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Abstract

Internet measurement data provides the foundation for the operation and planning of the networks that comprise the Internet, and
is a necessary component in research for analysis, simulation, and emulation. Despite its critical role, however, the management of
this data—from collection and transmission to storage and its use within applications—remains primarily ad hoc, using techniques
created and re-created by each corporation or researcher that uses the data. This paper examines several of the challenges faced
when attempting to collect and archive large volumes of network measurement data, and outlines an architecture for an Internet
data repository—thedatapository—designed to create a framework for collaboratively addressing these challenges.
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1 Introduction

Communications networks produce vast amounts of data that both help network operators manage and plan
their networks and enable researchers to study a variety of network characteristics. The data is rich, and it
varies from the minute (e.g., kilobits per hour of periodic average link utilization data) to the massive (e.g.,
gigabits per second of live traffic captures). Its uses are equally diverse: On short timescales, the data can
facilitate network monitoring, troubleshooting, and reactive routing [9]. Over minutes to days, the data is
useful for network traffic engineering, in which operators attempt to shift the flow of traffic away from over-
utilized links onto less busy paths. Over months, the data is useful for capacity planning; on even longer
timescales, the data helps researchers perform longitudinal studies.

Network data is essential for the operation and planning of the networks that comprise the Internet; it
is also vital for analysis, simulation, and emulation. Despite its critical role, the management of this data—
from collection and transmission to storage and its use within applications—remains disconcertingly ad hoc,
using techniques created and re-created by each corporation or researcher. As one example, consider the
storage formats used for node-to-node loss and latency (“ping”) data. A number of different projects collect
such data, in formats ranging from:

• A hierarchy of directories, one per day, with anN-line text file containing a matrix of ping data
between a set ofN nodes, with errors recorded in a separate file. (PlanetLab all-pairs pings data [21].)

• A generalized binary network data storage format (Skitter’s ARTS++ format [5]).

• Stored internally using a ROOT-based file [4] (RIPE’s Test Traffic Machines [11]).

• A MySQL database, with one row per pair of probes and a non-standard text format for export upon
demand (The RON testbed all-pairs probe data [2]).

This paper examines several challenges in collecting and archiving large volumes of network mea-
surement data, and outlines an architecture for an Internet data repository—thedatapository—designed to
create a framework for collaboratively addressing these challenges. Rather than attempt to solve all of these
problems, we hope that the datapository will catalyze sharing of tools, formats, and data among researchers
and operators. We envision that the datapository will be useful both for storage and analysis, and as a tool
for real-time network monitoring.

The heterogeneity of data formats and the lack of an infrastructure to analyze it efficiently harm both
network operations and the science of network measurement. The data’s unwieldy nature prevents network
operators from harnessing the vast amounts of data that could save them time and money (e.g., via network
provisioning and traffic engineering) and help defend their networks from attack (e.g., by alerting operators
to routing or traffic anomalies).

From a scientific perspective, the lack of an analysis facility means that every network measurement
researcher must develop “home brew” analysis tools and encounter the same set of traps and pitfalls as
previous researchers. Worse yet, after a study is published, the authors’ analysis tools may go unused for
long periods of time before another researcher tries to study the same published results years later—at which
point the data may have moved to a different location or been re-organized entirely. Even if a researcher
successfully locates the data and tools from a particular study, he is left with the challenge of re-discovering
how to reproduce the results (“Which parameters did they use to generate that graph?”, “What subset of this
data was used?”, etc.). Indeed, for Internet measurement, repeatable experimentation—a major cornerstone
of science—requires significant advances in the storage and management of data.

The remainder of this paper discusses the challenges that arise in constructing a network data analysis
facility (Section2), presents the initial design of the datapository (Section3), and presents our vision for
the opportunities that we hope the datapository will ultimately provide (Section4). We warn the reader in
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advance that this paper raises more questions than it answers, though we hope it shines light on a possible
path through the measurement minefield.

2 Challenges

This section briefly surveys the challenges in realizing a network data collection and storage facility.

2.1 Robust, distributed data collection

Collecting network measurement data is by nature distributed; this collection must be resilient to network
and server outages, providing the datapository with aneventuallycomplete data set.1 In our experience,
measurement nodes may be offline for days to months before coming back online and may be partitioned
from the network for hours to days while still collecting measurements.

While work such as Paxson’s Strategies for Sound Internet Measurement [17] provides valuable guide-
lines for how tomeasureandanalyzedata about the network, less attention has been paid to thecollection
of this data for subsequent analysis. Unfortunately, when large number of nodes or large volumes of data
are involved, the difficulties involved in collecting and organizing can be as large as the difficulties of how
to measure the network in the first place.

2.2 Multi-timescale, heterogeneous data

The combination of performing real-time analysis and data mining years of archived data presents challenges
to both conventional and streaming database systems:

Non-standard, irregular data. Network data is information-dense, and we cannot predict how users
will query the data, which makes indexing a challenge. Some data is best served by custom search tech-
niques. For example, each routing update contains anetwork prefixand aprefix length. The prefix length
specifies the number of significant bits in the prefix. A common operation in prefix queries is to find a
longest-prefix match (LPM): Given an IP address, find the prefix with the longest prefix length whose sig-
nificant bits are equal to those bits in the IP address. Some data structures (e.g., search tries) can efficiently
perform LPM, but the best way to express this query in SQL is as a set of 32 OR’d conditions for each prefix
length.

SELECT * from table
WHERE (prefix = x AND mask=32)

OR (prefix = x & 0xfffffffe
AND mask=31)

OR ...

Additionally, network monitoring data is often not amenable to the regular form of standard databases.
Packet traces, for instance, have nearly arbitrary content, and a search may examine any of these fields,
extract the TCP stream from a series of packets, or examine application-layer headers. RBDMSes do not
handle such queries, and existing tools such astcpdump or ethereal cannot efficiently process terabytes
of packet traces. Other data, such as the popular NetFlow format for flow summarization, has similar
limitations for data mining.

1The measurement techniques used must also be robust to these events. This lesson is explained well by Paxson, whose
original Internet measurements were triggered from a centralized node, and therefore under-counted some failures [16], or whose
measurements depended on the DNS [18]. The authors of this paper have seen these mistakes repeated several times since.
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Figure 1: The datapository architecture.

To process non-standard data sources, the datapository may be able to leverage PADS, a system that
takes as input a data format description and parses raw data files of arbitrary formats [10].

Large archival data mining. Aurora [3] provides a promising way to process real-time streams of
network data, and AT&T’s Gigascope [6] supports real-time monitoring of gigabit networks. These systems
are excellent building blocks for processing raw data, but they are typically designed for either low-speed
streams (e.g., financial transactions) or modest-size “windows” of data. Longitudinal studies and joint anal-
ysis of network data may require much large windows over high-speed streams.

Most conventional solutions are unsuited to our application, and are unable to take advantage of many
of the simplifying advantages of a data archive: the data is read-only, is easily cached, follows a strict time
ordering, and is amenable to both intra- and inter-query parallelism.

Data-mining solutions such as Netezza [14] offer attractive solutions for data mining. Network mea-
surement data offers many opportunities for optimization: the data is read-only, is easily cached, and follows
a strict time ordering. Unfortunately, current data mining tools do not cope well with the unique data types
present in network monitoring data. We believe that the long-term development of the datapository will spur
the development of log-processing database management systems.

2.3 Workflow metadata and privacy

Metadata about data’s origins, errors, and modifications—itsprovenance—must be maintained and commu-
nicated with the data as it progresses through the analysis workflow [13, 23]. Data producers or the research
community must agree upon common metadata formats for data [1] and analysis tools in order to facilitate
data sharing.

An important part of the workflow is addressing privacy requirements. The privacy requirements for
measurement data range from nearly none (e.g., many BGP routing traces, which are publicly available)
to extreme (e.g., an un-anonymized packet trace). In order to gain the efficiencies of scale that we hope to
realize with the Datapository, it must be able to host and analyze data at the ends and in the middle of the pri-
vacy spectrum. In fact, the steps of “declassifying” this data (e.g., using anonymization “scrubbers” [12] or
summarization techniques) will be an important part of the analysis workflow that the datapository enables.

3 The datapository

The datapository consists of a distributed set ofdata sourcesand a centralstorage and analysisinfrastruc-
ture, shown in Figure1. The data is processed by a set ofcompute enginesdedicated to input processing,
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which insert the data into the central storage and database nodes. Once inserted, the data may be analyzed
by tools on other compute engines.

3.1 Data Collection

The datapository collects data from many sources, including the RON testbed path monitoring nodes and
BGP feeds, Abilene data, and the RouteViews BGP archive. Internally, the datapository understands an
orthogonal set ofdata types(which abstract a set ofdata formats), andaccess methods:

Data typesare a canonical version of a particular type of measurement (e.g.traceroutes, end-to-end
probes, and BGP routing updates). The datapository is currently archiving and processing BGP routing
tables and updates from RON and Abilene, and spam logs from two spam honeypots. We have immediate
plans to archive RouteViews BGP feeds and end-to-end probes from the RON testbed.

Data formats are different storage formats for a particular data type. Each of the formats listed in the
Introduction would be one such data format; other examples include the MRT format commonly used to
store BGP routing updates, or ASCII files recording traceroutes.

Access methodsare implementations of techniques that the datapository obtains data from the data
sources. Examples include the code that obtains data (e.g., RouteViews) via FTP, and that which securely
copies data from the RON testbed nodes to the datapository via SSH.

Central to the datapository is the notion of afeed. A feed represents an (access method, data format,
data type) tuple, along with the ancillary data used by the access method or data format (e.g., usernames
and passwords, or state corresponding to which objects have already been retrieved). Each feed defines
a workflow that uses an access method to obtain data in a particular format, converts that format into the
canonical representation for that data type, and inserts the data into storage.

3.2 Data Storage

We wish to store data in a cluster of databases that offer an SQL-like interface. Our prior experience and
that of others suggests that basing analysis out of a database (we choose SQL out of familiarity) improves
consistency, facilitates reuse, and reduces researcher effort [20, 17]. To this end, the present datapository
architecture uses a set of MySQL compute engines, each of which has read-only access to the historical data
via a distributed filesystem.

This approach has the advantage of simplicity and working with off-the-shelf components, but fails to
take advantage of the intra-query parallelism that is available in many of the data-mining queries we issue
against the datapository. In addition, the current architecture is limited in its ability to simultaneously query
the historical data and newly arrived data, which is maintained read-write by a single database node. We
view the development of more suitable storage and mining techniques as a prime challenge for the further
development of the datapository.

3.3 Analysis and Queries

We envision three “users” for the datapository: Network operators, researchers performing analysis, and
simulation/emulation systems that require traces as input.

Network operators will be able to use the datapository for real-time debugging and network monitoring.
By aggregating data from many vantage points into a logically centralized database, operators can efficiently
get information from a geographically and topologically diverse set of network locations. Our previous
implementation of a public “BGP monitor” was useful to operators in identifying network-wide failures and
debugging reachability problems. Such utilities are particularly useful because they grant operators a view
of the network from vantage points outside their own network.
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Our instance of the datapository holds datasets that researchers and operators choose to make publicly
available. Operators may wish to build private datapositories to analyze confidential data and query that data
either in isolation or in combination with the publicly available datapository. Analyzing traffic and routing
data can help operators with traffic engineering and capacity planning.

The datapository can help network researchers perform long-term longitudinal studies. Network data
often exists in two forms: (1) short-term data collected for a particular experiment and (2) long-term data
that is collected, but never analyzedin totodue to the massive overhead in running a query For example, the
RouteViews BGP routing updates comprise BGP data from about 41 routers in 35 different ISPs [15]. An
hour of compressed BGP updates from RouteViews requires one megabyte; as a result, longitudinal queries
across multiple years and multiple BGP datasets can become prohibitively expensive. As a shared facility,
the datapository can amortize storage, processing, and management costs, such as building and maintaining
a database and query infrastructure for longitudinal datasets. We hope that lowering the cost of running
queries will foster serendipity by making it easier for researchers to issue exploratory queries.

The datapository aggregates multiple data feeds into a single archive, which facilitates performing
joint analysis across multiple datasets. Among many examples, our past research has shown the benefits of
performing joint analysis across traceroutes, active probes, and BGP routing updates to study the correlations
between end-to-end path performance and Internet routing stability [9]. More recently, we have studied the
interaction between BGP route hijacking and spam activity [8]. It is our hope that, by providing a common
storage and query infrastructure for diverse datasets, Internet researchers will find new ways of finding
patterns and correlations across datasets.

3.4 External Interfaces

The datapository makes raw and aggregated data available through standard interfaces. The datapository cur-
rently supports anXMLRPCexport mechanism, and we are implementingbulk raw dataexport. The XML-
RPC interface can export data in various formats, including human-readable output and Matlab-friendly
matrices. This data export mechanism allows researchers to focus on analysis techniques without being
intimately familiar with the myriad formats for network data. In addition to these export formats, we have
created several Web interfaces for browsing data and for network troubleshooting.

To facilitate experimentation, we are integrating the datapository with Emulab [22]. Emulab provides
hardware resources (nodes and links) that can be configured into a desired network topology. Researchers
use this emulated network to evaluate real code and distributed systems. Emulab provides a valuable mid-
dle ground between simulation and untamed (and un-repeatable) live networks. However, the accuracy of
many emulation experiments—much like simulations—lives and dies by the model and input parameters.
Coupling the datapository to Emulab can significantly improve this aspect.

Our goal is to foster a seamless flow of data from network traces to Emulab experiments and back.
Emulab users will have access to realistic topologies, background traffic patterns, configurations, and even
prior experimental and analytical data. The data produced by these experiments can then be inserted into
the datapository for archiving and further processing.

This integration presents a classicalworkflowproblem, managing the flow of data from the datapository,
into emulation (and perhaps the real world, via Emulab’s wide-area nodes), and back. Internet research
involves a continual cycle of measuring a system to better understand and evaluate its properties, modeling
these properties in a way that makes them easy to integrate into a controlled experiment (e.g., in simulation
or emulation), and making changes to the system that is actually deployed. The datapository acts as a critical
component in this process by facilitating data collection and management, as well as acting as a driver for
trace-based emulation. Section4.1describes this process in more detail, as well as its relation to Emulab’s
scientific workflow management [7].
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4 Opportunities

This section explores possible future uses for the datapository. We focus first on how the datapository might
help scientific experimentation; then, we explore how it might be employed as a cornerstone of network
management—even to the point ofcontrollingnetwork operation.

4.1 Repeatable Scientific Experimentation

Two significant challenges in experimentation are repeating a past experiment (under the same or different
conditions) and performing new analysis of old data. Without standard techniques for packaging old data
and analysis scripts, measurement data is often shuffled about and forgotten or becomes a subset of a con-
tinuously collected data stream. At a later date, researchers must recall which subsets of each data stream
and which processing scripts they used to produce each set of results.

The datapository can save measurement data from these fates by allowing a researcher to store the
details of their analysis workflow. This archived workflow names all of the machinery a researcher would
need to reproduce a particular experiment: the data, all scripts needed for analysis, and the process by which
these scripts should be executed (i.e., a description of the experiment). The workflow should also refer to
any relevant information about how the data was collected and other noteworthy aspects of the data, such
as times when the collection machinery was faulty or non-functional, how the data was collected, etc. Our
support for workflows is complementary to Emulab, which proposes integrating workflow management into
generating—not just analyzing—measurements [7].

The datapository’s archives may also prove useful for driving trace-driven network emulations. The
networking community is developing several platforms for network emulation, which would benefit from
the ability to play back traces of actual network data. For example, a researcher might set up an experiment
that mirrors a real network topology, process traces at the datapository as they are collected from the real
network, and project the failures in these traces onto the mirrored network.

4.2 Network Monitoring and Control

Network operators must ensure availability and good performance in the face of constantly changing condi-
tions (e.g., changing traffic patterns, link failures) and security threats (e.g., worms, denial-of-service (DoS)
attacks). Unfortunately, critical data often escapes operators’ notice due to both the lack of an infrastructure
to collect and analyze this data and the lack of adequate detection algorithms. We hope that the dataposi-
tory will evolve to support real-time analysis and detection. A real-time analysis facility might even allow
operators to automate some aspects of network control. For example, such a system could detect erroneous
routing advertisements and prevent them from propagating; it could also detect a DoS or worm attacks and
install filters.

5 Discussion and Summary

The datapository is an in-progress facility for shared network data analysis. We believe that a community-
based approach to network data analysis can play a critical role in both networking research and operations.
In contrast to existing approaches that emphasize cataloging and standardizing Internet data [19], we believe
that providing a public computational and storage resource will be an effective stimulus for community
involvement and adoption of the standards that evolve.

While building the datapository, we have encountered several conflicts between existing workflow and
data management systems and the requirements of network data. We hope that this paper will serve as a
catalyst for the improvement of both our data repository, and the available data management techniques.
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