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Abstract

SALSA examines system logs to derive state-machine views of the sy&rnoe, along with control-flow, data-flow models
and related statistics. Exploiting SALSA’s derived views and statistics, weffeatively construct higher-level useful analyses.
We demonstrate SALSA’s approach by analyzing system logs genieraéddadoop cluster, and then illustrate SALSA’s value
by developing visualization and failure-diagnosis techniques, for threeaifféladoop workloads, based on our derived state-
machine views and statistics.
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Figure 1. SALSA’s approach.

1 Introduction

Most software systems collect logs of programmer-generated messagearibus uses, such as trou-
bleshooting, tracking user requests (e.g. HTTP access logs), etee Togs typically contain relatively
unstructured, free-form text messages, making them relatively moreuttiffo analyze than numerical
system-data (e.g., CPU usage). However, logs can often contain moraetsaharich information than
numerical system/resource utilization statistics, particularly since the log nessstign capture the intent
of the developer or programmer of the system to record events of interest.

SALSA, our approach to automated system-log analysis, involves examimhggs totrace control-
flow and data-flow execution in a distributed systemd toderive state-machine-like views of the system’s
execution on each nodéd-igurel represents the core of SALSA’s approach. Because log data is only as
accurate as the developer/programmer who implemented the logging points ystia@ sinder inspection,
we can only infer the state-machines that execute within the target systenmariwet ¢from the logs), and
do not, attempt to verify whether our derived state-machines faithfully cayphe actual ones executing
within the system. Instead, we leverage these derived state-machinegptotdlifferent kinds of useful
analyses: to understand/visualize the system’s execution better, to distzaaeflows in the system, to
pinpoint performance bottlenecks, to discover bugs, and to localizerpehce problems and failures.

To the best of our knowledge, SALSA is the first log-analysis techniqat ahms to derive state-
machine views from unstructured text-based logs, to support visualiz&itme-diagnosis and other uses.
In this paper, we apply SALSA’s approach to the logs generated by died®, the open-source imple-
mentation of Map/Reduced]. Concretely, our contributions are: (i) a log-analysis approach tkteacts
state-machine views of a distributed system’s execution, with both controlaft@rdata-flow, (ii) a usage
scenario where SALSA is beneficial in preliminary failure diagnosis fodddg, and (iii) a second usage
scenario where SALSA enables the visualization of Hadoop's distribgkdwior.

2 SALSA's Approach

SALSA aims to analyze the target system’s logs to see whether we can tiheriventrol-flow on each node,
the data-flow across nodes, and the state-machine execution of the systawh node. In this process
of parsing the logs, SALSA also extracts key statistics (state durations;amieal times of events, etc.)
of interest. To demonstrate SALSA’s value, we exploit the SALSA-ddrstate-machine views and their
related statistics for visualization and failure diagnosis. SALSA does goireeany modification of the
hosted applications, middleware or operating system.

To describe SALSA's high-level operation, consider a distributed systigh many producerf1, P2, ...,
and many consumerg§ C2, ..... Many producers and consumers can be running on any host abaryp
time. Consider one execution trace of two tasksandC1 on a hosX (and taskP2 on hostY) as captured



by a sequence of time-stamped log entries at Kost

[t1] Begin Task P1

[t2] Begin Task C1

[t3] Task P1 does some work

[t4] Task C1 waits for data from P1 and P2
[t5] Task P1 produces data

[t6] Task C1 consumes data from P1 on host X
[t7] Task P1 ends

[t8] Task C1 consumes data from P2 on host Y
[t9] Task C1 ends

From the log, it is clear that the executions (control-flowsPbfandC1 interleave on hosX. Itis also
clear that the log captures a data-flow @ir with P1 andP2.

SALSA interprets this log of events/activities as a sequenctatés For example, SALSA considers
the period[t1,t6] to represent the duration of std& (where a state has well-defined entry and exit points
corresponding to the start and the end, respectively, ofRa3k Other states that can be derived from this
log include the stat€1, the data-consume state @t (basically, the period during whid¢Bl is consuming
data from its producer®1 andP2), etc. Based on these derived state-machines (in this case, dtfedod
another foiIC1), SALSA can derive interesting statistics, such as the durations of.states

SALSA can then compare these statistics and the sequences of statsshastssin the system. In
addition, SALSA can extract data-flow models, e.g., the fact Blatlepends on data from its local host,
X, as well as a remote ho3t, The data-flow model can be useful to visualize and examine any data-flow
bottlenecks or dependencies that can cause failures to escalaterensisss

Discussion. On the stronger side, SALSA provides a picture of the system’s progcessrol-flow and
data-flow) on various hosts, and models the sequence of logged egestigte machines. SALSA also
extracts statistics that can be compared across different hosts, aatbadre compared historically on the
same host, for useful capabilities such as failure diagnosis.

On the weaker side, SALSA’s views might not be accurate, since theot:dloiv, data-flow and state-
machines are derived/inferred purely from the log data. SALSA hasayofdetermining what the system
is actually doing. Thus, SALSA’s inferences are undoubtedly affdnyete quality of the log data. Another
constraint of using the log data, as-is, is the fact that SALSA might neezlupdraded for every new version
of the target system, if system’s log messages or its logging points are modifibd developers.

Regardless of all these drawbacks, the fundamental research qubstiove sought to ask wakow
can we leverage log data, as-is, to construct state-machine viewsptfiow and data-flow models of the
target system’s execution, in order to support analyses for problegndsis, visualization, etc.?

Non-Goals. We do not seek to validate or improve the accuracy or the completeness lofythenor to
validate our derived state-machines against the actual ones of thedgstgn. Rather, our focus has been
on the analyses that we can perform on the logs in their existing form.

Itis not our goal, either, to demonstrate complete use cases for SAL$Rx&mple, while we demon-
strate one application of SALSA for failure diagnosis, we do not claim thatf#ilure-diagnosis technique
is complete or perfect. It is merely illustrative of the sorts of useful analifs@t SALSA can support.

Finally, while we can support an online version of SALSA that would arelpg entries generated
as the system executes, the goal of this paper is not to describe suchngnlag-analysis technique or its
runtime overheads. In this paper, we use SALSA in an offline manneralgzmlogs incrementally and to
generate the derived state-machines accordingly.

Assumptions.We assume that the logs faithfully capture events and their causality in then&y/etecution.
For instance, if the log declares that ev&ritappened before eveyit we assume that is indeed the case, as
the system executes. We assume that the logs record each event's time#tampegrity, and as close in
time (as possible) to when the event actually occurred in the sequencesykteen’s execution. Again, we



recognize that, in practice, the preemption of the system’s execution migse eailelay in the occurrence
of an evenX and the corresponding log message (and timestamp generation) for entiyeimbg. We do
not expect the occurrence of an event and the recording of its timestagrgmioy to be atomic. We do not
expect the clocks to be synchronized across the different hosts.

3 Related Work

Event-based analysisMany studies of system logs treat them as sources of failure eventsariabgsis of
system errors typically involves classifying log messages based on thet geyerity level of the reported
error, and on tokens and their positions in the text of the mes44yElf3]. More sophisticated analysis has
included the study of the statistical properties of reported failure eventsatize and predict faultslp]
[13] [11] and mining patterns from multiple log eventd]].

Our treatment of system logs differs from such techniques that treaakparely a source of events:
we impose additional semantics on the log events of interest, to identify duratievisich the system is
performing a specific activity. This provides context of the temporal sfateecsystem that a purely event-
based treatment of logs would miss, and this context alludes to the operatioext suggested irlf],
albeit at the level of the control-flow context of the application rather thamaanagerial level. Also, since
our approach takes the log semantics into consideration, we are able te@roews of the data that can be
intuitively understood by users. However, we note that our log analyaiménable only to logs that capture
both normal system activity and errors.

Request tracing. Our view of system logs as providing a control-flow perspective of sysrecution,
when coupled with log messages with unique identifier of the relevant requesocessing task, allows
us to extract request-flow views of the system. Much work has beentdadract request-flow views of
systems, and these request flow views have then been used to diagdasbag performance problems in
distributed system<2] [1]. However, P] used instrumentation in the application and middleware to track
requests and explicitly monitor the states that the system goes through, {jlei¢rpcted causal flows from
messages in a distributed system using J2EE instrumentation develo@d®yi{ work differs from these
request-flow tracing techniques in that we can causally extract refiostof the system without added
instrumentation given system logs, as describedn 8

Log-analysis tools. Splunk [L2] treats logs as searchable text indexes, and generates visualizatites of
log; Splunk treats logs similarly to other log-analysis techniques, considedaly log entry as an event.
There exist commercial open-souré fools for visualizing the data in logs based on standardized logging
mechanisms, such asg4j [8]. To the best of our knowledge, none of these tools derive the caoiidum)l-
data-flow and state-machine views that SALSA does.

4 Hadoop’s Architecture

Hadoop [] is an open-source implementation of Google’s Map/Reddtdramework that enables dis-
tributed, data-intensive, parallel applications by decomposing a masbiiu@gosmaller tasks and a massive
data-set into smaller partitions, such that each task processes a diffarétion in parallel. The main
abstractions are (ifap tasks that process the partitions of the data-set using key/value pairadmtge
a set of intermediate results, and @gduce tasks that merge all intermediate values associated with the
same intermediate key. Hadoop uses the Hadoop Distributed File System YHDH®plementation of the
Google Filesystemlfg], to share data amongst the distributed tasks in the system. HDFS splits ag=l stor
files as fixed-size blocks (except for the last block).

Hadoop uses a master-slave architecture to implement the Map/Reducanpmuigg paradigm. As
shown in Figure2, there exists a unique master host and multiple slave hosts, typically coafagifellows.
The master host runs two daemons: (1) the JobTracker, which scheshudlemanages all of the tasks
belonging to a running job; and (2) the NameNode, which manages the H&xr8space by providing a
filename to block mapping, and regulates access to files by clients (whichparallyy the executing tasks).
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Figure 2: Architecture of Hadoop, showing the locations of the systemadbiggerest to us.

Hadoop source-code

LOG. info ("LaunchTaskAction: " + t.getTaskld());
LOG. info(reduceld + " Copying " + loc.getMapTaskld ()
+ " output from " + loc.getHost() + ".");

| TaskTracker log

2008-08-23 17:12:32,466 INFO
org.apache.hadoop.mapred. TaskTracker:
LaunchTaskAction: task_0001_m_000003_0

2008-08-23 17:13:22,450 INFO
org.apache.hadoop.mapred. TaskRunner:
task_0001_r_000002_0 Copying
task_0001_m_000001_0 output from fp30.pdl.cmu.local

Figure 3:log4j-generated TaskTracker log entries. Dependencies on task exeontlonal and remote
hosts are captured by the TaskTracker log.

Each slave host runs two daemons: (1) the TaskTracker, which lesriabks on its host, based on
instructions from the JobTracker; the TaskTracker also keeps tfable @rogress of each task on its host;
and (2) the DataNode, which serves data blocks (that are stored onaitglisic) to HDFS clients.

4.1 Logging Framework

Hadoop uses the Java-baskegt4j logging utility to capture logs of Hadoop’s execution on every host.
log4j is a commonly used mechanism that allows developers to generate log eniriesittiyng statements
into the code at various points of execution. By default, Hadobgég j configuration generates a separate
log for each of the daemons— the JobTracker, NameNode, TaskTeuk®ataNode—each log being stored
on the local file-system of the executing daemon (typically, 2 logs on eagé bl@st and 2 logs on the
master host).

Typically, logs (such as syslogs) record events in the system, as wetbasressages and exceptions.
Hadoop’s logging framework is somewhat different since it also chaokp execution because it captures
the execution status (e.g., what percentageNdfpaor aReduce has been completed so far) of all Hadoop
jobs and tasks on every host.

Hadoop’s defaullog4j configuration generates time-stamped log entries with a specific format. Fig-
ure3 shows a snippet of a TaskTracker log, and Figlaesnippet of a DataNode log.



Hadoop source-code

LOG. debug ("Number of active connections is: "+xceiverGa;
LOG. info ("Received block " + b + " from " +
s.getlnetAddress() + " and mirrored to "
+ mirrorTarget);
LOG. info ("Served block " + b + " to " + s.getlnetAddress());

| DataNode log

2008-08-25 16:24:12,603 INFO
org.apache.hadoop. dfs.DataNode:
Number of active connections is: 1

2008-08-25 16:24:12,611 INFO
org.apache.hadoop. dfs.DataNode:
Received block blk_8410448073201003521 from
/172.19.145.131 and mirrored to
/172.19.145.139:50010

2008-08-25 16:24:13,855 INFO
org.apache.hadoop.dfs.DataNode:
Served block blk_2709732651136341108 to
/172.19.145.131

Figure 4:1og4j-generated DataNode log. Local and remote data dependencies anedap

5 Log Analysis

To demonstrate Salsa’s approach, we focus on the logs generatedlbgpgtaTaskTracker and DataNode
daemons. The number of these daemons (and, thus, the number opoodieg logs) increases with the
size of a Hadoop cluster, inevitably making it more difficult to analyze thecéessal set of logs manually.
Thus, the TaskTracker and DataNode logs are attractive first tamge3sifsa’s automated log-analysis.

At a high level, each TaskTracker log records events/activities relatbe ftaskTracker’s execution of
Map andReduce tasks on its local host, as well as any dependencies between locallyieg&aduces and
Map ouputs from other hosts. On the other hand, each DataNode log resenis/activities related to the
reading or writing (by both local and rematep andReduce tasks) of HDFS data-blocks that are located
on the local disk. This is evident in FiguBeand Figured.

5.1 Derived Control-Flow

TaskTracker log. The TaskTracker spawns a new JVM for edielp or Reduce task on its host. Eadhap
thread is associated withRaduce thread, with theMap’s output being consumed by its associakeduce.
TheMap andReduce tasks are synchronized to tMepReduceCopy andReduceCopy activities in each of

the two types of tasks, when tMep task’s output is copied from its host to the host executing the associated
Reduce.

The Maps on one node can be synchronized tBeduce on a different node—SALSA derives this
distributed control-flow across all Hadoop hosts in the cluster by collégipagsing all of the hosts’ Task-
Tracker logs. Based on the TaskTracker log, SALSA derives a statdtne for each uniquép or Reduce
in the system. Each log-delineated activity within a task corresponds to a state.

DataNode log.The DataNode daemon runs three main types of data-related threadsid®)l ock, which
serves blocks to HDFS clients, (iijxiteBlock, which receives blocks written by HDFS clients, and (iii)
WriteBlock_Replicated, which receives blocks written by HDFS clients that are subsequentlféraad

to another DataNode for replication. The DataNode daemon runs in its owpendent JVM, and the
daemon spawns a new JVM thread for each thread of execution. Basieel DataNode log, SALSA derives
a state-machine for each of the unique data-related threads on eacBdustog-delineated activity within
a data-related thread corresponds to a state.
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Figure 5: Derived Control-Flow for Hadoop’s execution.

it] Reduce Reduce (User Reduce)

| Processing Activity | Start Token | End Token
Map LaunchTaskAction: [MapID] Task [MaplID] is done.
MapCopy N/A N/A
Reduceldle LaunchTaskAction: [ReducelD] Task [ReduceTaskID] is done.
ReduceCopy [ReducelD] Copying [MaplID] output from [Hostname] [ReducelD] done copying [MapTaskID]

output from [Hostname].
ReduceMergeCopy| [ReducelD] Thread started: Thread for merging in memReducelD] Merge of the 3 files in In

ory files MemoryFileSystem
complete. Local file is [Filename]
ReduceSort N/A N/A
ReduceUser N/A N/A

Table 1: Tokens in TaskTracker-log messages for identifying starteraasl of states.

5.2 Tokens of Interest

SALSA can uniguely delineate the starts and ends of key activities (or)sitatbe TaskTracker logs. Table
1lists the tokens that we use to identify states in the TaskTracke[kzg.ID] and [ReduceID] denote the
identifiers used by Hadoop in the TaskTracker logs to uniquely idemsipg andReduces.

The starts and ends of tReduceSort andReduceUser states in th&educe task were not identifiable
from the TaskTracker logs; the log entries only identified that these stasiw progress, but not when
they had started or ended. Additionally, tiepCopy processing activity is part of th¢éap task as reported
by Hadoop’s logs, and is currently indisguishable.

SALSA was able to identify the starts and ends of the data-related threadsDathNode logs with
a few provisions: (i) Hadoop had to be reconfigured toRE®RUG instead of its defaulINFO logging level,
in order for the starts of states to be generated, and (ii) all states completdeirst-In First-Out (FIFO)
ordering. Each data-related thread in the DataNode log is identified by theeuidentifier of the HDFS
data block. The FIFO ordering assumption was necessary to attribute l@agesscorresponding to the
starts of processing activities to those corresponding to the ends afgsing activities. The DataNode
log recorded the "Number of active connections" in the DataNode daernenever a thread of execution



| Processing Activity | End Token |
ReadBlock Served block [BlockID] to [Hostname]

WriteBlock Received block [BlockID] from [Hostname]
WriteBlock_Replicated| Received [BlockID] from [Hostname] and mirrored to [Hostname]

Table 2: Tokens in DataNode-log messages for identifying ends of ditied threads

was created or completed, and the starts of processing activities wecteddtem increasing pairs of the
number of active connections in the daemon. Hence, the starts of pragessivities as detected from
the logs identified neither the activity itself nor its instance that had started. I@mlgnessages for the
ends of processing activities identified the execution-step and its insteeoee, the assumption of FIFO
completion of execution-steps was used to match the earliest unmatched lageéssthe start of an

processing activity with each subsequent message for the end of @spirtg activity seen to identify the
starts of processing activities. The log messages identifying the endsed stadhe DataNode- logs are
listed in Table2.

Race condition in DataNode logging

In examining the Hadoop DataNode logging mechanism, we discovered aaadigion in the generation

of DataNode log messages for the starts of processing activities. Onawaisg and completing of each
thread of execution, the DataNode respectively incremented and detezhaa internal counter; however,
the incrementing and decrementing of the counter, together with the geneshtloenlog message which

contained the connection count, was not atomic, so that the connectionoould change before the log
message was generated. This prevented us from accurately extraetoantiol-flow model of the DataN-

ode from the candidate version of Hadoop.

Augmented DataNode logging

We addressed this race condition the the DataNode’s logging mechanistndauiring a unique sequence
number for each DataNode thread of execution that was incrementedgorted by that thread of execution
on its start and end in an atomic manner. This addressed both the race coimditie logging, and also

identified the event for the start of that execution-thread with the eveiisfend, allowing us to do away
with the assumption of the FIFO completion of DataNode threads of execution.

5.3 Data-Flow in Hadoop

A data-flow dependency exist between two hosts when an activity on asteréquires transferring data
to/from another node. The DataNode daemon acts as a server, rgdaivaks from clients that write to
its disk, and sending blocks to clients that read from its disk. Thus, datedfipendencies exist between
each DataNode and each of its clients, for each oR#wlBlock andWriteBlock states. SALSA is able
to identify the data-flow dependencies on a per-DataNode basis by gpénsithostnames jointly with the
log-messages in the DataNode log.

Data exchanges occur to transfer outputs of compleded to their associateRkduces in theMapCopy
andReduceCopy phases. This dependency is captured, along with the hostnames of the andrdesti-
nation hosts involved in thBap-output transfer. Tasks also act as clients of the DataNode in re#dding
inputs and writingReduce outputs to HDFS. However, these activities are not recorded in the fiastear
logs, so these data-flow dependencies are not captured.

5.4 Extracted Metrics & Data

We extract multiple statistics from the log data, based on SALSA'’s derivée-stachine approach. We
extract statistics for the following staté$ip, Reduce, ReduceCopy andReduceMergeCopy.

e Histograms and average of duration of unidentified, concurrent staiésevents coalesced by time,
allowing for events to superimpose each other in a time-series.



Symptom | [Source] Reported Failure [Failure Name] Failure Injected
Processing [Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resultd@PUHog] Emulate a CPU-intensive tas
from running master and slave daemons on same machine that consumes 70% CPU utilization
Disk [Hadoop users’ mailing list, Sep 26 2007] Excessive messag@iskHog] Sequential disk workload
logged to file during startup wrote 20GB of data to filesystem

x~

Table 3: Failures injected, the resource symptom category they conespand the reported problem they
simulate

e Histograms and exact task-specific duration of states, with events idemiyfiexbk identifer in a time-
series;
e Duration of completed-so-far execution of ongoing task-specific states.

We cannot get average times f¥duceReduce andReduceSort because these have no well-defined
start and termination events in the log.

For each DataNode and TaskTracker log, we can determine the nundmestobf the states being executed
on the particular node at each point in time. We can also compute the duratieashoof the occurrences
of each of the following states: (Jap, ReduceCopy, ReduceMergeCopy for the TaskTracker log, and (ii)
ReadBlock, WriteBlock andWriteBlock_Replicated for the DataNode log.

On the data-flow side, for each of tReadBlock andWriteBlock States, we can identify the end-point
host involved in the state, and, for each of HeluceCopy states, the host whosrp state was involved.
However, we are unable to compute durationsUserReduce andReduceSort because these have no
well-defined start and termination events in the logs.

6 Data Collection & Experimentation

We analyzed traces of system logs from a 6-node (5-slave, 1-masidgold 0.12.3 cluster. Each node

consisted of an AMD Opeteron 1220 dual-core CPU with 4GB of memory,igig#éhernet, and a dedicated

320GB disk for Hadoop, and ran the amd64 version Debian/GNU Linux ¥8.used three candidate

workloads, of which the first two are commonly used to benchmark Hadoop:

e RandWriter: write 32 GB of random data to disk;

e Sort: sort 3 GB of records;

e Nutch: open-source distributed web crawler for Hado8jrgpresentative of a real-world workload
Each experiment iteration consisted of a Hadoop job lasting approximately 20eminWe set the

logging level of Hadoop t®EBUG, cleared Hadoop’s system logs before each experiment iteration, and

collected the logs after the completion of each experiment iteration. In additeogllected system metrics

from /proc to provide ground truth for our experiments.

Target failures. To illustrate the value of SALSA for failure diagnosis in Hadoop, we injecteektifailures
into Hadoop, as described in Talle A persistent failure was injected into 1 of the 5 slave nodes midway
through each experiment iteration.

We surveyed real-world Hadoop problems reported by users andogeve in 40 postings from the
Hadoop users’ mailing list from Sep—Nov 2007. We selected two candigiftiests from that list to demon-
strate the use of SALSA for failure-diagnosis.

7 Use Case 1: Visualization

We present automatically generated visualizations of Hadoop’s aggregati®|-flow and data-flow de-
pendencies, as well as a conceptualized temporal control-flow chagseThews were generated offline
from logs collected for th&ort workload in our experiments. Such visualization of logs can help operators
quickly explain and analyze distributed-system behavior.

Aggregate control-flow dependencies (Figureé) The key point where there are inter-host dependen-
cies in Hadoop’s derived control-flow model for the TaskTracker lothésReduceCopy state, when the
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Figure 6: Visualization of aggregate control-flow for Hadoop’s executiBach vertex represents a Task-
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Figure 7: Visualizing Hadoop’s control- and data-flow: a sample depiction.

ReduceCopy on the destination host forMdap’s output is started only when the souitgp has completed,
and theReduceCopy depends on the sourtp copying its map output. This visualization captures de-
pendencies among TaskTrackers in a Hadoop cluster, with the numbectdfeiuceCopy dependencies
between each pair of nodes aggregated across the entire Hadods mmexample, this aggregate view can
reveal hotspots of communication, highlighting particular key nodes (if anyyhich the overall control-
flow of Hadoop’s execution hinges. This also visually captures the equitack thereof) of distribution of
tasks in Hadoop.

Aggregate data-flow dependencies (Figurg) The data-flows in Hadoop can be characterized by the num-
ber of blocks read from and written to each DataNode. This visualizatioassedon an entire run of the
Sort workload on our cluster, and summarizes the bulk transfers of data beeaeé pair of nodes. This
view would reveal any imbalances of data accesses to any DataNode ingher,cand also provides hints
as to the equity (or lack thereof) of distribution of workload amongs¥tyes andReduces.

Temporal control-flow dependencies (Figure?) The control-flow view of Hadoop extracted from its logs
can be visualized in a manner that correlates state occurrences calisallyisualization provides a time-
based view of Hadoop’s execution on each node, and also showsrttreldtow dependencies amongst
nodes. Such views allow for detailed, fine-grained tracing of Hadoepugion through time, and allow for
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Figure 8: Visualization of aggregate data-flow for Hadoop’s executi@ath vertex represents a DataNode

and edges are labeled with the number of each type of block operatioreéid.write, or write_replicated
which traversed that path.

inter-temporal causality tracing.
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8 Use Case 2: Failure Diagnosis
8.1 Algorithm

Algorithm 1 Algorithm to fingerpoint faulty node using durations of states. N distrib;, distrib; ) is
the Jensen-Shannon divergence between the distributions of the dtatfns at nodeisand j.

1: procedure SALSA-FINGERPOINT(prior, thresholg, thresholg)

2: for all i, initialize distrib; < prior

3: for all i, initialize lastU pdatg < 0
4: initializet < 0
5: while job in progresslo
6: for all nodei do
7 while have new samplewith durationd do
8: if 1—CDF(distrib;,d) > 1—thresholg then
9: indicts
10: end if
o o _)_lastUpdate-t
11: distribj < distribj x e " a(astUpdate-1)+1
12: addd to distrib; with weight 1
13: lastU pdate—t
14: end while
15: end for
16: for all node paiti,j do
17: distMatrix(i, j) < +/JSD(distrib;, distrib;)
18: end for
19: for all nodei do
20: if count(distMatrix(i, j) > thresholg) > 3 x #nodesthen
21: raise alarm at nodie
22: if 20 consecutive alarms raistdten
23: indict nodei
24: end if
25: end if
26: end for
27: t—t+1
28: end while
29: for all nodei do
30: if nodei associated with at leastof indicted stateshen
31: indict nodei
32: end if

33 end for
34: end procedure

Intuition. For each task and data-related thread, we can compute the histogram ofrétierss of its
different states in the derived state-machine view. We have obserwati¢ha@stograms of a specific state’s
durations tend to be similar across failure-free hosts, while those on faijected hosts tend to differ from
those of failure-free nodes, as shown in Figli®e Thus, we hypothesize that failures can be diagnosed
by comparing the probability distributions of the durations (as estimated framhiseograms) for a given
state across hosts, assuming that a failure affects fewet‘—z‘thaats in a cluster afi slave hosts.
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Figure 9: Failure diagnosis results of the Distribution-Comparison algoritdtwérkload-injected failure
combinationsT P = true-positive ratel- P = false-positive rate

0.25 0.25 0.25
o distribution o distribution at o distribution at
2 02 at faulty node £ 02 fault-free node £ 02 fault-free node
5 g T
T 0.19 T 0. T 0.15
2 2 )
§ 01 E § 01
[ o S
S 0.05 a 20.05
y
% 1500 % 1500 % 1500

500 1000 500 1000 500 1000

state duration (ms) state duration (ms) state duration (ms)
Figure 10: Visual illustration of the intuition behind comparing probability distidns of durations of the
WriteBlock state across DataNodes on the slave nodes.

Algorithm. First, for a given state on each node, probability density functions (P&fffke distributions,
distrib;’s, of durations at each nodeare estimated from their histograms using a kernel density estimation
with a Gaussian kernel[] to smooth the discrete boundaries in histograms.

In order to keep the distributions relevant to the most recent states eldsem imposed an exponential
decay to the empirical distributiorlistrib;’s. Each new samplewith durationd would then be added to
the distribution with a weight of 1. We noticed that there were Iull periods durihich particular types
of states would not be observed. A naive exponential decay ¥t would result in excessive decay of
the distributions during the lull periods. States that are observed immediatetytte# lull periods would
thus have large weights relative to the total weight of the distributions, argletfiectively result in the

distributions collapsing about the newly observed states. To preventriivanted scenario, we instead
lastU pdatg—t

used an exponential decayef” a(astUpdate-)+1 ' wherelastU pdateis the time of the last observed state, and
t is the time of the most recent observation. Thus, the rate of decay slowsdlowng lull periods, and in
the limit wherelastU pdate-t — 0, the rate of decay approaches the naive expoential decay rate.

The difference between these distributions from each pair of nodesnstimputed as the pair-wise
distance between their estimated PDFs. The distance used was the squasethe Jensen-Shannon
divergence, a symmetric version of the Kullback-Leibler divergebteal commonly-used distance metric
in information theory to compare PDFs.

Then, we constructed the matrilistMatrix, wheredistMatrix(i, j) is the distance between the es-
timated distributions on noddsand j. The entries indistMatrix are compared to ghresholg. Each
distMatrix(i, j) > thresholg indicates a potential problem at node§, and a node is indicted if at least
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half of its entriesdistMatrix(i, j) exceedhreshold. The pseudocode is presented above.

Algorithm tuning. threshold, is used for the peer-comparison of PDFs across hosts; for highexsvafu
thresholg, greater differences must be observed between PDFs before thiggged as anomalous. By
increasinghresholg, we can reduce false-positive rates, but may suffer a reduction ipdsigve rates as
well. thresholg is kept constant for each (workload, metric) combination, and is tunegémdiently of the
failure injected.thresholg: Threshold value for comparison of states’ durations against the hidtdisca
tribution on each node. Specifically, states whose durations are largehtghresholg x 100)-percentile
of the distribution are flagged as outliers. Therefore, increasireshold reduces false positive rates but
also reduces true positive rates. In our experiments, we havelkgsholg, andthresholg constant for
each workload and metric pair.

bandwidth The bandwidth for Gaussian kernel density estimation is also known asrtteotking param-
eter”. If the bandwidth is too small, undersmoothing occurs, and noise irbéatane prominent, leading
to a jagged PDF. Oversmoothing occurs when the bandwidth is too largdetails may be lost. There are
rules of thumb that can be followed in choosing the bandwidth. In geneedbawe selected bandwidths for
each workload and metric that produced PDFs that are neither overssdoaihundersmoothed.

8.2 Results & Evaluation

We evaluated our initial failure-diagnosis techniques based on ouredeniodels of Hadoop’s behavior,
by examining the rates of true- and false-positives of the diagnosis ouscomigosts in our fault-injected
experiments, as described ir68True-positive rates are computed as:

count(fault injected on nodg nodei indicted)
count(fault injected on node)

, .e., the proportion of failure-injected hosts that were correctly indictdddty.
False-positive rates are computed as:

count(fault not injected on node nodei indicted)
count(fault not injected on nodg

, i.e., the proportion of failure-free hosts that were incorrectly indictefda$y. A perfect failure-diagnosis
algorithm would predict failures with a true-positive rate o ht a false-positive rate of.@. Figure9
summarizes the performance of our algorithm.

By using different metrics, we achieved varied results in diagnosingrelifiefailures for different
workloads. Much of the difference is due to the fact that the manifestafidineofailures on particular
metrics is workload-dependent. In general, for each (workload, &ikkombination, there are metrics that
diagnose the failure with a high true-positive and low false-positive raed&gcribe some of the (metric,
workload) combinations that fared poorly.

We did not indict any nodes usirigzadBlock’s durations orRandWriter. By design, thdRandWriter
workload has n®&eadBlock states since its only function is to write data blocks. Hence, it is not possible to
perform any diagnosis usirRgadBlock states on th&®andWriter workload. Also,ReduceMergeCopy 0N
RandWriter is a disk-intensive operation that has minimal processing requirements, GRUWHog does
not significantly affect thBeduceMergeCopy operation, as there is little contention for the CPU between the
failure and th&keduceMergeCopy operations. However, ttieduceMergeCopy operation is disk-intensive,
and is affected by thBiskHog.

We found thatDiskHog and CPUHog could manifest in a correlated manner on some metrics. For
the Sort workload, if a failure-free host attempted to read a data block from theddiihjected node, the
failure would manifest on thReadBlock metric at the failure-free node. By augmenting this analysis with
the data-flow model, we improved results fdiskHog andCPUHog on Sort, as discussed in&.3.
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The list of metrics that we have explored for this paper is by no means complétre are other
types of states lik@educes and heartbeats that we have not covered. These metrics may yeeprovid
information for diagnosis, and will be left as future work.

8.3 Correlated Failures: Data-flow Augmentation

Peer-comparison techniques are poor at diagnosing correlated $adlen@ss hosts, e.@eadBlock dura-
tions failed to diagnosBPiskHog on theSort workload. In such cases, our original algorithm often indicted
failure-free nodes, but not the failure-injected nodes.

We augmented our algorithm using previously-observed states with anastyalong durations, and
superimposing the data-flow model. For a Hadoop job, we identify a state astéer by comparing
the state’s duration with the PDF of previous durations of the state, as estifmategast histograms.
Specifically, we check whether the state’s duration is greater thahieholg-percentile of this estimated
PDF.

Since each DataNode state is associated with a host performing a readathdrgnot necessarily
different) host performing the corresponding write, we can count timeber of anomalous states that each
host was associated with. A host is then indicted by this technique if it wasiatsd with at least half of
all the anomalous states seen across all slave hosts.

Hence, by augmenting the diagnosis with data-flow information, we were ainhgtove our diagnosis
results for correlated failures. We achieved true- and false-posittes, rrespectively, ¢0.7,0.1) for the
CPUHog and(0.8,0.05) for the DiskHog failures on thekeadBlock metric.

9 Conclusion

SALSA analyzes system logs to derive state-machine views, distributékfiow and data-flow models
and statistics of a system’s execution. These different views of log datdeaiseful for a variety of
purposes, such as visualization and failure diagnosis. We preset8/&ahd apply it concretely to Hadoop
to visualize its behavior and to diagnose documented failures of interest.bVmidisted some early work
to diagnose correlated failures by superimposing the derived data-flalelson the control-flow models.

For our future directions, we intend to correlate numerical OS/netword-faetrics with log data, in
order to analyze them jointly for failure diagnosis and workload charizetén. We also intend to automate
the visualization of the causality graphs for the distributed control-flow aa-fiow models. Finally, we
will aim to generalize the format/structure/content of logs that are amenabksli8/8s approach, so that
we can develop a log-parser/processing framework that accepts -del@tdefinition of a system'’s logs,
using which it then generates the desired set of views.
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