

Map LaunchTaskAction: [MapID] Task [MapID] is done.
MapCopy N/A N/A
ReduceIdle LaunchTaskAction: [ReduceID] Task [ReduceTaskID] is done.
ReduceCopy [ReduceID] Copying [MapID] output from [Hostname] [ReduceID] done copying [MapTaskID]

output from [Hostname].
ReduceMergeCopy [ReduceID] Thread started: Thread for merging in mem-

ory files
[ReduceID] Merge of the 3 files in In-
MemoryFileSystem
complete. Local file is [Filename]

ReduceSort N/A N/A
ReduceUser N/A N/A

Table 1: Tokens in TaskTracker-log messages for identifying starts andends of states.

5.2 Tokens of Interest

SALSA can uniquely delineate the starts and ends of key activities (or states) in the TaskTracker logs. Table
1 lists the tokens that we use to identify states in the TaskTracker log.[MapID] and[ReduceID] denote the
identifiers used by Hadoop in the TaskTracker logs to uniquely identifyMaps andReduces.

The starts and ends of theReduceSort andReduceUser states in theReduce task were not identifiable
from the TaskTracker logs; the log entries only identified that these states were in progress, but not when
they had started or ended. Additionally, theMapCopy processing activity is part of theMap task as reported
by Hadoop’s logs, and is currently indisguishable.

SALSA was able to identify the starts and ends of the data-related threads in the DataNode logs with
a few provisions: (i) Hadoop had to be reconfigured to useDEBUG instead of its defaultINFO logging level,
in order for the starts of states to be generated, and (ii) all states completed ina First-In First-Out (FIFO)
ordering. Each data-related thread in the DataNode log is identified by the unique identifier of the HDFS
data block. The FIFO ordering assumption was necessary to attribute log messages corresponding to the
starts of processing activities to those corresponding to the ends of processing activities. The DataNode
log recorded the "Number of active connections" in the DataNode daemon whenever a thread of execution
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Processing Activity End Token

ReadBlock Served block [BlockID] to [Hostname]
WriteBlock Received block [BlockID] from [Hostname]

WriteBlock_Replicated Received [BlockID] from [Hostname] and mirrored to [Hostname]

Table 2: Tokens in DataNode-log messages for identifying ends of data-related threads

was created or completed, and the starts of processing activities were detected from increasing pairs of the
number of active connections in the daemon. Hence, the starts of processing activities as detected from
the logs identified neither the activity itself nor its instance that had started. Onlylog messages for the
ends of processing activities identified the execution-step and its instance.Hence, the assumption of FIFO
completion of execution-steps was used to match the earliest unmatched log message for the start of an
processing activity with each subsequent message for the end of an processing activity seen to identify the
starts of processing activities. The log messages identifying the ends of states in the DataNode- logs are
listed in Table2.
Race condition in DataNode logging
In examining the Hadoop DataNode logging mechanism, we discovered a racecondition in the generation
of DataNode log messages for the starts of processing activities. On the spawning and completing of each
thread of execution, the DataNode respectively incremented and decremented an internal counter; however,
the incrementing and decrementing of the counter, together with the generationof the log message which
contained the connection count, was not atomic, so that the connection count could change before the log
message was generated. This prevented us from accurately extracting the control-flow model of the DataN-
ode from the candidate version of Hadoop.
Augmented DataNode logging
We addressed this race condition the the DataNode’s logging mechanism by introducing a unique sequence
number for each DataNode thread of execution that was incremented and reported by that thread of execution
on its start and end in an atomic manner. This addressed both the race condition in the logging, and also
identified the event for the start of that execution-thread with the event for its end, allowing us to do away
with the assumption of the FIFO completion of DataNode threads of execution.

5.3 Data-Flow in Hadoop

A data-flow dependency exist between two hosts when an activity on one host requires transferring data
to/from another node. The DataNode daemon acts as a server, receiving blocks from clients that write to
its disk, and sending blocks to clients that read from its disk. Thus, data-flow dependencies exist between
each DataNode and each of its clients, for each of theReadBlock andWriteBlock states. SALSA is able
to identify the data-flow dependencies on a per-DataNode basis by parsing the hostnames jointly with the
log-messages in the DataNode log.

Data exchanges occur to transfer outputs of completedMaps to their associatedReduces in theMapCopy
andReduceCopy phases. This dependency is captured, along with the hostnames of the source and desti-
nation hosts involved in theMap-output transfer. Tasks also act as clients of the DataNode in readingMap

inputs and writingReduce outputs to HDFS. However, these activities are not recorded in the TaskTracker
logs, so these data-flow dependencies are not captured.

5.4 Extracted Metrics & Data

We extract multiple statistics from the log data, based on SALSA’s derived state-machine approach. We
extract statistics for the following states:Map, Reduce, ReduceCopy andReduceMergeCopy.
• Histograms and average of duration of unidentified, concurrent states,with events coalesced by time,
allowing for events to superimpose each other in a time-series.
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Symptom [Source] Reported Failure [Failure Name] Failure Injected
Processing [Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resulted

from running master and slave daemons on same machine
[CPUHog] Emulate a CPU-intensive task
that consumes 70% CPU utilization

Disk [Hadoop users’ mailing list, Sep 26 2007] Excessive messages
logged to file during startup

[DiskHog] Sequential disk workload
wrote 20GB of data to filesystem

Table 3: Failures injected, the resource symptom category they correspond to, and the reported problem they
simulate

• Histograms and exact task-specific duration of states, with events identifiedby task identifer in a time-
series;
• Duration of completed-so-far execution of ongoing task-specific states.

We cannot get average times forReduceReduce andReduceSort because these have no well-defined
start and termination events in the log.
For each DataNode and TaskTracker log, we can determine the number ofeach of the states being executed
on the particular node at each point in time. We can also compute the durations of each of the occurrences
of each of the following states: (i)Map, ReduceCopy, ReduceMergeCopy for the TaskTracker log, and (ii)
ReadBlock, WriteBlock andWriteBlock_Replicated for the DataNode log.

On the data-flow side, for each of theReadBlock andWriteBlock states, we can identify the end-point
host involved in the state, and, for each of theReduceCopy states, the host whoseMap state was involved.
However, we are unable to compute durations forUserReduce andReduceSort because these have no
well-defined start and termination events in the logs.

6 Data Collection & Experimentation

We analyzed traces of system logs from a 6-node (5-slave, 1-master) Hadoop 0.12.3 cluster. Each node
consisted of an AMD Opeteron 1220 dual-core CPU with 4GB of memory, Gigabit Ethernet, and a dedicated
320GB disk for Hadoop, and ran the amd64 version Debian/GNU Linux 4.0.We used three candidate
workloads, of which the first two are commonly used to benchmark Hadoop:
• RandWriter: write 32 GB of random data to disk;
• Sort : sort 3 GB of records;
• Nutch: open-source distributed web crawler for Hadoop [9] representative of a real-world workload

Each experiment iteration consisted of a Hadoop job lasting approximately 20 minutes. We set the
logging level of Hadoop toDEBUG, cleared Hadoop’s system logs before each experiment iteration, and
collected the logs after the completion of each experiment iteration. In addition,we collected system metrics
from /proc to provide ground truth for our experiments.

Target failures. To illustrate the value of SALSA for failure diagnosis in Hadoop, we injected three failures
into Hadoop, as described in Table3. A persistent failure was injected into 1 of the 5 slave nodes midway
through each experiment iteration.

We surveyed real-world Hadoop problems reported by users and developers in 40 postings from the
Hadoop users’ mailing list from Sep–Nov 2007. We selected two candidate failures from that list to demon-
strate the use of SALSA for failure-diagnosis.

7 Use Case 1: Visualization

We present automatically generated visualizations of Hadoop’s aggregatecontrol-flow and data-flow de-
pendencies, as well as a conceptualized temporal control-flow chart. These views were generated offline
from logs collected for theSort workload in our experiments. Such visualization of logs can help operators
quickly explain and analyze distributed-system behavior.

Aggregate control-flow dependencies (Figure6) The key point where there are inter-host dependen-
cies in Hadoop’s derived control-flow model for the TaskTracker log isthe ReduceCopy state, when the
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Figure 6: Visualization of aggregate control-flow for Hadoop’s execution. Each vertex represents a Task-
Tracker. Edges are labeled with the number ofReduceCopys from the source to the destination vertex.
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Figure 7: Visualizing Hadoop’s control- and data-flow: a sample depiction.

ReduceCopy on the destination host for aMap’s output is started only when the sourceMap has completed,
and theReduceCopy depends on the sourceMap copying its map output. This visualization captures de-
pendencies among TaskTrackers in a Hadoop cluster, with the number of suchReduceCopy dependencies
between each pair of nodes aggregated across the entire Hadoop run.As an example, this aggregate view can
reveal hotspots of communication, highlighting particular key nodes (if any)on which the overall control-
flow of Hadoop’s execution hinges. This also visually captures the equity (or lack thereof) of distribution of
tasks in Hadoop.

Aggregate data-flow dependencies (Figure8) The data-flows in Hadoop can be characterized by the num-
ber of blocks read from and written to each DataNode. This visualization is based on an entire run of the
Sort workload on our cluster, and summarizes the bulk transfers of data between each pair of nodes. This
view would reveal any imbalances of data accesses to any DataNode in the cluster, and also provides hints
as to the equity (or lack thereof) of distribution of workload amongst theMaps andReduces.

Temporal control-flow dependencies (Figure7) The control-flow view of Hadoop extracted from its logs
can be visualized in a manner that correlates state occurrences causally.This visualization provides a time-
based view of Hadoop’s execution on each node, and also shows the control-flow dependencies amongst
nodes. Such views allow for detailed, fine-grained tracing of Hadoop execution through time, and allow for
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Figure 8: Visualization of aggregate data-flow for Hadoop’s execution.Each vertex represents a DataNode
and edges are labeled with the number of each type of block operation (i.e. read, write, or write_replicated,
which traversed that path.

inter-temporal causality tracing.
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8 Use Case 2: Failure Diagnosis

8.1 Algorithm

Algorithm 1 Algorithm to fingerpoint faulty node using durations of states. Note:JSD(distribi ,distrib j) is
the Jensen-Shannon divergence between the distributions of the states’durations at nodesi and j.

1: procedure SALSA-FINGERPOINT(prior, thresholdp, thresholdh)
2: for all i, initialize distribi ← prior
3: for all i, initialize lastU pdatei ← 0
4: initialize t← 0
5: while job in progressdo
6: for all nodei do
7: while have new samples with durationd do
8: if 1−CDF(distribi ,d) > 1− thresholdh then
9: indict s

10: end if
11: distribi ← distribi×e

−λ lastU pdatei−t
α(lastU pdatei−t)+1

12: addd to distribi with weight 1
13: lastU pdate← t
14: end while
15: end for
16: for all node pairi, j do
17: distMatrix(i, j)←

√

JSD(distribi ,distrib j)
18: end for
19: for all nodei do
20: if countj(distMatrix(i, j) > thresholdp) >

1
2×#nodesthen

21: raise alarm at nodei
22: if 20 consecutive alarms raisedthen
23: indict nodei
24: end if
25: end if
26: end for
27: t← t +1
28: end while
29: for all nodei do
30: if nodei associated with at least1

2 of indicted statesthen
31: indict nodei
32: end if
33: end for
34: end procedure

Intuition. For each task and data-related thread, we can compute the histogram of the durations of its
different states in the derived state-machine view. We have observed that the histograms of a specific state’s
durations tend to be similar across failure-free hosts, while those on failure-injected hosts tend to differ from
those of failure-free nodes, as shown in Figure10. Thus, we hypothesize that failures can be diagnosed
by comparing the probability distributions of the durations (as estimated from their histograms) for a given
state across hosts, assuming that a failure affects fewer thann

2 hosts in a cluster ofn slave hosts.
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TP FP TP FP TP FP
Workload RandWriter Sort Nutch

Fault Map

CPUHog 1.0 0.08 0.8 0.25 0.9 0
DiskHog 1.0 0 0.9 0.13 1.0 0.1

ReduceMergeCopy

CPUHog 0.3 0.15 0.8 0.1 0.7 0
DiskHog 1.0 0.05 1.0 0.03 1.0 0.05

ReadBlock

CPUHog 0 0 0.4 0.05 0.8 0.2
DiskHog 0 0 0.5 0.25 0.9 0.3

WriteBlock

CPUHog 0.9 0.03 1.0 0.25 0.8 0.2
DiskHog 1.0 0 0.7 0.2 1.0 0.6

Figure 9: Failure diagnosis results of the Distribution-Comparison algorithm for workload-injected failure
combinations;TP= true-positive rate,FP = false-positive rate
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Figure 10: Visual illustration of the intuition behind comparing probability distributions of durations of the
WriteBlock state across DataNodes on the slave nodes.

Algorithm. First, for a given state on each node, probability density functions (PDFs) of the distributions,
distribi ’s, of durations at each nodei are estimated from their histograms using a kernel density estimation
with a Gaussian kernel [17] to smooth the discrete boundaries in histograms.

In order to keep the distributions relevant to the most recent states observed, we imposed an exponential
decay to the empirical distributionsdistribi ’s. Each new samples with durationd would then be added to
the distribution with a weight of 1. We noticed that there were lull periods during which particular types
of states would not be observed. A naive exponential decay ofe−λ∆t would result in excessive decay of
the distributions during the lull periods. States that are observed immediately after the lull periods would
thus have large weights relative to the total weight of the distributions, and thus effectively result in the
distributions collapsing about the newly observed states. To prevent this unwanted scenario, we instead

used an exponential decay ofe
−λ lastU pdatei−t

α(lastU pdatei−t)+1 , wherelastU pdateis the time of the last observed state, and
t is the time of the most recent observation. Thus, the rate of decay slows down during lull periods, and in
the limit wherelastU pdate− t→ 0, the rate of decay approaches the naive expoential decay rate.

The difference between these distributions from each pair of nodes is then computed as the pair-wise
distance between their estimated PDFs. The distance used was the square root of the Jensen-Shannon
divergence, a symmetric version of the Kullback-Leibler divergence [5], a commonly-used distance metric
in information theory to compare PDFs.

Then, we constructed the matrixdistMatrix, wheredistMatrix(i, j) is the distance between the es-
timated distributions on nodesi and j. The entries indistMatrix are compared to athresholdp. Each
distMatrix(i, j) > thresholdp indicates a potential problem at nodesi, j, and a node is indicted if at least

12



half of its entriesdistMatrix(i, j) exceedthresholdp. The pseudocode is presented above.
Algorithm tuning. thresholdp is used for the peer-comparison of PDFs across hosts; for higher values of
thresholdp, greater differences must be observed between PDFs before they are flagged as anomalous. By
increasingthresholdp, we can reduce false-positive rates, but may suffer a reduction in truepositive rates as
well. thresholdp is kept constant for each (workload, metric) combination, and is tuned independently of the
failure injected.thresholdh: Threshold value for comparison of states’ durations against the historical dis-
tribution on each node. Specifically, states whose durations are larger than the(thresholdh×100)-percentile
of the distribution are flagged as outliers. Therefore, increasingthresholdh reduces false positive rates but
also reduces true positive rates. In our experiments, we have keptthresholdp andthresholdh constant for
each workload and metric pair.
bandwidth: The bandwidth for Gaussian kernel density estimation is also known as the “smoothing param-
eter”. If the bandwidth is too small, undersmoothing occurs, and noise in databecome prominent, leading
to a jagged PDF. Oversmoothing occurs when the bandwidth is too large, anddetails may be lost. There are
rules of thumb that can be followed in choosing the bandwidth. In general, we have selected bandwidths for
each workload and metric that produced PDFs that are neither oversmoothed nor undersmoothed.

8.2 Results & Evaluation

We evaluated our initial failure-diagnosis techniques based on our derived models of Hadoop’s behavior,
by examining the rates of true- and false-positives of the diagnosis outcomes on hosts in our fault-injected
experiments, as described in §6. True-positive rates are computed as:

counti(fault injected on nodei, nodei indicted)
counti(fault injected on nodei)

, i.e., the proportion of failure-injected hosts that were correctly indicted asfaulty.
False-positive rates are computed as:

counti(fault not injected on nodei, nodei indicted)
counti(fault not injected on nodei)

, i.e., the proportion of failure-free hosts that were incorrectly indicted asfaulty. A perfect failure-diagnosis
algorithm would predict failures with a true-positive rate of 1.0 at a false-positive rate of 0.0. Figure9
summarizes the performance of our algorithm.

By using different metrics, we achieved varied results in diagnosing different failures for different
workloads. Much of the difference is due to the fact that the manifestation of the failures on particular
metrics is workload-dependent. In general, for each (workload, failure) combination, there are metrics that
diagnose the failure with a high true-positive and low false-positive rate. We describe some of the (metric,
workload) combinations that fared poorly.

We did not indict any nodes usingReadBlock’s durations onRandWriter. By design, theRandWriter
workload has noReadBlock states since its only function is to write data blocks. Hence, it is not possible to
perform any diagnosis usingReadBlock states on theRandWriter workload. Also,ReduceMergeCopy on
RandWriter is a disk-intensive operation that has minimal processing requirements. Thus, CPUHog does
not significantly affect theReduceMergeCopy operation, as there is little contention for the CPU between the
failure and theReduceMergeCopy operations. However, theReduceMergeCopy operation is disk-intensive,
and is affected by theDiskHog.

We found thatDiskHog andCPUHog could manifest in a correlated manner on some metrics. For
theSort workload, if a failure-free host attempted to read a data block from the failure-injected node, the
failure would manifest on theReadBlock metric at the failure-free node. By augmenting this analysis with
the data-flow model, we improved results forDiskHog andCPUHog onSort, as discussed in §8.3.
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The list of metrics that we have explored for this paper is by no means complete. There are other
types of states likeReduces and heartbeats that we have not covered. These metrics may yet provide more
information for diagnosis, and will be left as future work.

8.3 Correlated Failures: Data-flow Augmentation

Peer-comparison techniques are poor at diagnosing correlated failures across hosts, e.g.,ReadBlock dura-
tions failed to diagnoseDiskHog on theSort workload. In such cases, our original algorithm often indicted
failure-free nodes, but not the failure-injected nodes.

We augmented our algorithm using previously-observed states with anomalously long durations, and
superimposing the data-flow model. For a Hadoop job, we identify a state as anoutlier by comparing
the state’s duration with the PDF of previous durations of the state, as estimatedfrom past histograms.
Specifically, we check whether the state’s duration is greater than thethresholdh-percentile of this estimated
PDF.

Since each DataNode state is associated with a host performing a read and another (not necessarily
different) host performing the corresponding write, we can count the number of anomalous states that each
host was associated with. A host is then indicted by this technique if it was associated with at least half of
all the anomalous states seen across all slave hosts.

Hence, by augmenting the diagnosis with data-flow information, we were able toimprove our diagnosis
results for correlated failures. We achieved true- and false-positive rates, respectively, of(0.7,0.1) for the
CPUHog and(0.8,0.05) for theDiskHog failures on theReadBlock metric.

9 Conclusion

SALSA analyzes system logs to derive state-machine views, distributed control-flow and data-flow models
and statistics of a system’s execution. These different views of log data can be useful for a variety of
purposes, such as visualization and failure diagnosis. We present SALSA and apply it concretely to Hadoop
to visualize its behavior and to diagnose documented failures of interest.We also initiated some early work
to diagnose correlated failures by superimposing the derived data-flow models on the control-flow models.

For our future directions, we intend to correlate numerical OS/network-level metrics with log data, in
order to analyze them jointly for failure diagnosis and workload characterization. We also intend to automate
the visualization of the causality graphs for the distributed control-flow and data-flow models. Finally, we
will aim to generalize the format/structure/content of logs that are amenable to SALSA’s approach, so that
we can develop a log-parser/processing framework that accepts a high-level definition of a system’s logs,
using which it then generates the desired set of views.
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