
58

Rateless Codes for Near-Perfect Load Balancing in
Distributed Matrix-Vector Multiplication

ANKUR MALLICK∗, Carnegie Mellon University

MALHAR CHAUDHARI†, Oracle Corporation
UTSAV SHETH†, Automation Anywhere

GANESH PALANIKUMAR†, Apple Inc.
GAURI JOSHI, Carnegie Mellon University

Large-scale machine learning and data mining applications require computer systems to perform massive

matrix-vector and matrix-matrix multiplication operations that need to be parallelized across multiple nodes.

The presence of straggling nodes – computing nodes that unpredictably slowdown or fail – is a major bottleneck

in such distributed computations. Ideal load balancing strategies that dynamically allocate more tasks to faster

nodes require knowledge or monitoring of node speeds as well as the ability to quickly move data. Recently

proposed fixed-rate erasure coding strategies can handle unpredictable node slowdown, but they ignore partial

work done by straggling nodes thus resulting in a lot of redundant computation. We propose a rateless fountain
coding strategy that achieves the best of both worlds – we prove that its latency is asymptotically equal

to ideal load balancing, and it performs asymptotically zero redundant computations. Our idea is to create

linear combinations of them rows of the matrix and assign these encoded rows to different worker nodes.

The original matrix-vector product can be decoded as soon as slightly more thanm row-vector products are

collectively finished by the nodes. We conduct experiments in three computing environments: local parallel

computing, Amazon EC2, and Amazon Lambda, which show that rateless coding gives as much as 3× speed-up

over uncoded schemes.

CCS Concepts: • Mathematics of computing → Queueing theory; Coding theory; • Computer systems
organization→ Redundancy; Reliability.

Additional Key Words and Phrases: Erasure coded Computing, Rateless Fountain Codes, Large-scale Parallel

Computing

ACM Reference Format:
Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi. 2019. Rateless Codes

for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication. Proc. ACM Meas. Anal. Comput.
Syst. 3, 3, Article 58 (December 2019), 40 pages. https://doi.org/10.1145/3366706

1 INTRODUCTION
Matrix-vector multiplications form the core of a plethora of scientific computing and machine

learning applications that include solving partial differential equations [3], forward and back

propagation in neural networks [7], computing the PageRank of graphs [48] etc. In the age of Big

Data, most of these applications involve multiplying extremely large matrices and vectors and

∗
Correspondence Author

†
Work done while at CMU

Authors’ addresses: Ankur Mallick, Carnegie Mellon University, Pittsburgh, PA, amallic1@andrew.cmu.edu; Malhar Chaud-

hari, Oracle Corporation, Redwood City, CA, malharchaudhari@gmail.com; Utsav Sheth, Automation Anywhere, San Jose,

CA, utsavsheth1994@gmail.com; Ganesh Palanikumar, Apple Inc., Cupertino, CA, ganeshpkumar93@gmail.com; Gauri

Joshi, Carnegie Mellon University, Pittsburgh, PA, gaurij@andrew.cmu.edu.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in Proceedings of the ACM on Measurement and Analysis of Computing Systems, https:
//doi.org/10.1145/3366706.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

ar
X

iv
:1

80
4.

10
33

1v
5

 [
cs

.D
C

]
 3

0
O

ct
 2

01
9

https://doi.org/10.1145/3366706
https://doi.org/10.1145/3366706
https://doi.org/10.1145/3366706

58:2 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

the computations cannot be performed efficiently on a single machine. This has motivated the

development of several algorithms [40], [18] that seek to speed-up matrix-vector multiplication by

distributing the computation across multiple computing nodes. The individual nodes (the workers)
perform their respective tasks in parallel while a central node (the master) aggregates the output of
all these workers to complete the computation.

The Problem of Stragglers. Unfortunately, large-scale distributed computation jobs are often

bottlenecked by tasks that are run on unpredictably slow or unresponsive workers called stragglers
[10]. Since the job is complete onlywhen all its parallel tasks are executed, this problem is aggravated

for jobs with a large number of parallel tasks. Even a tiny probability of a node slowing down and

becoming a straggler can cause a big increase in the expected latency of the job. As pointed out in

[10, Table 1], the latency of executing many parallel tasks could be significantly larger (140 ms)

than the median latency of a single task (1 ms). Straggling of nodes is widely observed in cloud

infrastructure [10] and it is the norm rather than an exception.

1.1 Previous Solution Approaches
Load Balancing Strategies. An obvious solution to overcome the bottleneck of waiting for slow

nodes is to move tasks from busy or slow nodes to idle or fast nodes. Such work stealing or dynamic

load balancing strategies are often implemented in shared and distributed memory settings [12, 13,

26]. This approach involves establishing a protocol for continually monitoring workers and moving

tasks from slow to fast workers. It entails considerable centralized control over the computing

environment, which may not be feasible in cloud systems where the nodes can unpredictably slow

down due to background processes, network outages etc. There may also be concerns regarding data

privacy, and the communication cost of moving data between nodes in a distributed system spread

over a large geographical area. Thus it is desirable to develop a principled and easy-to-implement

straggler-mitigation approach that does not involve moving data between workers.

Task Replication. Existing systems like MapReduce [11] and Spark [65] generally deal with the

problem of stragglers by launching replicas of straggling tasks, which are referred to as back-up
tasks. This strategy of task replication has many variants such as [4, 5], and has been theoretically

analyzed in [58–60] where schemes for adding redundant copies based on the tail of the runtime

distribution at the workers are proposed. In the area of queueing theory there is a line of interesting

recent works analyzing the effect of task replication on queueing delays in multi-server systems

[19–21, 29, 30, 54, 55]. For distributed matrix-vector multiplication, which is the focus of this work,

a simple replication strategy is to divide matrix A into p/r (where r divides the number of workers

p) sub-matrices and replicate each sub-matrix at r workers. Then the master waits for the fastest

worker from each set of r to finish multiplying its sub-matrix with the vector x in order to recover

the overall result b = Ax.
Erasure Coded Matrix-vector Multiplication. From a coding-theoretic perspective, task repli-

cation is a special case of more general erasure codes that overcome loss or erasure of data and

recover the message from a subset of the transmitted bits. Erasure codes were first employed to

overcome stragglers in the context of fast content download from distributed storage [28, 31, 32].

A file that is divided into k chunks and encoded using a (p,k) maximum-distance-separable (MDS)

code (for example a Reed-Solomon code), can be recovered by downloading any k out of p encoded

chunks. Queueing models to analyze the latency of coded content download jobs were proposed

and analyzed in [32, 34, 35, 42, 50].

Unlike distributed storage, erasure coding of computing jobs is not straightforward. A job

with n parallel tasks needs to be designed such that the execution of any k out of n tasks is

sufficient to complete the job. However, this is possible for linear computations such as matrix-

vector multiplication. The usage of codes to provide error-resilience in computation has its origins

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:3

in works on algorithmic fault tolerance [27]. Recent works such as [14, 41, 44] have employed

Maximum Distance Separable (MDS) codes to speed up the computation of matrix vector products

in a distributed setting. For example, suppose that we want to multiply a matrix A with vector x
using 3 worker nodes and a (3, 2) MDS code. Then we split A along rows into two matrices A1 and

A2 such that A = [AT
1

AT
2
]T . The worker nodes store matrices A1, A2 and A1 + A2 respectively,

and each node multiplies its matrix with x. Results from any two worker nodes are sufficient to

obtain Ax, and thus the system is tolerant to 1 straggling node.

Erasure Coding for Other Linear Computations. A natural generalization of matrix-vector

multiplication is matrix-matrix multiplication, considered in [16, 61, 63]. There are also works

dealing with coded gradient descent [24, 43, 56], coded convolution [15], coded Fourier Transform

[64], Page Rank [62], and coded distributed optimization [36] – in general any distributed linear
computation can essentially be expressed as a matrix multiplication/addition operation and can be

made straggler-proof using erasure codes. Most of these works use MDS codes as the core idea and

modify it for the specific computation in question. In this work, we focus on the original problem

of coded distributed matrix-vector multiplication, but we consider a rateless-coded approach in

contrast to MDS codes. We expect that the underlying principles of our work can be extended to

matrix-matrix multiplication and other linear computations like gradient descent in the future.

1.2 Rateless Coding Approach and its Benefits
The replication or MDS coding strategies used for matrix-vector multiplication are fixed-rate

strategies, that is, they fix a redundancy rate k/p when encoding matrix A, use the results of the
fastest k out of p worker nodes. The key drawbacks of this approach are that: 1) it cannot perform

load balancing within the fastest k nodes and account for variabilities in their speeds, and 2) it

discards all partial work done by the p − k straggling workers. We address both these issues by

proposing the use of rateless fountain codes, specifically Luby Transform (LT) codes [33, 45, 52]

which are known to be scalable and form the basis for practical erasure coding schemes in wireless

communication standards [53].

The rateless coded matrix-vector multiplication algorithm generatesme = αm (α > 1) coded

linear combinations of them rows of matrix A and distributes them equally across p worker nodes.

Each of these linear combinations is generated by choosing d of them rows uniformly at random

and adding them. For example, if d = 2, and we choose rows a1 and a3 of A, then the encoded row

is a1 + a3, as shown in Fig. 5a. The value d , referred to as the degree of the linear combination is

an i.i.d. realization of a carefully chosen degree distribution ρ(d). For LT codes, ρ(d) is the Robust
Soliton distribution (given in (4) below). Each worker receivesme/p encoded rows of matrix A and

a copy of the vector x. It computes row-vector products, for example (a1 + a3)T x = b1 + b3 for the

encoded row (a1 + a3), and sends them back to the master node. Due to the carefully chosen degree

distribution ρ(d), the master node can use an iterative peeling decoder [45] (illustrated in Fig. 5b)

to recover each element of the product vector b = Ax with a low decoding complexity of O(logm).
Overall, it needs to wait for anyM ′ =m(1 + ϵ) row-vector products to be completed across all the
nodes, where ϵ is a small overhead; ϵ → 0 asm → ∞).

Rateless codes offer the following key benefits over previously proposed coding techniques based

on MDS codes.

(1) Near-Ideal LoadBalancing. In order to adjust to varying speeds of worker nodes andminimize

the overall time to complete the multiplication Ax, one can use an ideal load-balancing scheme
that dynamically assigns one row-vector product computation task to each worker node as soon as the
node finishes its current task. Thus, faster nodes complete more tasks than slower nodes, and the

final product b = Ax is obtained when the p nodes collectively finishm row-vector products. Our

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:4 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

rateless coding strategy achieves nearly the same load balancing benefit without the communication

overhead of dynamically allocating the tasks one row-vector product at a time. In our strategy, the

nodes need to collectively finishM ′ =m(1 + ϵ) row-vector products, for small ϵ that goes to zero

asm → ∞. In contrast, MDS coding strategies do not adjust to different degrees of node slowdown;

they use the results from k nodes, and ignore the remaining p − k nodes. As a result rateless codes

achieve a much lower delay than MDS coding strategies.

(2) Negligible Redundant Computation. A major drawback of MDS coding is that if there is no

straggling, the worker nodes collectively performmp/k row-vector products, instead ofm. With the

rateless coding strategy, the nodes collectively perform a maximum ofM ′ =m(1 + ϵ) row-vector
products where, the overhead ϵ goes to zero asm, the number of rows in the matrix A increases.

(3) Maximum straggler tolerance. A (p,k) MDS coded distributed computation is robust to

p − k straggling nodes, for k ∈ [1, 2, . . .p]. Reducing k increases straggler tolerance but also adds

more redundant computation. The rateless coding scheme can tolerate up to p − 1 stragglers, with

negligible redundant computation overhead.

(4) Low Decoding Complexity. One may argue that MDS coding approaches can also use partial

computations and achieve near-perfect load balancing if we construct an (me ,m) MDS code (for a

given amount of redundancyme/m) to encode am × n matrix. The decoding complexity of such a

code is O(m3) which is unacceptable for largem in practical implementations. Rateless codes offer

a low decoding complexity: O(m logm) for LT codes [45], and O(m) for Raptor codes [52].
Difference from [49, 61] on LT-coded Matrix-vector Multiplication. The use of Luby Trans-

form (LT) codes for matrix-vector multiplication has been recently proposed in [49, 61]. However,
these works do not utilize the ‘rateless’ property of LT codes and instead use them in a fixed-rate setting.
For example, the algorithm in [49] generatesme LT-coded rows from anm-row matrix using LT

codes, and it allocates each row to ηq workers for some
1

p ≤ η ≤ 1. Each worker completes the

entire set of row-vector product tasks assigned to them, and the master waits for the fastest q
workers to finish. Partial computations performed by slow workers are discarded. The scheme

proposed in [61] also uses LT codes in this fixed-rate setting and focuses on using the sparsity of

LT codes to reduce the decoding complexity of coded matrix multiplication. Thus, although these

works use LT codes, they are similar in spirit to fixed-rate MDS-coding approaches.

To the best of our knowledge, our work is the first to exploit the rateless nature of LT codes to

perform load-balancing in distributed matrix computations and utilize all the partial work done

by slow workers. We also provide the first theoretical analysis of the latency achieved by this

strategy with ideal load balancing and show that it asymptotically achieves near-perfect latency

and computation cost. Previous works [49, 61] do not present such analyses. Moreover, we present

extensive experimental results on 3 different computing environments: local parallel computing,

distributed computing on Amazon EC2 and serverless computing on Amazon Lambda.

1.3 Main Theoretical and Experimental Results
Besides proposing the rateless coding strategy, one of the main contributions of our work is to

theoretically analyze and compare it with ideal load balancing. In particular, we consider two

performance metrics: 1) latency T , which is the time until b = Ax can be recovered by the master,

and 2) number of computations C , which is the number of row-vector product tasks completed by

the p workers until b can be recovered. We consider a simple delay model where worker i has an
initial delay of Xi after which it spends a constant time τ per row-vector product task.

Comparison with Ideal Load Balancing. In the ideal load balancing strategy, them row-vector

product tasks (which comprise the job of multiplying them × n size A with vector x) are kept in a

central queue at the master and dynamically allocated to idle workers one task at a time. The job

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:5

2.0 2.5 3.0 3.5 4.0
E[T]

1.0

1.2

1.4

1.6

E
[C

]/
m

Uncoded

r=2

(r=1/k=10)

k=9
k=8

k=7

k=6

k=5

α=1.25

α=1.5

α=2.0
Ideal

Avg. Computations v/s Latency

Rep

MDS

LT

Ideal

Fig. 1. The expected latency (E[T]) of the LT-Coded approach smoothly decays on adding redundancy
(increasing α) and approaches the Ideal approach without any increase in computational overhead (E[C]/m).
Previous approaches - Replication (Rep) and MDS coding not only have a higher latency for the same task
but also perform far more redundant computations. The simulation parameters arem = 10000, number of
worker nodes p = 10 and delay model parameters µ = 1.0,τ = 0.001.

is complete whenm tasks are collectively finished by the workers. The rateless coding strategy

differs from this ideal policy in two ways due to which its latency is larger: 1) each worker gets

me/p = αm/p encoded rows and thus a fast worker may run out of rows before the master is able

to recover b = Ax and 2) the workers collectively need to finishm(1 + ϵ) tasks where ϵ is a small

overhead that diminishes asm → ∞. Our main theoretical result stated in the following (informal)

theorem compares the two latencies.

Theorem 1. The latency TLT and computations CLT of our LT coded distributed matrix-vector
multiplication strategy in computing the product of am × n matrix A with a n × 1 vector x satisfy the
following for largem:

Pr(TLT > Tideal) = p exp

(
−µτm(α − 1)

p2

)
(1)

E[TLT] − E[Tideal]
E[Tideal]

= O

(
exp(−τm(α − 1)

p2
)
)

(2)

E[CLT]
E[Cideal]

=
m(1 + ϵ)

m
where ϵ → 0 asm → ∞. (3)

where me = αm (for α > 1) is the number of encoded rows, the initial delay at each worker is
Xi ∼ exp(µ) and τ is the time taken to complete each row-vector product task. Due to the inherent
design of LT codes, the overhead ϵ → 0 asm → ∞.

This results shows that as long as the number of encoded rowsme is sufficiently larger thanm,

despite not performing dynamic task assignment, the rateless coding strategy can seamlessly adapt

to varying initial delays at the workers. Its runtime TLT and CLT asymptotically converge to the

ideal strategy. The exact results are derived in Theorem 3 and Theorem 4.

Comparison with MDS and Replication Strategies. Unlike our rateless coding strategy, MDS-

coded and replication-based strategies give strictly worse latency and cost than the ideal scheme

and the gap does not go to zero. In Section 4 we analyze the expected latency and computations

of these strategies. Fig. 1 shows simulation plots of the latency-computation trade-off of these

strategies clearly demonstrating the superiority of using rateless LT codes.

Experimental Results. Fig. 2 shows the results of implementing our rateless coded strategy for a

real distributed matrix-vector multiplication task on a cluster of 70 EC2 [1] workers deployed using

Kubernetes [22]. The computation involves multiplying a 11760× 9216 matrix A extracted from the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:6 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

0 20 40 60
Index of worker

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
vg

.
T

im
e

(i
n

se
co

n
d

s)

Tideal
TUnc

(a) Uncoded

0 20 40 60
Index of worker

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
vg

.
T

im
e

(i
n

se
co

n
d

s)

Tideal

TRep

(b) 2-Replication

0 20 40 60
Index of worker

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
vg

.
T

im
e

(i
n

se
co

n
d

s)

Tideal
TMDS

(c) MDS

0 20 40 60
Index of worker

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
vg

.
T

im
e

(i
n

se
co

n
d

s)

Tideal
TLT

(d) LT

Fig. 2. Comparison of load balancing across different matrix-vector multiplication approaches. The rows of a
11760 × 9216 matrix A are encoded and distributed among 70 EC2 workers. The height of the bar plot for
each worker indicates the time spent by the worker computing row-vector products either until it finishes its
assigned tasks or is terminated by the master because the final matrix-vector productAx has been successfully
decoded. The dash-dot line indicates the overall latency (time at which matrix-vector product Ax can be
successfully decoded) in each case, and the black dashed line is the latency of ideal load balancing. The LT
coded approach exhibits near-ideal load balancing, and has lower latency than other approaches.

STL-10 dataset [6] with vectors extracted from the same dataset, and is implemented using Dask

[8] a popular framework for parallel computing in Python. The proposed rateless coded strategy

significantly outperforms the uncoded (3 × −speedup) and MDS coded (2 × −speedup) approaches.
The plots in Fig. 2 also show that the variability in individual worker times is significantly lower

for our rateless coded strategy (Fig. 2d) than for other approaches as fast nodes perform more tasks

than slow nodes under our approach leading to much better load balancing. The latency of each

approach is also compared to Tideal, the latency of the ideal load-balancing strategy, approximated

in this case as the minimum time required by the workers to compute 11760 encoded row-vector

products in total. Observe that TLT is closest to Tideal. We also obtain similar improvements with

LT coding in parallel computing using Python’s Multiprocessing library [17] library on a single

machine, and in serverless computing on AWS Lambda [2] as described in Section 6.

1.4 Organization
The rest of the paper is organized as follows. Section 2 presents the system model, performance

criteria and comparison benchmarks. Section 3 describes our rateless fountain coding strategy

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:7

x

x

x

Ae,1

Ae,2

Ae,3

A
Ae

Encode

be,1

be,2

be,3

Decode
to get
b=Ax

Worker 1

Worker 2

Worker 3

Master Master

Fig. 3. The system model for coded distributed matrix vector multiplication with a master-worker framework.
The master generates the encoded matrix Ae by applying a coding scheme to the rows of A. Worker i stores a
submatrix of Ae denoted by Ae,i and sends encoded row-vector products be,i to the master (i = 1, . . . ,p).
Different be,i ’s may have different sizes. The master decodes the encoded row-vector products in be,i ,
i = 1, . . . ,p to recover b = Ax

.

for distributed matrix-vector multiplication. Section 4 shows theoretical analyses and a latency-

cost comparison of rateless coding with other strategies. Section 5 extends these results to the

queueing setting where vectors x1, x2, . . . that need to be multiplied with matrix A arrive at rate λ.
Experimental results are presented in Section 6. All proofs are deferred to the Appendix.

2 PROBLEM FORMULATION
2.1 System Model
Consider the problem of multiplying am × n matrix A with a n × 1 vector x using p worker nodes

and a master node as shown in Fig. 3. The worker nodes can only communicate with the master,

and cannot directly communicate with other workers. The goal is to compute the result b = Ax in

a distributed fashion and mitigate the effect of unpredictable node slowdown or straggling. The

rows of A are encoded using an error correcting code to give theme × n encoded matrix Ae, where

me ≥ m. We denote the amount of redundancy added by the parameter α =me/m. Matrix Ae is

split along its rows to give p submatrices Ae,1, . . . ,Ae,p of equal size such that worker i stores
submatrix Ae,i . To compute the matrix-vector product b = Ax, the vector x is communicated to

the workers such that Worker i is tasked with computing the product Ae,ix.
To complete the assigned task, each worker needs to compute a sequence of row vector products

of the form ae, jxwhere ae, j is the jth row ofAe. The time taken by a worker node to finish computing

one or more row-vector products may be random due to variability in the node speed or variability

in the amount of computation assigned to it. The master node aggregates the computations of all,

or a subset of, the workers into the vector be, which is then decoded to give the final result b = Ax.
If be is not decodable, the master waits until workers compute more row-vector products.

2.2 Performance Criteria
We use the following metrics to compare different distributed matrix-vector multiplication schemes

via theoretical analysis and associated simulations (Section 4), and experiments in parallel, dis-

tributed, and serverless environments (Section 6).

Definition 1 (Latency (T)). The latency T is the time required by the system to complete enough
computations so that b = Ax can be successfully decoded from worker computations aggregated in be.

Definition 2 (Computations (C)). The number of computations C is defined as the total number
of row-vector products ae, jx performed collectively by the worker nodes until b = Ax is decoded.

For any strategy we always have C ≥ m wherem is the number of rows of A or the number of

elements in b.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:8 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

m total row-vector product tasks

Assign task to
next idle worker

Wait for m tasks in total

(a) Ideal

Task replicated at 2 workers

Select fastest worker from each group

(b) Replication

m/k tasks at each worker

Select fastest k workers overall

(c) MDS Coded

⍺m tasks in total

Wait for m(1+𝜖) tasks across all workers

(d) Rateless Coded

Fig. 4. Each square represents one row-vector product task out of a total ofm tasks to be completed by the p
workers. In the ideal scheme we have a central queue ofm tasks and each worker is assigned a new task as
soon as it becomes idle until allm tasks are completed. In the replication scheme, the master waits for the
fastest worker for each sub-matrix. With MDS coding, the master needs to wait for k out of p workers, but
each worker has to completem/k tasks. The rateless coded strategy requires waiting for onlym(1 + ϵ) tasks
across all workers.

2.3 Benchmarks for Comparison
We compare the performance of the proposed rateless coded strategy with three benchmarks: ideal

load balancing, r -replication, and the (p,k) MDS-coded strategy, which are described formally

below. Fig. 4 illustrates the differences in the way row-vector product tasks are assigned to and

collected from workers in each strategy.

Ideal Load Balancing. The multiplication of them × n matrix A with the n × 1 vector x can

be treated as a job withm tasks, where each task corresponding to one row-vector product. In

the ideal load balancing strategy, the master node maintains a central queue of thesem tasks. It

dynamically assigns one task to each of the p workers as soon as a worker finishes its previous

task. The matrix-vector multiplication is complete when exactlym tasks are collectively finished

by the workers. This strategy seamlessly adapts to varying worker speeds without performing

any redundant computation (C = m); hence it gives the optimal latency-computation trade-off.

This strategy may be impractical due to the constant communication between the master and the

worker nodes. Nevertheless, it serves as a good theoretical benchmark for comparison with the

rateless, replication and MDS strategies.

The r−Replication Strategy. A simple distributed multiplication strategy is to split A along

its rows into p/r submatrices A1, . . . ,Ap/r , with rm/p rows each (assume that p/r dividesm) and

multiply each submatrix with x in parallel on r distinct worker nodes. The master collects the

results from the fastest of the r nodes that have been assigned the task of computing the product

Aix for all i . The computed products are aggregated into them×1 vector b. Setting r = 1 corresponds
to the naive or uncoded strategy where A is split into p sub-matrices and each worker node computes
the corresponding submatrix-vector product. While this approach performs the least number of

computations it is susceptible to straggling nodes or node failures. Increasing the number of

replicas provides greater straggler tolerance at the cost of redundant computations. Real distributed

computing frameworks like MapReduce [11] and Spark [65] often use r = 2 i.e. each computation

is assigned to 2 different worker nodes for added reliability and straggler tolerance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:9

a1	 a2	 a3	

Original Rows

Encoded rows

a1+a2 a1 a2+a3 a1+a3

(a) Encoding Graph

? ? ?

b1+b2 b1 b2+b3 b1+b3

b1 ? ?

b2 b1 b2+b3 b3

Decode degree 1
encoded symbols

Subtract decoded symbols
from encoded products

(b) Decoding Graph

Fig. 5. (a) Bipartite graph representation of the encoding of the rows a1, a2, . . . am of matrix A. Each encoded
row is the sum of d rows of A chosen uniformly at random, where d is drawn from the Robust Soliton degree
distribution given by (4). (b) In each step of the iterative decoding process, a single degree one encoded
symbol is decoded directly, and is subtracted from all sums in which it participates.

The (p,k) MDS Coded Strategy. Recent works like [41, 44] have applied MDS coding to over-

come the problem of stragglers in the uncoded strategy. The strategy involves pre-multiplying A at

the central node with a suitable encoding matrix F denoting the MDS codes. For encoding using

a (p,k) MDS code, the matrix A is split along its rows into k matrices A1, . . . ,Ak , each having

m/k rows. The MDS code adds p − k redundant matrices Ak+1, . . . ,Ap which are independent

linear combinations of the matrices A1, . . . ,Ak . Worker i computes the product Aix. Thus the
system is robust to p −k stragglers. However this strategy adds a significant computation overhead.

When none of the nodes are slow, the system performsmp/k row-vector products (as opposed to

m row-vector products in the uncoded case).

3 PROPOSED RATELESS CODED STRATEGY
We describe how rateless codes, specifically LT codes [45], can be applied to perform coded matrix

vector multiplication, and then propose a distributed implementation of this scheme for straggler

mitigation in computing the matrix-vector product b = Ax using the master-worker framework of

Section 2.1.

3.1 LT-Coded Matrix-vector Multiplication
Luby Transform (LT) codes proposed in [45] are a class of erasure codes that can be used to generate

a limitless number of encoded symbols from a finite set of source symbols. We apply LT codes

to matrix-vector multiplication by treating them rows of the matrix A as source symbols. Each

encoded symbol is the sum of d source symbols chosen uniformly at random from the matrix

rows. Thus if Sd ⊆ {1, 2, . . .m} is the set of d row indices, the corresponding encoded row is

ae =
∑

i ∈Sd ai .
The number of original rows in each encoded row, or the degree d , is chosen according to the

Robust Soliton degree distribution

ρ(d) =

R
dm +

1

m for d = 1

R
dm +

1

m(m−1) for d = 2, . . . ,m/R − 1

R ln(R/δ)
m + 1

m(m−1) for d =m/R
1

m(m−1) for d =m/R + 1, . . . ,m

(4)

where R = c log(m/δ)
√
m for some c > 0 and δ ∈ [0, 1], with c and δ being design parameters. Some

guidelines for choosing c and δ can be found in [46]. The probability of choosing d = d0 is equal to

ρ(d0)/
∑m

i=1
ρ(i). Once the degree d is chosen, encoding is performed by choosing d source symbols

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:10 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

uniformly at random (this determines Sd) and adding them to generate an encoded symbol. The

encoding process is illustrated in Fig. 5a.

Once the rows of the encoded matrix Ae are generated, we can compute the encoded matrix

vector product be = Aex. To decode the desired matrix vector product b = Ax from a subset ofM ′

symbols of be we use the the iterative peeling decoder described in [45, 52, 53]. If b = [b1,b2, . . .bm],
the decoder may receive symbols b1 +b2 +b3, b2 +b4, b3, b4, and so on since each row of Ae is a sum

of some rows of A. Decoding is performed in an iterative fashion. In each iteration, the decoder

finds a degree one encoded symbol, covers the corresponding source symbol, and subtracts the

symbol from all other encoded symbols connected to that source symbols. This decoding process is

illustrated in Fig. 5b.

Since the encoding uses a random bipartite graph, the number of symbols required to decode the

m source symbols successfully is a random variableM ′
which we call the decoding threshold,

Definition 3 (Decoding Threshold (M ′
)). The decoding thresholdM ′ is the number of encoded

symbols required to decode a set ofm source symbols using the rateless coding strategy.

For the Robust Soliton distribution, [45] gives the following high probability bound onM ′
.

Lemma 1 (Theorems 12 and 17 in [45]). The original set ofm source symbols can be recovered
from a set of anyM ′ =m + O(

√
m ln

2(m/δ)) with probability at least 1 − δ .

Remark 1. While A can be encoded using any random linear code to ensure successful decoding

of b fromm symbols of be with a high probability, the key benefit of using LT codes is the low

decoding complexity owing to the careful design of the Robust Soliton distribution. The complexity

of LT decoding is O(m lnm) while for any other random linear code it would be O(m3) which is

unacceptable for largem. (see Appendix A)

3.2 Distributed Implementation
Them × n matrix A is encoded to generate anme × n encoded matrix Ae whereme = αm. Each

row of Ae is the sum of a random subset of rows of A as described in Section 3.1. The knowledge

of the mapping between the rows of A and the rows of Ae is crucial for successful decoding as

illustrated in Figures 5a and 5b. Hence this mapping is stored at the master. The encoding step can

be treated as a pre-processing step in that it is only performed initially.

The αm rows of the encoded matrix are distributed equally among the p worker nodes as

illustrated in Fig. 3. To multiply A with a vector x, the master communicates x to the workers. Each

worker multiplies x with each row of Ae stored in its memory and returns the product (a scalar) to

the master. The master collects row-vector products of the form ae, jx (elements of be) from the

workers until it has enough elements to be able to recover b. If a worker node completes all the

αm/p row-vector products assigned to it before the master is able to decode b, it will remain idle,

while the master collects more row-vector products from other workers.

Once the master has collected a sufficient number of coded row-vector products from the workers

it can recover the desired matrix vector product b = Ax from the subset of the elements of be = Aex
that it has collected using the iterative peeling decoder. Once the master decodes all elements of the

product vector b = Ax, it sends a done signal to all workers nodes to stop their local computation.

The following modifications can make the current implementation even more efficient in real

systems:

(1) Blockwise Communication: To truly monitor the partial work done by each worker the

master needs to receive each encoded row-vector product ae, jx from the workers. However this

imposes a large communication overhead which may increase latency in a slow network. To prevent

this, in our distributed computing experiments, we communicate submatrix-vector products Ae
j
ix

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:11

where Ae
j
i is the j

th
part of the encoded submatrix Aei stored at worker i , and each part corresponds

to approximately 10% of the total rows of the submatrix. Note that if A is very large then it will not

be feasible for worker i to read the entire submatrix Aei from memory at once. As a result Aeix
needs to be computed in parts for any coding scheme.

(2) Using Raptor Codes: Despite their ease of implementation and fast decoding, LT codes [45]

are sub-optimal in practice due to the overhead ofM ′ −m extra symbols required to decode the

originalm source symbols. In our experiments we observe that for a matrix A withm = 11760 rows,

we need to wait for 12500 encoded row-vector products to decode b = Ax with 99% probability.

Advanced rateless codes like Raptor Codes [52] can decodem source symbols fromm(1+ϵ) symbols

for any constant ϵ even for finite values ofm. Since Raptor Codes are the rateless codes used in

practical wireless standards [53] we expect them to be used in practical implementations of our

coded distributed matrix vector multiplication strategy to improve efficiency.

(3) Using Systematic Rateless Codes: We can entirely avoid decoding (in the absence of signifi-

cant straggling) by using Systematic LT/Raptor Codes [52] where them source rows a1, a2, . . . am
form a subset of the encoded rows in Ae. The overall scheme can be designed so that each worker

first computes the row-vector products corresponding to the systematic symbols a1, a2, . . . am and

then computes other encoded products (in the event of node slowdown). This would preclude the

need for decoding if there is no/little straggling thereby reducing the overall latency.

4 PERFORMANCE ANALYSIS
In this section we theoretically analyze the performance of LT coding and the three benchmark

strategies — ideal load balancing, (p,k)-MDS, and r−Replication — in terms of latency (Definition 1)

and computations (Definition 2). Our results are summarized in Table 1 and the proofs of the

theoretical results are contained in Appendix C. We begin by describing our delay model.

4.1 Delay Model
We assume that worker i requires time Yi to perform Bi row-vector product computations where

Yi = Xi + τBi , for all i = 1, . . . ,p (5)

Thus, the delay involves the sum of two components: 1) a random variable Xi that includes initial

setup time at the worker before it actually begins performing the computations, and 2) a shift that

is linear in the number of computations performed at the worker. This delay model is motivated

by the observations of [10] where it is noted that the variability in latency arises largely from

delays due to background tasks running at worker nodes and that once a request actually begins

execution, the variability is considerably lower. When Xi is exponentially distributed with rate µ,
the time taken by worker i to perform b computations is distributed as

Pr(Yi ≤ t) = 1 − exp(−µ(t − τb)). (6)

While this follows the shifted exponential delay models used in [41], [14] and [15], the key difference

is that the shift is parameterized by the number of computations at each worker. We believe this is

a more realistic model as it captures the effect of increasing the amount of computations on the

delay – if a worker is assigned more computations, there is larger delay. Moreover, unlike previous

works, the decay rate µ of the exponential part of the delay does not change with the number of

computations performed by that worker. Fig. 6 illustrates our delay model.

Also, in our analysis, we use Xk :p to denote the k th order statistic i.e. the k th smallest of p random

variablesX1, . . . ,Xp and we defineUl = Xl+1:p−Xl :p , l = 1, . . . ,p−1 as the difference of consecutive

order statistics. We also use the notation Hj =
∑j
v=1

1/v , for the jth Harmonic number.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:12 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

X1Worker 1

Xp

Worker 2

Worker p

X2

T0

Bp𝜏

B1𝜏
Time

Fig. 6. Worker i has a random initial delay Xi , after which it completes row-vector product tasks (denoted
by the small rectangles), taking time τ per task. The latency T is the time until enough tasks have been
completed for the product b = Ax to be recovered.

Strategy Latency # of Comp Complexity
Ideal

τm
p +

1

µ m O(m)
LT (large α) τm(1+ϵ)

p + 1

µ m(1 + ϵ) O(m logm)
r -Replication τ rm

p +
1

r µ log
p
r rm O(m)

(p,k)MDS
τm
k +

1

µ log
p

p−k mp/k O(mk + k3)
Table 1. Comparison of different strategies to multiply am × n matrix A with vector x using p worker nodes.
The latency values are approximate, and number of computations values are for the case when none of the
nodes slowdown.

4.2 Ideal Load Balancing Strategy
Recall that in the ideal load balancing strategy, we have a central queue at the master and tasks

being allocated to a worker as soon as it becomes idle (either immediately after the initial delay

or after it completes the current task) as illustrated in Fig. 6. Thus it computes exactly C = m
row-vector products in total when anm × n matrix is multiplied with n × 1 vector and performs

zero redundant computations. Theorem 2 below proves the optimality of ideal load balancing in

terms of latency and Lemma 2 and Corollary 1 give bounds on the expected latency.

Theorem 2 (Optimality of Ideal Load Balancing). For any distributed matrix-vector multi-
plication scheme, for the delay model of (5), the latency T is no less than the latency of ideal load
balancing, denoted by Tideal. In other words, for any scheme,

T ≥ Tideal. (7)

Lemma 2 (Latency of Ideal Load Balancing). The latency for the ideal load balancing strategy
with p workers has the following upper and lower bounds.

τm

p
+ X1:p ≤ E[Tideal] ≤

τm

p
+

1

p

p∑
i=1

Xi + τ . (8)

Corollary 1. The expected latency for the ideal strategy with Xi ∼ exp(µ) for all workers i =
1, . . . ,p, has the following upper and lower bounds.

τm

p
+

1

pµ
≤ E[Tideal] ≤

τm

p
+

1

µ
+ τ . (9)

Note that the ideal load balancing scheme is not exactly realizable in practice. Approaches like

work stealing [13, 26] can potentially approximate this strategy by physically moving tasks from

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:13

busy workers to idle workers. However implementing such approaches may not be feasible in

all settings, for e.g. when the communication latency between workers is too large, or the data

is restricted to lie on a particular worker due to privacy concerns. In this work we aim to show

that it is possible to algorithmically achieve near-ideal latency performance for matrix-vector

multiplication by using the rateless coded computing strategy described in Section 3 which does

not require physically moving data between workers.

4.3 Rateless Coded Strategy
Wemake the following assumption for analyzing the latency of the proposed rateless coded strategy.

Assumption 1. The decoding thresholdM ′ (Definition 3) of the LT coded strategy satisfiesM ′ ≃m.

We believe the above assumption is reasonable because the problem of distributed matrix vector

multiplication arises only when m (the number of rows of A) is large and the high probability

bound of Lemma 1 can be used to show that E[M ′] =m(1 + ϵ), where ϵ → 0 asm → ∞. Note that

this assumption is only to facilitate a better theoretical comparison between the LT coded and ideal

strategies. In our experiments in Section 6 we choose a value ofM ′
according to Lemma 1 that is

slightly larger thanm and ensures that the original matrix-vector product b = Ax can be recovered

with high (> 99%) probability.
Remark 2. The Rateless coded computing strategy described in Section 3 is identical to the

ideal load balancing strategy described above for large values ofm and infinite redundancy i.e.

α =me/m → ∞. This is because both the rateless coded strategy and ideal load balancing strategies

are based on collecting a pre-determined number of computations across all workers by greedily

picking the next available task at each worker.

However in practice, we cannot set α =me/m → ∞ owing to limitations in computation power

and memory at workers. Instead the amount of redundancy in the LT coded strategy is fixed initially

by choosing the number of encoded rowsme = αm/p for some α > 1. Computations are divided

equally among the p workers and thus each worker can perform a maximum of αm/p computations.

Theorem 3 (Rateless v/s Ideal). The latency of the proposed rateless coded strategy,TLT decreases
on increasing α and approaches the latency of the ideal strategy Tideal. This is quantified by the
following probabilistic upper bound:

Pr(TLT > Tideal) ≤
p∑
j=2

Pr

(j−1∑
l=1

Ul ≥
τm(α − 1)

p − 1

)
, (10)

whereUl = Xl+1:p − Xl :p .

Remark 3. The effect of straggling is captured through the term Ul = Xl+1:p − Xl :p in the above

expression. High straggling, implies a high variability in the initial worker delays Xi due to which

Ul is large and the probability of TLT > Tideal is also higher.

Thus as α (and consequentlyme) increases,TLT is equal toTideal with a high probability. A cleaner

result is obtained for the case when Xi ∼ exp(µ), as given below.

Corollary 2. If Xi ∼ exp(µ) for all workers i = 1, . . . ,p then

Pr(TLT > Tideal) ≤ p exp

(
−µτm(α − 1)

p2

)
. (11)

We also derive an upper bound on the difference between the expected latencies of the rateless

and the ideal strategies. We only state the result for Xi ∼ exp(µ) over here and defer the (more

complicated) general result and its proof to Appendix C.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:14 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

Theorem 4 (Latency of the Rateless Coded strategy). If Xi ∼ exp(µ) for all workers i =
1, . . . ,p then

E[TLT] − E[Tideal] ≤
(
ταmp2 +

p2

µ
+ τp

)
exp

(
−µτm(α − 1)

p2

)
. (12)

The second term decays exponentially and dominates the first term, which is a polynomial. The

rate of decay increases as the amount of redundancy α increases. In other words, E[TLT] approaches
E[Tideal] exponentially fast as redundancy is increased.

Remark 4. Another important advantage of the rateless coded strategy is that the number

of computations performed by the workers, CLT, is always equal to M ′
(the decoding threshold,

defined in Definition 3). and does not increase on increasing redundancy (increasing α) unlike
for the MDS and Replication strategies. Moreover since E[M ′] =m(1 + ϵ) and ϵ → 0 asm → ∞,

E[C
LT] asymptotically approaches the minimum number of computations (m) required to recover a

m−dimensional matrix-vector product.

In the following subsections (and in Appendix E) we show that the latency of the MDS and

Replication strategies is much larger than that of ideal load balancing and does not converge to

Tideal on increasing redundancy. We also show that the number of computations performed by both

replication and MDS coding in computing b = Ax is much larger thanm.

4.4 MDS Coded Strategy
Recall that for the (p,k)MDS coded strategy, the encoded submatrices Ae1

,. . .,Aep are generated

by applying a (p,k)MDS Code to submatrices A1, . . . ,Ak . The master then waits for the fastest k
workers to complete all the tasks assigned to them.

Lemma 3 (Latency of the MDS Coded Strategy). The latency of the (p,k) MDS-coded strategy,
TMDS, is given by

TMDS = Xk :p + τ
m

k
. (13)

Corollary 3. The expected latency of the (p,k) MDS-coded strategies with Xi ∼ exp(µ) for all
workers i = 1, . . . ,p is

E[TMDS] =
τm

k
+

1

µ
(Hp − Hp−k) ≃

τm

k
+

1

µ
log

p

p − k
. (14)

Observe that in (14) above, adding redundancy (reducing k) leads to an increase in the first term

(more computation at each node) and decrease in the second term (less delay due to stragglers).

Thus, straggler mitigation comes at the cost of additional computation at the workers which might

even lead to an increase in latency. This is in contrast to Theorems 3 and 4 which indicates that the

expected latency of the rateless coded strategy always decreases on adding redundancy (increasing

α). Moreover, the presence of the log-factor in the second term causesTMDS to always be larger than

Tideal since there is no log-factor in the term containing 1/µ in the upper bound onTideal (Lemma 2).

We now analyze the number of computations performed by the (p,k)MDS coding. The following

result shows that with a high probability, the number of computations performed by the MDS

Coded strategy is very close to the worst-case number of computations (mp/k) i.e. when all the

workers perform all the tasks assigned to them in time TMDS.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:15

Lemma 4 (Tail of Computations for MDS Coding). The tail of the number of computations of
the MDS coded strategy, CMDS, with p workers and the delay model of (5) is bounded as

Pr(CMDS ≥
mp

k
−C0) ≥ 1 − Pr

(p−1∑
l=k

Ul ≥
τC0

p − k
− τ

)
. (15)

When Xi ∼ exp(µ) ∀i = 1, . . . ,p this reduces to

Pr(CMDS ≥
mp

k
−C0) ≥ 1 − exp

(
−µ

(
τC0

(p − k)2 − τ

p − k

))
. (16)

Even for a small value of C0 in the above expression, Pr(CMDS ≥ mp
k − C0) can be very large.

Thus the overhead CMDS −m is quite large (we only needm computations in the uncoded case to

reconstruct them-dimensional matrix-vector product).

4.5 Replication Strategy
The r − Replication strategy involves replicating each of the p/r submatrices A1, . . . ,Ap/r at r
distinct workers and selecting the result of the fastest worker for each submatrix.

Lemma 5 (Latency of the Replication Strategy). The latency of the r−Replication strategy,
Trep is given by

Trep = max

1≤i≤p/r
min

1≤j≤r
X(i−1)r+j +

τmr

p
. (17)

Corollary 4. The expected latency of the r−Replication with Xi ∼ exp(µ) for all workers i =
1, . . . ,p is

E[Trep] =
τmr

p
+

1

µ
Hp/r ≃

τmr

p
+

1

µ
log

p

r
. (18)

Once again we see that adding redundancy (increasing r) leads to an increase in the first term

(more computation at each node) and decrease in the second term (less delay due to stragglers).

Thus the extra computation at the workers may lead to an increase in latency even in this case.

Moreover the log-factor in the second term causes TRep to always be larger than Tideal, just like
TMDS.

Lemma 6 (Tail of Computations for Replication). The tail of the number of computations of
the replication strategy, Crep, with p workers and the delay model of (5) is bounded as

Pr(Crep ≥ mr −C0) ≥ 1 − Pr

©«
p/r∑
i=1

r−1∑
j=1

(V i
j+1:r −V i

j :r) ≥
τC0

r − 1

− τp

r

ª®¬ , (19)

where V i
j = X(i−1)r+j and V i

j :r are the corresponding order statistics. When Xi ∼ exp(µ) ∀i = 1, . . . ,p

this reduces to

Pr(Crep ≥ mr −C0) ≥ 1 −
p/r−1∑
i=0

1

i!
exp(−µθ)(µθ)i , (20)

where θ =
τC0

(r − 1)2 − τp

r (r − 1) . (21)

.

Thus with a high probability, the number of computations performed is very close to the worst-

case number (mr) i.e. when all the workers perform all the tasks assigned to them in time Trep.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:16 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
T
>
t)

Uncoded (r = 1)

Rep (r = 2)

MDS (k = 8)

LT (α = 2.0)

Ideal

(a) Latency Tail

10000 12000 14000 16000 18000 20000
c

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
C
>
c)

Uncoded (r = 1)

Rep (r = 2)

MDS (k = 8)

LT (α = 2.0)

Ideal

(b) Computation Tail

0.1 0.2 0.3 0.4 0.5
λ

0

10

20

30

40

50

60

E
[Z

]

Uncoded (r = 1)

Rep (r = 2)

MDS (k = 8)

LT (α = 2.0)

Ideal

(c) Mean Response Time

Fig. 7. The tail probability of the latency is the highest for the replication schemes. MDS codes perform
better in terms of latency but they perform a large number of redundant computations. The latency tail of LT
codes is the minimum among all the schemes. Moreover the LT coded schemes performs significantly fewer
redundant computations than MDS Codes or replication. When there are multiple jobs in the queue, the
mean response time is least for the LT Coded setting under all values of arrival rate λ. All simulations are
performed for a distributed matrix-vector multiplication task withm = 10000 matrix rows, p = 10 worker
nodes, and delay model parameters µ = 1.0,τ = 0.001.

Remark 5. While the benefits of using partial work from all workers can be obtained by using

any random linear code on the rows of A, the key strength of LT codes is their low O(m lnm)
decoding complexity. Using an (me ,m)MDS code on the rows of A has O(m3) decoding complexity

which is unacceptable for largem.

We simulate theMDS, replication, and LT-coded schemes under our delaymodel (5) for distributed

matrix-vector multiplication with m = 10000 matrix rows, p = 10 workers and delay model

parameters µ = 1.0,τ = 0.001 (Fig. 7). We limit the amount of redundancy to α =me/m ≤ 2.0 since

this is the amount of redundancy in the basic 2-replication scheme. Observe that the LT coded

strategy (α = 2.0) clearly outperformsMDS coding (withk = 8) in that it not only exhibits near-ideal

latency (Fig. 7a) but also performs fewer total computations (Fig. 7b) than MDS coding. Changing

k does not improve the performance of MDS coding much. Specifically, increasing redundancy

(reducing k) in MDS coding leads to higher latency after a point, as illustrated in Fig. 1 (and as

expected from Lemma 3). On the other hand, the latency of LT coding converges to that of the

Ideal scheme on increasing α , without any increase in computations. Additional simulations for

Xi ∼ Pareto(1, 3) given in Fig. 11 in Appendix F also show similar improvements with LT coding.

5 QUEUEING ANALYSIS
In most real applications of matrix-vector multiplication in machine learning and data analytics,

the matrix representing the model is fixed, while vectors representing the data that need to be

multiplied with this matrix arrive as a real-time stream. Prior works on coded computing like

[14, 41] do not consider the effect of multiple incoming jobs which could lead to queueing delays

at the master, in addition to straggling at workers. We analyze the latency with queueing for the

proposed LT coded strategy as well as the MDS coded and Replication strategies. The LT coding

results are presented below, while MDS and replication results are given in Appendix D.

Suppose that vectors x1, x2, . . . arrive according to a Poisson process with rate λ and are broadcast
by the master to the p workers. Worker i multiplies each vector it receives with the sub-matrix Aei
stored in its memory (where Ae is generated according to the corresponding encoding strategy)

and communicates the corresponding elements of be = Aex to the master. Once the master has

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:17

enough elements of be to successfully decode b, the remaining tasks at all the workers are cancelled.

Then the mean response time E [Z] (waiting time in queue plus service time) of a matrix-vector

multiplication job is as follows.

Theorem 5 (Latency of LT Coding withQueueing of Jobs). For largeme i.e. α =me/m → ∞,
the mean response time of the LT coded scheme ZLT when vectors x are arriving at rate λ according to
a Poisson process is

E[ZLT] = E[TLT] +
λE[(TLT)2]

2(1 − λE[TLT])
, (22)

where E[TLT] is bounded as described in Lemma 2 and bounds on E[(TLT)2] are derived in Appendix D.

The proof is given in Appendix D. The key idea used in the proof is that for large α this system

becomes equivalent to an M/G/1 queue with service time TLT. Then we simply apply the Pollaczek-

Khinchine formula [25] for the mean response time of M/G/1 queues. When α is small the analysis

becomes very difficult – it is a generalization of the fork-join queueing system, whose response

time is notoriously hard to analyze [37, 47, 57]. This is an open question for future research.

For the MDS and replication strategies, we reduce the queueing system to a fork-join queueing

system with redundancy, and then use previous results [32, 35] to obtain bounds on the mean

response time. The results are presented in Appendix D.

Remark 6 (Insights from MDS and Replication Queueing Analyses). In the MDS and repli-

cation strategies, increasing redundancy (lower k and higher r) reduces the number of workers that

need to complete their tasks. However, the added redundancy increases the number of computations

that each worker needs to perform due to which the waiting time for incoming jobs at the master

increases, thus increasing the overall mean response time (ZMDS and Zrep respectively). On the other

hand for the rateless coded (and ideal) strategies we just need to wait forM ′
(orm) computations

across all workers for each job. Moreover, for LT coding, adding redundancy (increasingme) always

reduces the service time for each job (Theorem 3) and thus the overall queueing delay ZLT always

decreases on adding redundancy.

Fig. 7c shows simulation results of mean response time Z under our delay model withX ∼ exp(1)
and τ = 0.001 for a distributed matrix-vector multiplication task withm = 10000 matrix rows using

p = 10 worker nodes. The mean response time is averaged over 10 trials with 100 jobs in each trial.

Jobs arrive according to a Poisson process with rate λ ∈ (0.1, 0.6). The results illustrate that the
benefits of our LT coded strategy over previous approaches are further enhanced when there is

queueing of jobs.

6 EXPERIMENTAL RESULTS
We demonstrate the effectiveness of rateless codes in speeding up distributed matrix-vector multi-

plication in parallel, distributed and serverless enviornments. No artificial delays/background tasks

were added to induce straggling in any experiments.

6.1 Parallel Computing Experiments
We consider multiplication of a 10000 × 10000 matrix A of random integers with a 10000 × 1 vector

x of random integers on an iMac Desktop with 8 GB of RAM and a 3.6 GHz Intel i7 Processor.

This computation is parallelized over 100 processes using Python’s Multiprocessing Library [17].

We compare the uncoded, 2-replication, MDS coding (k = 80, 50) and LT coding (α = 1.25, 2.0)
approaches. For fair comparison, we consider instances of MDS and LT codes that have the same

number of encoded rows me . The encoded matrix Ae was divided equally among the p = 100

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:18 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

Uncoded 2-Rep MDS LT
Computing Strategy

0

5

10

15

20

T
im

e
(i

n
m

ill
is

ec
on

d
s)

r = 1

r = 2

k = 80

k = 50

α = 1.25

α = 2.0

(a) Average Latency (parallel)

Uncoded 2-Rep MDS LT
Computing Strategy

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
(i

n
se

co
n

d
s)

r = 1

r = 2

k = 56

k = 35

α = 1.25

α = 2.0

(b) Average Latency (distributed)

Uncoded MDS LT
Computing Strategy

0

20

40

60

80

100

T
im

e
(i

n
se

co
n

d
s)

r = 1

k = 80

α = 1.25

(c) Average Latency (serverless)

Uncoded 2-Rep MDS LT
Computing Strategy

0

5000

10000

15000

20000

25000

30000

R
ow

-V
ec

to
r

P
ro

d
u

ct
s

r = 1

r = 2

k = 80

k = 50

α = 1.25

α = 2.0

(d) Average Comp. (parallel)

Uncoded 2-Rep MDS LT
Computing Strategy

0

10000

20000

30000

R
ow

-V
ec

to
r

P
ro

d
u

ct
s

r = 1

r = 2

k = 56

k = 35

α = 1.25

α = 2.0

(e) Average Comp. (distributed)

Uncoded MDS LT
Computing Strategy

0

50000

100000

150000

200000

R
ow

-V
ec

to
r

P
ro

d
u

ct
s

r = 1

k = 80

α = 1.25

(f) Average Comp. (serverless)

Fig. 8. Experiments on coded distributed matrix vector multiplication in parallel (Python Multiprocessing
[17]), distributed (AWS EC2 [1]) and serverless (AWS Lambda [2]) settings show that the LT Coded strategy
has lower average latency than all other approaches (1.2 × − to 3 × − improvement across scenarios) and
performs fewer total computations than Replication or MDS Coding. Each error bar corresponds to 1 standard
deviation.

processes and the experiment was repeated 10 times with a different random x each time. The

processes multiply the rows of Ae with x in parallel and we record the average latency (time

required to collect enough row-vector products for successful decoding) and total computations.

Results of average latency (Fig. 8a) show that LT coded and MDS coded approaches are clearly

faster (about at least 1.2 × −) than the Uncoded and 2-Replication approaches while Fig. 8d shows

that the LT coded approaches also perform fewer total computations than the MDS or 2-replication

strategies thus leading to more efficient resource utilization. Note that while MDS coding with

k = 80 has latency comparable to that of LT coding (both for α = 1.25 and α = 2.0), both latency and
total computations with MDS coding increase on increasing k to 50 due to the higher computational

load at each node (as discussed in Section 4). Recall that k corresponds to the number of "fast"

workers in the system. In most real systems the number of "fast" workers is transient and thus,

unpredictable. Our experiments show that MDS coding is highly sensitive to the choice of k with

incorrect choices leading to higher latency. LT Coding on the other hand is not only fast, but is

also insensitive to the amount of redundancy (α) in that, the system designer can choose α to be as

large as permitted by memory constraints without a risk of loss in performance (unlike MDS).

6.2 Distributed Computing Experiments
We created a cluster of 70 t2.small workers on AWS EC2 [1] using Kubernetes [22]. Each worker

was allocated 1 GB of memory. Computations were performed using Dask [8], a popular framwork

for parallel computing in Python. A 11760 × 9216 matrix A was extracted from the STL-10 [6]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:19

dataset. Once again we compared the uncoded, 2-replication, MDS coding (k = 56, 35) and LT

coding (α = 1.25, 2.0) approaches. The encoded matrix Ae is divided equally among the p = 70

workers and multiplied with 5 different vectors, each of length 9216, also extracted from the STL-10

[6] dataset. Fig. 8b shows the average latency of the different approaches. Both LT coded approaches

are almost 2 × − faster than the MDS coded appraoches in this setting and almost 3 × − faster

than the uncoded approaches. Each worker computes approximately 14 row-vector products at

a time before communicating the results to the master. This corresponds to approximately 10%

of the data stored in the workers memory thus balancing excessive communication (if results

were communicated after every row-vector product computation) and memory limitations (if

submatrices at the workers are too large to be communicated as a single chunk). Fig. 8e shows

that the LT coded strategies also perform fewer total computations than MDS or 2-replication.

Additional experiments in Appendix F show that LT coding also demonstrates greater resilience to

node failures than Replication or MDS coding in this setting.

6.3 Serverless Computing Experiments
We also performed experiments in the serverless computing environment AWS Lambda [2]. Server-

less computing eschews the master-worker set-up in favor of only workers (resources) which read

data from storage, perform computations on the data, and write it back to storage. Any further

computations (like decoding) can be performed as and when desired by re-reading data from storage.

As described in [23], there is typically significant variability (straggling) across workers in this

setting and therefore we expect to obtain speedups through coding. We use Numpywren [51] for

performing linear algebra on AWS Lambda. We multiply a 100000 × 10000 matrix A (approximately

10 × − larger than A in the previous two experiments) with a 10000 × 1 vector x in this setting.

We compare the uncoded, MDS-Coded (k = 80) and LT-coded (α = 2.0) approaches. As per the
requirements of [51], the encoding is performed over blocks of 10 rows instead of individual rows.

Our results, averaged over 5 trials, are presented in Figures 8c and 8f. They clearly show that the LT

coded approach is faster than previous approaches, and performs fewer computations than MDS

coding. We note that the experimental nature of current serverless computing frameworks makes

it challenging to perform fine-grained logging of task times and to use larger encoded matrices

(larger α). Thus we expect even better results once the limitations of current frameworks have

been resolved.

7 CONCLUDING REMARKS
We propose an erasure coding strategy based on rateless fountain codes to speed up distributed

matrix-vector multiplication in the presence of slow nodes (stragglers). For a matrix withm rows,

our strategy requires the nodes to collectively finish slightly more thanm row-vector products.

Thus, it seamlessly adapts to varying node speeds and achieves near-perfect load balancing. More-

over, it has a small overhead of redundant computations (asymptotically zero), and low decoding

complexity. Theoretical analysis and experiments show that our approach strikes a better latency-

computation trade-off than existing uncoded, replication and maximum-distance-separable (MDS)

coding approaches.

Going forward, we plan to extend our approach to other linear computations like sparse matrix-

vector multiplication (SpMV), Matrix-Matrix multiplication, and Fourier Transforms. Previous

work [61] has used fixed-rate variants of LT codes to speed-up SpMV; we expect even better

performance by exploiting the rateless properties of fountain codes and utilizing partial work as

described in this paper. Since erasure codes are inherently linear, extending coding techniques to

speed-up distributed non-linear computations such as neural network inference is difficult. Recently

[38, 39] propose the use of neural networks to learn the encoder and decoder to handle non-linear

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:20 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

computations. Coming up with a principled rateless coding approach in this setting remains an

open problem.

8 ACKNOWLEDGEMENTS
The authors are grateful to Pulkit Grover, Sanghamitra Dutta, Yaoqing Yang, Haewon Jeong, Rashmi

Vinayak, and Jack Kosaian for helpful discussions. Author Joshi also sincerely thanks Emina Soljanin,

Alyson Fox, Fiona Knoll and Nadia Kazemi for fruitful initial discussions during the Women in Data

Science and Mathematics (WiSDM) Research Collaboration Workshop held at Brown University in

July 2017. This project was supported in part by the CMU Dean’s fellowship, Qualcomm Innovation

Fellowship, NSF CCF grant no. 1850029 and an Amazon Credits for Research Grant.

REFERENCES
[1] Amazon. 2006. Amazon Web Services EC2. https://aws.amazon.com/ec2/.

[2] Amazon. 2014. Amazon Web Services Lambda. https://aws.amazon.com/lambda/.

[3] William F Ames. 2014. Numerical Methods for Partial Differential Equations. Academic Press.

[4] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013. Effective Straggler Mitigation: Attack of

the Clones.. In USENIX Symposium on Networked Systems Design and Implementation (NSDI), Vol. 13. 185–198.
[5] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward Harris.

2010. Reining in the Outliers in Map-Reduce Clusters using Mantri.. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Vol. 10. 24.

[6] Adam Coates, Andrew Ng, and Honglak Lee. 2011. An analysis of single-layer networks in unsupervised feature

learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics. 215–223.
[7] William Dally. 2015. High-performance Hardware for Machine Learning. NIPS Tutorial (2015).
[8] Dask Development Team. 2016. Dask: Library for dynamic task scheduling. https://dask.org

[9] H. A. David and H. N. Nagaraja. 2003. Order statistics. John Wiley, Hoboken, N.J.

[10] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80.

[11] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51,

1 (2008), 107–113.

[12] James Dinan, D Brian Larkins, Ponnuswamy Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. 2009. Scalable

work stealing. In High Performance Computing Networking, Storage and Analysis, Proceedings of the Conference on. IEEE,
1–11.

[13] James Dinan, Stephen Olivier, Gerald Sabin, Jan Prins, P Sadayappan, and Chau-Wen Tseng. 2007. Dynamic load

balancing of unbalanced computations using message passing. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International. IEEE, 1–8.

[14] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. 2016. Short-dot: Computing large linear transforms distribut-

edly using coded short dot products. In Advances In Neural Information Processing Systems. 2100–2108.
[15] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. 2017. Coded convolution for parallel and distributed computing

within a deadline. In IEEE International Symposium on Information Theory (ISIT). IEEE, 2403–2407.
[16] Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour, Haewon Jeong, Viveck Cadambe, and Pulkit Grover. 2018.

On the Optimal Recovery Threshold of Coded Matrix Multiplication. arXiv preprint arXiv:1801.10292 (2018).
[17] Python Software Foundation. [n. d.]. Multiprocessing. https://docs.python.org/3/library/multiprocessing.html.

[18] Geoffrey C. Fox, Steve W. Otto, and Anthony JG. Hey. 1987. Matrix Algorithms on a Hypercube I: Matrix Multiplication.

Parallel Comput. 4, 1 (1987), 17–31.
[19] K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf. 2016. A Better Model for Job Redundancy: Decoupling Server

Slowdown and Job Size. In Proceedings of IEEE MASCOTS.
[20] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and A. Scheller-Wolf. 2015. Reducing Latency via

Redundant Requests: Exact Analysis. In Proceedings of the ACM SIGMETRICS.
[21] K. Gardner, S. Zbarsky, M. Harchol-Balter, and A. Scheller-Wolf. 2015. Analyzing Response Time in the Redundancy-d

System. In CMU-CS-15-141 archive.
[22] Google. 2015. Kubernetes. https://kubernetes.io.

[23] Vipul Gupta, Shusen Wang, Thomas Courtade, and Kannan Ramchandran. 2018. Oversketch: Approximate matrix

multiplication for the cloud. In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 298–304.
[24] Wael Halbawi, Navid Azizan-Ruhi, Fariborz Salehi, and Babak Hassibi. 2017. Improving distributed gradient descent

using reed-solomon codes. arXiv preprint arXiv:1706.05436 (2017).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

https://aws.amazon.com/ec2/
https://aws.amazon.com/lambda/
https://dask.org
https://docs.python.org/3/library/multiprocessing.html
https://kubernetes.io

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:21

[25] Mor Harchol-Balter. 2013. Performance modeling and design of computer systems: queueing theory in action. Cambridge

University Press.

[26] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R Ganger, Phillip B Gibbons, Garth A Gibson, and Eric P

Xing. 2016. Addressing the straggler problem for iterative convergent parallel ML. In Proceedings of the Seventh ACM
Symposium on Cloud Computing. ACM, 98–111.

[27] Kuang-Hua Huang et al. 1984. Algorithm-based Fault Tolerance for Matrix Operations. IEEE Trans. Comput. 100, 6
(1984), 518–528.

[28] Longbo Huang, S. Pawar, Hao Zhang, and K. Ramchandran. 2012. Codes can reduce queueing delay in data centers. In

IEEE International Symposium on Information Theory Proceedings (ISIT). 2766–2770.
[29] Gauri Joshi. 2017. Boosting Service Capacity via Adaptive Task Replication. SIGMETRICS Perform. Eval. Rev. 45, 2 (Oct.

2017), 9–11. https://doi.org/10.1145/3152042.3152046

[30] Gauri Joshi. 2018. Synergy via Redundancy: Boosting Service Capacity with Adaptive Replication. SIGMETRICS
Performance Evaluation Review 45, 3 (March 2018), 21–28. http://doi.acm.org/10.1145/3199524.3199530

[31] Gauri Joshi, Yanpei Liu, and Emina Soljanin. 2012. Coding for fast content download. In Allerton Conference on
Communication, Control, and Computing. IEEE, 326–333.

[32] Gauri Joshi, Yanpei Liu, and Emina Soljanin. 2014. On the Delay-Storage Trade-Off in Content Download from Coded

Distributed Storage Systems. IEEE Journal on Selected Areas of Communications 32, 5 (May 2014), 989–997.

[33] Gauri Joshi, Joong Bum Rhim, John Sun, and Da Wang. 2010. Fountain codes. In Global telecommunications conference
(GLOBECOM 2010). 7–12.

[34] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2015. Queues with redundancy: Latency-cost analysis. ACM
SIGMETRICS Performance Evaluation Review 43, 2 (2015), 54–56.

[35] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2017. Efficient Redundancy Techniques for Latency Reduction in

Cloud Systems. ACM Transactions on Modeling and Performance Evaluation of Computing Systems 2, 12 (may 2017).

[36] Can Karakus, Yifan Sun, and Suhas Diggavi. 2017. Encoded distributed optimization. In IEEE International Symposium
on Information Theory (ISIT). IEEE, 2890–2894.

[37] C. Kim and A. K. Agrawala. 1989. Analysis of the Fork-Join Queue. IEEE Trans. Comput. 38, 2 (Feb. 1989), 250–255.
[38] Jack Kosaian, K. V. Rashmi, and Shivaram Venkataraman. 2018. Learning a Code: Machine Learning for Approximate

Non-Linear Coded Computation. CoRR abs/1806.01259 (2018). arXiv:1806.01259 http://arxiv.org/abs/1806.01259

[39] Jack Kosaian, K. V. Rashmi, and Shivaram Venkataraman. 2019. Parity Models: A General Framework for Coding-Based

Resilience in ML Inference. CoRR abs/1905.00863 (2019). arXiv:1905.00863 http://arxiv.org/abs/1905.00863

[40] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. 1994. Introduction to Parallel Computing: Design and
Analysis of Algorithms. Vol. 400. Benjamin/Cummings Redwood City.

[41] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and Kannan Ramchandran. 2017. Speeding

Up Distributed Machine Learning Using Codes. IEEE Transactions on Information Theory (2017).

[42] Kangwook Lee, Nihar B. Shah, Longbo Huang, and Kannan Ramchandran. 2017. The MDS Queue: Analysing the

Latency Performance of Erasure Codes. IEEE Transactions on Information Theory 63, 5 (May 2017), 2822–2842.

[43] Songze Li, Seyed Mohammadreza Mousavi Kalan, A Salman Avestimehr, and Mahdi Soltanolkotabi. 2017. Near-Optimal

Straggler Mitigation for Distributed Gradient Methods. arXiv preprint arXiv:1710.09990 (2017).
[44] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. 2016. A Unified Coding Framework for Distributed

Computing with Straggling Servers. In IEEE Global Communications Conference (GLOBECOM) Workshops. IEEE, 1–6.
[45] Michael Luby. 2002. LT codes. In null. IEEE, 271.
[46] David JC MacKay. 2003. Information theory, inference and learning algorithms. Cambridge university press.

[47] R. Nelson and A. Tantawi. 1988. Approximate Analysis of Fork/Join Synchronization in Parallel Queues. IEEE Trans.
Comput. 37, 6 (Jun. 1988), 739–743.

[48] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank Citation Ranking: Bringing
order to the Web. Technical Report. Stanford InfoLab.

[49] Albin Severinson, Alexandre Graell i Amat, and Eirik Rosnes. 2017. Block-Diagonal and LT Codes for Distributed

Computing With Straggling Servers. arXiv preprint arXiv:1712.08230 (dec 2017).
[50] Nihar B. Shah, Kangwook Lee, and Kannan Ramchandran. 2016. When Do Redundant Requests Reduce Latency? IEEE

Transactions on Communications 64, 2 (Feb 2016), 715–722.
[51] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan

Ragan-Kelley. 2018. numpywren: serverless linear algebra. arXiv preprint arXiv:1810.09679 (2018).
[52] Amin Shokrollahi. 2006. Raptor codes. IEEE/ACM Transactions on Networking (TON) 14, SI (2006), 2551–2567.
[53] Amin Shokrollahi, Michael Luby, et al. 2011. Raptor codes. Foundations and trends® in communications and information

theory 6, 3–4 (2011), 213–322.

[54] Yin Sun, Can Emre Koksal, and Ness B. Shroff. 2016. On Delay-Optimal Scheduling in Queueing Systems with

Replications. arXiv:1603.07322 (March 2016).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

https://doi.org/10.1145/3152042.3152046
http://doi.acm.org/10.1145/3199524.3199530
http://arxiv.org/abs/1806.01259
http://arxiv.org/abs/1806.01259
http://arxiv.org/abs/1905.00863
http://arxiv.org/abs/1905.00863

58:22 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

[55] Yin Sun, Zizhan Zheng, Can Emre Koksal, Kyu-Han Kim, and Ness B. Shroff. 2015. Provably Delay Efficient Data

Retrieving in Storage Clouds. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM).
[56] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis. 2017. Gradient Coding: Avoiding Stragglers

in Synchronous Gradient Descent. stat 1050 (2017), 8.
[57] Elizabeth Varki, Arif Merchant, and Hui Chen. 2008. The M/M/1 fork-join queue with variable sub-tasks. unpublished,

available online (2008).
[58] Da Wang, Gauri Joshi, and Gregory Wornell. 2014. Efficient Task Replication for Fast Response times in Parallel

Computation. In ACM SIGMETRICS Performance Evaluation Review, Vol. 42. ACM, 599–600.

[59] Da Wang, Gauri Joshi, and Gregory Wornell. 2015. Using Straggler Replication to Reduce Latency in Large-scale

Parallel Computing. ACM SIGMETRICS Performance Evaluation Review 43, 3 (2015), 7–11.

[60] Da Wang, Gauri Joshi, and Gregory W. Wornell. 2019. Efficient Straggler Replication in Large-Scale Parallel Computing.

ACM Trans. Model. Perform. Eval. Comput. Syst. 4, 2, Article 7 (April 2019), 23 pages. http://doi.acm.org/10.1145/3310336

[61] Sinong Wang, Jiashang Liu, and Ness Shroff. 2018. Coded Sparse Matrix Multiplication. arXiv preprint arXiv:1802.03430
(2018).

[62] Yaoqing Yang, Pulkit Grover, and Soummya Kar. 2017. Coded Distributed Computing for Inverse Problems. In Advances
in Neural Information Processing Systems. 709–719.

[63] Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr. 2017. Polynomial codes: an optimal design for high-

dimensional coded matrix multiplication. In Advances in Neural Information Processing Systems. 4406–4416.
[64] Qian Yu, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. 2017. Coded Fourier Transform. arXiv preprint

arXiv:1710.06471 (2017).
[65] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing

with working sets. HotCloud 10, 10-10 (2010), 95.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

http://doi.acm.org/10.1145/3310336

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:23

A PROPERTIES OF LT CODES
Fig. 9 shows simulation results for the number of symbols decoded successfully for each encoded

symbol received. For this we perform LT-Coded multiplication of a randomly generated 10, 000 ×
10, 000 matrix with a 10, 000 × 1 vector. The matrix A is encoded using an LT code with parameters

c and δ chosen according to the guidelines of [46]. We generate a single row of the encoded matrix

Ae at a time which is then multiplied with the 10, 000 × 1 size vector x to give a single element of

the encoded matrix vector product be. The process is repeated until we have enough symbols for

successfully decoding the entire 10, 000 × 1 size vector b using the peeling decoder. The plots of
Fig. 9 correspond to different choices of c and δ . In each case we observe an avalanche behavior

wherein very few symbols are decoded up to a point (approximately up to 10, 000 encoded symbols

received) after which the decoding proceeds very rapidly to completion. This effectively illustrates

the fact that the computation overhead of the proposed LT coded matrix vector multiplication

strategy is very small (md = m(1 + ϵ)). The theoretical encoding and decoding properties of LT

codes are summarized in the following lemmas:

Lemma 7 (Theorem 13 in [45]). For any constant δ > 0, the average degree of an encoded symbol
is O(log(m/δ)) wherem is the number of source symbols.

Corollary 5. Each encoding symbol can be generated using O(logm) symbol operations on
average.

Lemma 8 (Theorem 17 in [45]). For any constant δ > 0 and for a source block with m source
symbols, the LT decoder can recover all the source symbols from a set ofM ′ =m + O(

√
m log

2(m/δ))
with probability at least 1 − δ .

Corollary 6. The expected decoding threshold E[M ′] is given by E[M ′] =m(1 + ϵ) where ϵ → 0

asm → ∞
Corollary 7. Since the average degree of an encoded symbol is O(log(m/δ)) the decoding requires

O(m logm) symbol operations on average.

0 2000 4000 6000 8000 10000
Number of encoded symbols received

0

2000

4000

6000

8000

10000

N
u

m
b

er
of

so
u

rc
e

sy
m

b
ol

s
re

co
ve

re
d

c = 0.03, δ = 0.5

c = 0.01, δ = 0.5

c = 0.03, δ = 0.1

Fig. 9. The number of decoded symbols is almost constant untilm = 10, 000 encoded symbols are received
after which it increases rapidly.

B ON THE ORDER STATISTICS OF EXPONENTIAL RANDOM VARIABLES
We first state some standard results [9] on order statistics of exponential random variables to

aid the understanding of the latency analysis presented subsequently. If X1, X2, . . .Xp are expo-

nential random variables with rate µ, their kth order statistic is denoted by Xk :p . Thus, X1:p =

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:24 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

min(X1,X2, . . .Xp), and Xp :p = max(X1,X2, . . .Xp). The expected value of Xk :p is given by

E[Xk :p] =
1

µ

(
1

p
+ · · · + 1

p − k + 1

)
=

Hp − Hp−k

µ
, (23)

where Hp is the pth Harmonic number

Hp ≜

{∑p
i=1

1

i for p = 1, 2, . . .

0 for p = 0

(24)

For large p,Hp = logp + γ , where γ is the Euler-Mascheroni constant and thus we can use the

approximation Hp ≃ logp for large p.
Also the difference of consecutive order statistics of i.i.d exponential random variables is also

exponentially distributed. Specifically,Ul = Xl+1:p − Xl :p ∼ exp((p − l)µ) in this case.

C PROOF OF DELAY ANALYSIS RESULTS
C.1 Ideal Load Balancing Strategy

Proof of Theorem 2. The result follows from Lemma 9 and Lemma 10 for non-redundant and

redundant task allocation policies respectively given below. Redundant policies refer to policies

where the same task can be allocated to multiple workers (such as the r− Replication policy). □

Lemma 9. For any distributed matrix-vector multiplication scheme following the delay model of (5)

without any redundancy in task allocation, the latency T is no less than Tideal.

Proof of Lemma 9. Consider any scheme other than the ideal load balancing scheme. LetWi,i+1

be the time elapsed between completion of the ith and (i + 1)th computation in this scheme and

letW ideal

i,i+1
be the time elapsed between completion of the ith and (i + 1)th computation in the ideal

scheme. By definition, the ideal load balancing is work-conserving, that is, no worker is idle while

there are pending computations at other workers. Hence for the other scheme there must be some

computation î after which at least one worker is idle even though there are pending computations

at the other workers. ThereforeW ideal

î, î+1

≤ Wî, î+1
. Moreover since the tasks are allocated by the

master initially in our setting, it means that if a worker is idle after computation î is completed by

the system, then it is idle for all subsequent computations. Thus,W ideal

i,i+1
≤Wi,i+1, ∀i ≥ î . Therefore

if T ideal
and T other

are the times taken by the ideal and any other scheme respectively to complete

m tasks,

Tideal =W
ideal

0,1 + . . . +W ideal

î, î+1

+ . . . +W ideal

m−1,m , (25)

T =W0,1 + . . . +Wî, î+1
+ . . . +Wm−1,m , (26)

and T ideal ≤ T for any other task allocation strategy. □

Lemma 10. For any distributed matrix-vector multiplication scheme following the delay model of
(5) with potentially redundant task allocations, the latency T is no less than Tideal.

Proof of Lemma 10. Consider the a scheme with redundancy where task j is allocated to r
distinct workers. LetV1, . . . ,Vr be the time instant at which each of the r workers start working on
the task. IfW j

is the earliest time instant at which the task is received at the master then,

W j = min

1≤i≤r
(Vi + τ), (27)

= τ + min

1≤i≤r
Vi . (28)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:25

Thus the time at which a task is completed is equal to the sum of the earliest time instant

(min1≤i≤r Vi) at which one of the r worker is available to process the task and the time (τ) required
by any worker to process the task. Since the ideal load balancing scheme greedily assigns tasks to

the first of the p workers that are available to process it and r ≤ p, therefore the ideal scheme is

essentially equivalent to a scheme with maximum redundancy and thus cannot be outperformed

by any task allocation strategy with redundancy. □

Proof of Lemma 2. As per our model, the time taken by worker i to perform Bi computations

is given by

Yi = Xi + τBi , for i = 1, . . . ,p. (29)

The latency Tideal is the earliest time when

∑p
i=1

Bi =m, as illustrated in Fig. 10a. We note that, in

this case it is not necessary that each worker has completed at least 1 computation. Specifically, if

Tideal − Xi ≤ τ for any i then it means that worker i has not performed even a single computation

in the time that the system as a whole has completedm computations (owing to the large initial

delay Xi). Therefore we define

Wideal := {i : Tideal − Xi ≥ τ }. (30)

HereWideal is the set of workers for which Bi > 0. Thus

Tideal = max

i ∈Wideal

Yi = max

i ∈Wideal

(Xi + τBi) , (31)

≥ min

i ∈{1, ...p }
Xi + τ max

i ∈Wideal

Bi , (32)

≥ X1:p +
τm

p
, (33)

where to obtain (32), we replace each Xi in (31) by mini ∈[1, ...p]Xi and then we can bring it outside

the maximum. To obtain (33), we observe that in order for the p workers to collectively finishm
computations, the maximum number of computations completed by a worker has to be at least

m/p.
To derive the upper bound, we note that

Tideal ≤ Xi + τ (Bi + 1), for all i = 1, . . . ,p (34)

This is because at time Tideal each of the workers 1, . . . ,p, have completed B1, . . . ,Bp row-vector

product tasks respectively, but they may have partially completed the next task. The 1 added to

each Bi accounts for this edge effect, which is also illustrated in Fig. 6. Summing over all i on both

sides, we get

p∑
i=1

Tideal ≤
p∑
i=1

Xi +

p∑
i=1

τ (Bi + 1) , (35)

pTideal ≤
p∑
i=1

Xi + τ (m + p) , (36)

Tideal ≤
1

p

p∑
i=1

Xi +
τm

p
+ τ (37)

□

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:26 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

X1Worker 1

Xp

Worker 2

Worker p

X2

Tideal0

Bp𝜏

B1𝜏
Time

(a)

X1Worker 1

Xp

Worker 2

Worker p

X2

0

Bp𝜏

𝜏me
p

Time Tidle TLT

(b)

X1:pWorker 1

Worker 2

Worker p

X2:p

0

𝜏me
p

Time Tidle TLT

Worker 3 X3:p

Xp:p

(c)

Fig. 10. (a) Worker i has an random exponential initial delay Xi , after which it completes row-vector product
tasks taking time τ per task. In the ideal case the latency Tideal is simply the time to completem tasks in
total. (b) A general scenario Worker 1 runs out of computations at Tidle before the system completes enough
computations necessary for successful decoding. (c) The specific scenario (event E2) where Worker 2 starts so
late that Worker 1 runs out of computations even though workers 3, . . . ,p start at the same time as 2.

Proof of Corollary 1. If Xi ∼ exp(µ) then taking expectation on both sides of (33) gives

E[Tideal] ≥ E[X1:p] +
τm

p
, (38)

=
1

pµ
+
τm

p
. (39)

where the lower bound in (39) follows from the result (23) on order statistics of exponential random

variables. Likewise for the upper bound we can compute expectation on both sides of (37) to get,

E[Tideal] ≤
1

p

p∑
i=1

E[Xi] +
τm

p
+ τ (40)

E[Tideal] ≤
1

µ
+
τm

p
+ τ . (41)

□

C.2 Rateless Coded Strategy
Proof of Theorem 3. Recall that we make the following assumption for analysing the latency

of the proposed rateless coded strategy.

Assumption 2. The decoding thresholdM ′ (Definition 3) of the LT coded strategy satisfiesM ′ ≃m.

We believe the above assumption is reasonable because the problem of distributed matrix vector

multiplication arises only when m (the number of rows of A) is large and the high probability

bound of Lemma 1 can be used to show that E[M ′] =m(1+ ϵ), where ϵ → 0 asm → ∞. To analyze

the probability Pr(TLT > Tideal) in light of the above assumption, let us first understand when TLT
will exceed Tideal. This situation will arise when the fastest node runs out of computations and

becomes idle beforeM ′
computations are collectively collectively completed by all the workers as

illustrated in Fig. 10b.

Recall that according to our delay model, the time Yi required by worker i to perform Bi compu-

tations is

Yi = Xi + τBi , for all i = 1, . . . ,p (42)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:27

where Xi is an initial delay at worker i . Without loss of generality, we assume that nodes are

ordered in increasing order of initial delays. Thus, Xi = Xi :p for i = 1, . . . ,p, where Xi :p denotes

the ith order statistic of p i.i.d. random variables with distribution FX .
Now let us determine the events that cause TLT to be greater than TIdeal for a given set of

realizations of the initial delays. Since each node is assignedme/p row-vector product tasks, the

time Tidle at which the fastest node, node 1, becomes idle is

Tidle = X1:p +
τme

p
(43)

Suppose that the initial delays of the fastest j workers are X1:p , X2:p ,. . .,X j :p respectively. Then let

Cj denote the number of computations collectively performed by the p workers until time Tidle in
the event that all the remaining p − j workers start at the earliest possible instant and have initial

delays equal to X j :p .

Observe that TLT > TIdeal if node 1 becomes idle before all workers collectively perform m
computations. This situation (depicted in Fig. 10b) arises if X j :p is so large for some node j that
Cj < m. We distill this event of node 1 becoming idle before the result is recovered into sub-events

E1, E2, . . .Ep , where we refer to Ej as the event of idling due to node j, which is defined as follows.

Definition 4 (Event Ej : Idling due to node j). Given X1:p , X2:p ,. . . ,X j−1:p , Ej occurs if Cj < m.

The event E2 is depicted in Fig. 10c. Therefore,

Pr(TLT > Tideal) = Pr(E2 ∪ . . . ∪ Ep) (44)

≤
p∑
j=2

Pr(Ej) (45)

=

p∑
j=2

Pr(Cj < m) (46)

where (45) follows from the union bound. Note that the event of idling due to node 1, E1 is not

defined since node 1 is the fastest node by definition.

Now we derive a lower bound on Cj in terms of X1:p , . . . ,X j :p as follows.

Cj =

j−1∑
l=1

(⌊Tidle − Xl :p

τ

⌋)+
+ (p − j + 1)

(⌊Tidle − X j :p

τ

⌋)+
(47)

=

j−1∑
l=1

(⌊me

p
−
(Xl :p − Xi :p)

τ

⌋)+
+ (p − j + 1)

(⌊me

p
−
(X j :p − X1:p)

τ

⌋)+
(48)

≥ me −
j−1∑
l=1

(
Xl :p − Xi :p

τ

)
− (p − j + 1)

(
X j :p − X1:p

τ

)
(49)

≥ me −
p − 1

τ

j−1∑
l=1

(Xl+1:p − Xl :p) (50)

=me −
p − 1

τ

j−1∑
l=1

Ul (51)

where in (49) we use the fact that for any a,b ≥ 0, [a − ⌊b⌋]+ ≥ (a − b).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:28 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

As a consequence of the stochastic dominance implied by the above bound we have.

Pr(Ej) = Pr(Cj < M ′) (52)

≤ Pr

(j−1∑
l=1

Ul :p ≥ τ
me −m

p − 1

)
(53)

Recall from (45) that,

Pr(TLT > Tideal) ≤
p∑
j=2

Pr(Ej) (54)

≤
p∑
j=2

Pr

(j−1∑
l=1

Ul ≥
τm(α − 1)

p − 1

)
(55)

□

Proof of Corollary 2. If Xi ∼ exp(µ) we can use the results from Appendix B to simplify (53)

further,

Pr(Ej) ≤ Pr

(j−1∑
l=1

Ul ≥
τm(α − 1)

p − 1

)
(56)

≤ Pr

(
(j − 1)Uj−1 ≥ τm(α − 1)

p − 1

)
(57)

= Pr

(
Uj−1 ≥ τm(α − 1)

(p − 1)(j − 1)

)
(58)

= exp

(
−µτm(α − 1)(p − j + 1)

(p − 1)(j − 1)

)
(59)

where (57) is obtained from the fact that Pr(Uj−1 ≥ u) ≥ Pr(Ul ≥ u) for l = 1, . . . , j − 1 for any u
sinceUl ∼ exp((p − l)µ). Lastly (59) is obtained from the expression for the tail distribution of an

exponential random variable.
1

Since (p − j + 1)/(j − 1) > 1/(p − 1)∀j = 2, . . . ,p, we obtain the final result

Pr(TLT > Tideal) ≤
p∑
j=2

Pr(Ej) (60)

≤
p∑
j=2

Pr

(j−1∑
l=1

Ul ≥
τm(α − 1)

p − 1

)
(61)

≤ (p − 1) exp

(
−µτm(α − 1)

(p − 1)2

)
(62)

≤ p exp

(
−µτm(α − 1)

p2

)
(63)

□

1
For a two-server system (p = 2), Pr(TLT > T

ideasl
) = Pr(E2) = Pr(C2 < m) ≤ Pr(X2:2 − X1:2 ≥ τ (me −m)) and we can

see that increasing redundancy (increasingm) will decrease the probabilistic upper bound. Actually for anyme > 2m,

Pr(TLT > T
ideal

) = 0 since in this case the entire work can be done by the faster node but in this case our upper bound,

which is a little loose, has a small positive value.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:29

Proof of Theorem 4. We can write the expectation of TLT as follows.

E[TLT] = Pr(TLT = Tideal)E[TLT | TLT = Tideal] + Pr(TLT > Tideal)E[TLT | TLT > Tideal] (64)

= Pr(TLT = Tideal)E[Tideal | TLT = Tideal] + Pr(TLT > Tideal)E[Tideal | TLT > Tideal]
+ Pr(TLT > Tideal)E[TLT −Tideal | TLT > Tideal]

(65)

= E[Tideal] + Pr(TLT > Tideal)E[TLT −Tideal | TLT > Tideal] (66)

≤ E[Tideal] + Pr(TLT > Tideal)E[TLT | TLT > Tideal], (67)

where (67) follows from the fact thatTLT−Tideal < TLT. Since we have already derived an upper bound
for Pr(TLT > Tideal) in Theorem 3, we will now derive an upper bound for E[TLT | TLT > Tideal]. To
do so, we first defineWLT as the set of workers that have not completed all the αm/p computations

assigned to them i.e. WLT := {i : Bi <
αm
p }. The set WLT does not include the workers which

have completed all the αm/p tasks assigned to them and are idle at TLT since they have completed

their tasks at some (unknown earlier) time and thus do not increase the upper bound for TLT. For
workers inWLT,

TLT ≤ Xi + τ (Bi + 1) for all i ∈ WLT, (68)

≤
p∑
i=1

Xi +
ταm

p
+ τ , (69)

= X1:p + X2:p + . . . + Xp :p +
ταm

p
+ τ (70)

= pX1:p + (p − 1)U1 + . . . +Up−1 +
ταm

p
+ τ , (71)

where (69) follows from the fact that Xi ≤
∑p

i=1
Xi for any worker i . In (70) we express the sum of

Xi ’s in terms of the order statistics Xl :p . In (71),Ul = Xl+1:p − Xl :p , l = 1, . . . ,p − 1.

We can then use (71) to upper bound E[TLT | TLT > Tideal] as

E[TLT | TLT > Tideal] ≤ pE[X1:p] + E
[p−1∑
l=1

(p − l)Ul | TLT > Tideal

]
+
ταm

p
+ τ , (72)

where in the first term of (72), we do not condition by TLT > Tideal since the initial delay X1:p at the

fastest worker X1:p is independent of the event TLT > Tideal. This is because as seen in the proof of

Theorem 3, the event TLT > Tideal depends on the values ofU1, . . . ,Up−1 but not on X1:p .

Now let us define Ūl−1 = [U1, . . . ,Ul−1] and S j =
∑j
l=1

(p − l)Ul for all j = 1, . . . ,p − 1. Using

Lemma 11 (stated and proved below) we can simplify the second term in the right-hand-side of

(72) as,

EŪp−1

[S j | TLT > Tideal] = EŪp−2

[EUp−1
[Up−1 + Sp−2 | TLT > Tideal, Ūp−2]] (73)

≤ EŪp−3

[Rp−1 + EUp−2
[2Up−2 + Sp−3 | TLT > Tideal, Ūp−3]] (74)

where Rl = E[(p − l)Ul | Ul > ταm/p].
Repeatedly applying Lemma 11 gives the final upper bound

E

[p−1∑
l=1

(p − l)Ul | TLT > Tideal

]
≤

p−1∑
l=1

Rl (75)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:30 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

Substituting (75) in (72) gives

E[TLT | TLT > Tideal] ≤ pE[X1:p] +
p−1∑
l=1

Rl +
ταm

p
+ τ (76)

Thus finally we have

E[TLT] − E[Tideal] ≤ Pr(TLT > Tideal)E[TLT | TLT > Tideal] (77)

≤
(p∑
j=2

Pr

(j−1∑
l=1

Ul :p ≥ τ
me −M ′

p − 1

)) (
pE[X1:p] +

p−1∑
l=1

Rl +
ταm

p
+ τ

)
. (78)

If Xi ∼ exp(µ) we can use the results from Appendix B to simplify the above results further by

using the bounds on Pr(TLT > Tideal) for this case which is given by

Pr(TLT > Tideal) ≤ p exp

(
−µτm(α − 1)

p2

)
, (79)

and the fact that E[X1:p] = 1/pµ and

Rl = E[(p − l)Ul | Ul >
ταm

p
]

=
ταm

p
(p − l) + (p − l) 1

(p − l)µ

=
ταm

p
(p − l) + 1

µ
, (80)

sinceUl ∼ exp((p − l)µ) which implies that

pE[X1:p] +
p−1∑
l=1

Rl = p
1

pµ
+
ταm

p

p(p − 1)
2

+
p − 1

µ
, (81)

≤ ταmp

2

+
p

µ
. (82)

Thus,

E[TLT] − E[Tideal] ≤ Pr(TLT > Tideal)E[TLT | TLT > Tideal] (83)

≤ p exp

(
−µτm(α − 1)

p2

) (
ταmp

2

+
p

µ
+
ταm

p
+ τ

)
(84)

≤
(
ταmp2 +

p2

µ
+ τp

)
exp

(
−µτm(α − 1)

p2

)
(85)

where the last expression is true for p ≥ 2 which is always the case in distributed settings. □

Lemma 11. Given the values ofU1, . . . ,Ul−1 we have the following upper bound

E[(p − l)Ul | TLT > Tideal, Ūl−1] ≤ E[(p − l)Ul | Ul >
ταm

p
] (86)

where Ūl−1 = [U1, . . . ,Ul−1].

Proof. Observe that given the values of U1, . . . ,Ul−1, the condition Ul > ταm/p is always

sufficient to guarantee that TLT > Tideal even if that may not be guaranteed by the values of

U1:p , . . . ,Ul−1:p . This is becauseUl = Xl+1:p − Xl :p and thusUl > ταm/p implies that worker l + 1

starts computing only after worker l has completed all αm/p computations assigned to it. For eg. If

U2 > ταm/p then the second fastest worker (and all subsequent workers) will only start computing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:31

after the fastest worker has completed all of its αm/p computations. Based on this we can show

that,

E[(p − l)Ul | TLT > Tideal, Ūl−1]

= Pr(Ul <
ταm

p
)E[(p − l)Ul | TLT > Tideal,Ul <

ταm

p
, Ūl−1]+

Pr(Ul >
ταm

p
)E[(p − l)Ul | TLT > Tideal,Ul >

ταm

p
, Ūl−1] (87)

Since E[(p − l)Ul | TLT > Tideal,Ul <
τ αm
p , Ūl−1] < E[(p − l)Ul | TLT > Tideal,Ul >

τ αm
p , Ūl−1], it

follows that

E[(p − l)Ul | TLT > Tideal, Ūl−1]

≤ E[(p − l)Ul | TLT > Tideal,Ul >
ταm

p
, Ūl−1] (88)

However since Ul >
τ αm
p is sufficient to guarantee TLT > Tideal and (p − l)Ul does not depend on

Ūl−1 = [U1, . . . ,Ul−1], the above expression reduces to

E[(p − l)Ul | TLT > Tideal, Ūl−1] ≤ E[(p − l)Ul | Ul >
ταm

p
] (89)

□

C.3 MDS Coded Strategy
Proof of Lemma 3. The latency in the MDS-coded case is TMDS = Yk :p , where Yk :p is the k th

order statistic of the individual worker latencies Y1,Y2, . . . ,Yp since we only wait for the fastest k
workers to finish the task assigned to them. In this case, each of the fastest k workers performs

m
k

computations and thus the overall latency is given by

TMDS = Yk :p = Xk :p + τ
m

k
(90)

□

Proof of Corollary 3. If Xi ∼ exp(µ), the expected overall latency is given by

E[TMDS] = E[Xk :p] + τ
m

k
, (91)

=
τm

k
+

1

µ

(
Hp − Hp−k

)
, (92)

≃ τm

k
+

1

µ
log

p

p − k
. (93)

where (92) and (93) follow from the exponential order statistics results in (23) and (24). □

Proof of Lemma 4. As per our model, we represent the number of computations at worker i
by the random variable Bi . We also use the random variable CMDS to denote the total number of

computations performed by all p workers until TMDS, which is the time when the master collects

enough computations to be able to recover the matrix-vector product b = Ax. Thus

CMDS = B1 + B2 + . . . + Bp (94)

= B1:p + B2:p + . . . + Bp :p , (95)

where the second expression is simply the right-hand side of the first expression written in terms

of the corresponding order statistics. We note that under our model the time spent by worker i
in performing Bi computations is Yi = Xi + τBi where Xi denotes setup/initial delay and τ is a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:32 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

constant denoting the time taken to perform a single computation. Thus B1:p corresponds to the

worker that performs the least number of computations which is also the worker with the largest

value of setup time i.e Xp :p since all workers stop computing at the same time (TMDS). Thus for a

given C0, the tail of the total number of computations performed in the MDS Coded strategy is

given by

Pr

(
CMDS ≤

mp

k
−C0

)
= Pr

(p∑
i=1

Bi :p ≤ mp

k
−C0

)
(96)

= Pr

(p−k∑
i=1

Bi :p +
m

k
× k ≤ mp

k
−C0

)
(97)

= Pr

(p−k∑
i=1

Bi :p ≤ m (p − k)
k

−C0

)
(98)

≤ Pr

(
(p − k)B1:p ≤ m (p − k)

k
−C0

)
(99)

= Pr

(
B1:p ≤ m

k
− C0

p − k

)
(100)

where (97) follows from the fact that the fastest k workers correspond to Bp−k+1:p ,Bp−k+2:p , . . . ,Bp :p
and must perform all the tasks assigned to them i.e.m/k computations each, while (99) follows

from the fact that B2:p , . . . ,Bp :p are always larger than B1:p by definition.

At this point we note that the worker which performs B1:p computations has setup time Xp :p .

There can be two possibilities – either TMDS > Xp :p , or TMDS ≤ Xp :p . If TMDS > Xp :p then

TMDS ≤ Xp :p + τ
(
B1:p + 1

)
(101)

where the added 1 accounts for the edge effect of partial computations at the nodes. If TMDS ≤ Xp :p
then also the upper bound (101) holds. Thus overall (by rearranging terms in (101)) we obtain,

B1:p ≥
TMDS − Xp :p

τ
− 1. (102)

Thus we can write

Pr

(
CMDS ≤

mp

k
−C0

)
≤ Pr

(
TMDS − Xp :p

τ
− 1 ≤ m

k
− C0

p − k

)
(103)

= Pr

(
Xp :p − Xk :p ≥ τC0

p − k
− τ

)
(104)

= Pr

(p−1∑
l=k

(
Xl+1:p − Xl :p

)
≥ τC0

p − k
− τ

)
, (105)

where (104) follows from the fact thatTMDS = Xk :p + τm/k . If Xi ∼ exp(µ) we can use the result on

the difference of consecutive order statistics of exponential random variables from Appendix B to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:33

simplify the above expression further,

Pr

(
CMDS ≤

mp

k
−C0

)
≤ Pr

(p−1∑
l=k

Ul ≥
τC0

p − k
− τ

)
(106)

≤ Pr

(
(p − k)Up−1 ≥ τC0

p − k
− τ

)
(107)

= Pr

(
Up−1 ≥ τC0

(p − k)2
− τ

p − k

)
(108)

= exp

(
−µ

(
τC0

(p − k)2
− τ

p − k

))
(109)

where (107) is obtained from the fact that Pr(Up−1 ≥ u) ≥ Pr(Ul ≥ u) for l = k, . . . ,p − 1 for any u
sinceUl ∼ exp((p − l)µ). Lastly (109) is obtained from the expression for the tail distribution of an

exponential random variable. □

C.4 Replication Strategy
Proof of Lemma 5. In the r−replication strategy each submatrix Ai is replicated at r workers

and we wait for the fastest of these r workers. Without loss of generality, we assume that submatrix

A1 is stored at workers 1, 2, . . . , r , submatrix A2 is stored at workers r + 1, r + 2, . . . , 2 ∗ r and so

on. More generally submatrix Ai is stored at workers (i − 1)r + 1, . . . , ir . Thus the time taken to

compute the product Aix is given by

Vi = min

(
Y(i−1)r+1

,Y(i−1)r+2
, . . . ,Yir

)
(110)

= min

(
X(i−1)r+1

+ τB(i−1)r+1
, . . . ,Xir + τBir

)
(111)

= min

(
X(i−1)r+1

, . . . ,Xir
)
+
τmr

p
(112)

=Wi +
τmr

p
. (113)

This is because the fastest of the r workers that store Ai corresponds to min(X(i−1)r+1
, . . . ,Xir) and

this worker must perform
mr
p computations to compute the product Aix.

The latency Trep is the time at which the product Aix is computed for all i = 1, . . . ,p/r since A
is split into p/r submatrices. Thus

Trep = max

(
V1,V2, . . . ,Vp/r

)
, (114)

= max

(
W1,W2, . . . ,Wp/r

)
+
τmr

p
, (115)

□

Proof of Corollary 4. If X j ∼ exp(µ) then observe thatWi = min(X(i−1)r+1
, . . . ,Xir) is an

exp(rµ) random variable since it is the minimum of r exp(µ) random variables. Thus taking expec-

tation on both sides of (115),

E[Trep] =
τmr

p
+ E[max

(
W1,W2, . . . ,Wp/r

)
], (116)

=
τmr

p
+

1

rµ
Hp/r , (117)

≃ τmr

p
+

1

rµ
log

p

r
, (118)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:34 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

where (117) and (118) follow from (23) and (24). □

Proof of Lemma 6. As per our model, we represent the number of computations at worker i
by the random variable Bi . We also use the random variable Crep to denote the total number of

computations performed by all p workers until Trep, which is the time when the master collects

enough computations to be able to recover the matrix-vector product b = Ax. Thus

Crep = B1 + B2 + . . . + Bp (119)

=

p/r∑
i=1

r∑
j=1

B(i−1)r+j , (120)

where the term inside the summation in the second expression represents the number of compu-

tations performed by each worker that store a copy of the submatrix Ai (for a given i). In what

follows, we use the shorthand notation Di
j = B(i−1)r+j and use Di

j :r to denote the order statistics of

Di
1
, . . . ,Di

r . Rewriting the above expression in terms of the order statistics we get,

Crep =

p/r∑
i=1

r∑
j=1

Di
j :r , (121)

and the tail bound,

Pr(Crep ≤ mr −C0) = Pr

©«
p/r∑
i=1

r∑
j=1

Di
j :r ≤ mr −C0

ª®¬ (122)

= Pr

©«
p/r∑
i=1

r−1∑
j=1

Di
j :r ≤ m(r − 1) −C0

ª®¬ (123)

≤ Pr

©«(r − 1)
p/r∑
i=1

Di
1:r ≤ m(r − 1) −C0

ª®¬ (124)

= Pr

©«
p/r∑
i=1

Di
1:r ≤ m − C0

r − 1

ª®¬ (125)

where (123) follows from the fact that for any given submatrix Ai , i = 1, . . . ,p/r , the fastest worker
that stores a copy of that submatrix, which corresponds to Di

r :r (fastest worker performs the most

computations) must perform all the tasks assigned to it i.e.mr/p computations each, while (124)

follows from the fact that Di
2:r , . . . ,D

i
r :r are always larger than Di

1:r by definition.

At this point we introduce the shorthand notationV i
j = X(i−1)r+j for the setup time of the worker

that stores the jth copy of submatrix Ai and note that the worker which performs Di
1:r computations

has setup timeV i
r :r (V

i
j :r are the order statistics ofV

i
1
, . . . ,V i

r). There can be two possibilities – either

Trep > V
i
r :r , or Trep ≤ V i

r :r . If Trep > V
i
r :r then

Trep ≤ V i
r :r + τ (Di

1:r + 1) (126)

where the added 1 accounts for the edge effect of partial computations at the nodes. If Trep ≤ V i
r :r

then also the upper bound (126) holds. Thus overall (by rearranging terms in (126)) we obtain,

Di
1:r ≥

Trep −V i
r :r

τ
− 1 (127)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:35

Thus we can write

Pr(Crep ≤ mr −C0) ≤ Pr

©«
p/r∑
i=1

(
Trep −V i

r :r

τ
− 1

)
≤ m − C0

r − 1

ª®¬ (128)

= Pr

©«
p/r∑
i=1

(V i
r :r −Wrep) ≥

τC0

r − 1

− τp

r

ª®¬ (129)

where Wrep = maxi V
i
1:r = max

1≤i≤p/r min1≤j≤r X(i−1)r+j and (129) follows from the fact that

Trep = max
1≤i≤p/r min1≤j≤r X(i−1)r+j + τmr/p. From our definition ofWrep we see that,

V i
r :r −Wrep ≤ V i

r :r −V i
1:r (130)

and the consequent stochastic dominance can be used to get an upper bound on (129) as,

Pr(Crep ≤ mr −C0) ≤ Pr

©«
p/r∑
i=1

(V i
r :r −V i

1:r) ≥
τC0

r − 1

− τp

r

ª®¬ (131)

= Pr

©«
p/r∑
i=1

r−1∑
j=1

(V i
j+1:r −V i

j :r) ≥
τC0

r − 1

− τp

r

ª®¬ (132)

IfXi ∼ exp(µ)we can use the result fromAppendix B on the difference of consecutive order statistics

of exponential random variables to simplify the above expression further (since V i
j = X(i−1)r+j are

also exponentially distributed and thusU i
j = (V i

j+1:r −V i
j :r) ∼ exp((r − j)µ)),

Pr(Crep ≤ mr −C0) ≤ Pr

©«
p/r∑
i=1

r−1∑
j=1

U i
j ≥ τC0

r − 1

− τp

r

ª®¬ (133)

≤ Pr

©«(r − 1)
p/r∑
i=1

U i
r−1

≥ τC0

r − 1

− τp

r

ª®¬ (134)

= Pr

©«
p/r∑
i=1

U i
r−1

≥ τC0

(r − 1)2 − τp

r (r − 1)
ª®¬ (135)

=

p/r−1∑
i=0

1

i!
exp(−µθ)(µθ)i . (136)

where (134) is obtained from the fact that Pr(U i
r−1

≥ u) ≥ Pr(U i
j ≥ u) for j = 1, . . . , r − 2 for any u

since Uj ∼ exp((r − j)µ). Lastly (136) is obtained from the expression for the tail distribution of an

Erlang random variable which is the sum of p/r exponential random variables with rate µ and

θ =
τC0

(r − 1)2 − τp

r (r − 1) (137)

□

D THEORETICAL RESULTS FOR QUEUEING ANALYSIS
Proof of Theorem 5. For large me i.e. α = me/m → ∞, under the proposed rateless coded

strategy we just need to wait forM ′
computations to be performed by the workers in total. Hence

the p workers can be treated as a single server with service time equal to TLT. According to the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:36 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

Pollaczek Khinchine formula [25] for Poisson arrivals with rate λ, the expected total processing

time (time in queue + service time) for a job in such a queue is given by

E[ZLT] = E[TLT] +
λE[(TLT)2]

2(1 − λE[TLT])
(138)

Recall that for α =me/m → ∞ the LT and Ideal schemes are identical by definition. Therefore we

can use the bounds derived for Tideal in Lemma 2 to bound TLT as,

TLT ≤ τ

(
M ′

p
+ 1

)
+

1

p

p∑
i=1

Xi (139)

TLT ≥ τ
M ′

p
+ X1:p (140)

To analyze the second moment E[(TLT)2], let τ ′ = τ/p and let X̄ = (1/p)∑p
i=1

Xi . Then,

(TLT)2 ≤ (τ + τ ′M ′)2 + X̄ 2 + 2(τ + τ ′M ′)X̄ (141)

(TLT)2 ≥ (τ ′M ′)2 + X̄ 2 + 2τ ′M ′X̄ (142)

Taking expectations and noting thatM ′
and X̄ are independent,

E[(TLT)2] ≤ τ 2 + 2ττ ′md + (τ ′)2E[(M ′)2] + E[X̄ 2]+
2(τ + τ ′md)E[X̄] (143)

E[(TLT)2] ≥ (τ ′)2E[(M ′)2] + E[X̄ 2] + 2τ ′mdE[X̄] (144)

□

Lemma 12 (Multiple jobs with MDS Coding). The expected latency of the MDS coded scheme
ZMDS when a stream of vectors x1, x2, . . . need to be multiplied with the same matrix A (assuming
Poisson arrivals with rate λ for the vectors) is given by

E[ZMDS] ≤ E[Yk :p] +
λ((E[Yk :p])2 + Var[Yk :p])

2(1 − λE[Yk :p])
(145)

E[ZMDS] ≥ E[Yk :p] +
λ((E[Y1:p])2 + Var[Y1:p])

2(1 − λE[Y1:p])
(146)

where Yi = Xi + τm/k is the service time at worker i , i = 1, . . . ,p for the MDS coded case.

Proof of Lemma 12. When a stream of incoming vectors x1, x2, . . . need to be multiplied with

the matrix A over p workers, the resulting system is a (p,k) fork-join queue since the task of

computing matrix vector products of the form Ax is forked to the p workers and we need to wait

for k workers to complete the tasks assigned to them. The expression for latency ZMDS follows

from Theorem 4 of [35] which gives bounds on the latency of (p,k) fork-join queues assuming

Poisson arrivals. □

Lemma 13 (Multiple jobs with Replication). The expected latency of the replication scheme
Zrep when a stream of vectors x1, x2, . . . need to be multiplied with the same matrix A (assuming
Poisson arrivals with rate λ for the vectors) is given by

E[Zrep] ≤ E[Vp/r :p/r] +
λ((E[Vp/r :p/r])2 + Var[Vp/r :p/r])

2(1 − λE[Vp/r :p/r])
(147)

E[Zrep] ≥ E[Vp/r :p/r] +
λ((E[V

1:p/r])2 + Var[V1:p/r])
2(1 − λE[V

1:p/r])
(148)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:37

5 10 15 20 25
t

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
T
>
t)

Uncoded (r = 1)

Rep (r = 2)

MDS (k = 8)

LT (α = 2.0)

Ideal

(a) Latency Tail

10000 12000 14000 16000 18000 20000
c

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
C
>
c)

Ideal

Uncoded (r = 1)

Rep (r = 2)

MDS (k = 8)

LT (α = 2.0)

(b) Computation Tail

0.10 0.15 0.20 0.25
λ

0

50

100

150

200

E
[Z

]

Uncoded (r = 1)

Rep (r = 2)

MDS (k = 8)

LT (α = 2.0)

Ideal

(c) Mean Response Time

Fig. 11. The tail probability of the latency is the highest for the replication schemes. MDS codes perform
better in terms of latency but they perform a large number of redundant computations. The latency tail of LT
codes is the minimum among all the schemes. Moreover the LT coded schemes performs significantly fewer
redundant computations than MDS Codes or replication. When there are multiple jobs in the queue, the
mean response time is least for the LT Coded setting under all values of arrival rate λ. All simulations are
performed withm = 10000 matrix rows, p = 10 worker nodes, τ = 0.001, and a Pareto (1,3) distribution on
the initial delays Xi , i = 1, . . . ,p

whereWi = mini X(i−1)r+j + τmr/p, i = 1, . . . ,p/r .

Proof of Lemma 13. When a stream of incoming vectors x1, x2, . . . need to be multiplied with

the matrix A over p workers, the resulting system is a (p/r ,p/r) fork-join queue. This is because

each submatrix A1, . . . ,Ap/r is replicated at r workers and we need to wait for the fastest worker

for each submatrix. Thus ith group of r workers has an effective service time of Vi as defined in

(113). Since we need to wait for all p/r groups of r workers in this fashion it is equivalent to a

(p/r ,p/r) fork-join queue where the ith node has service time Vi . Once again the expression for

latency Zrep follows from Theorem 4 of [35] assuming Poisson arrivals. □

E ADDITIONAL THEORETICAL RESULTS
The following theorem compares the latency of the MDS coded, and ideal load balancing strate-

gies. It indicates that TMDS approaches Tideal only when the fastest k workers start computing at

approximately the same time while the stragglers do not start until much later. In this rare situation

neglecting partial computations by stragglers does not adversely impact latency performance.

However in all other cases discarding work done by stragglers causes TMDS to be larger than Tideal.

Theorem 6 (MDS v/s Ideal). The latency of the MDS coded strategy,TMDS is larger than the latency
of the ideal strategy Tideal with a high probability. Specifically Pr(TMDS > Tideal) = 1 − δMDS where

δMDS = Pr(Xk :p − X1:p ≤ τ ,Xk+1:p − Xk :p > τ
(m
k

− 1

)
) (149)

Proof. To compare the latency of the MDS coded strategy to that of the ideal scheme we note

that the latency Tideal of the ideal scheme, is the earliest time when

∑p
i=1

Bi = m, as illustrated

in Fig. 6. We note that, in this case it is not necessary that each worker has completed at least 1

computation. Specifically, if Tideal −Xi ≤ τ for any i then it means that worker i has not performed

even a single computation in the time that the system as a whole has completedm computations (

owing to the large initial delay Xi). Therefore we define

Wideal := {i : Tideal − Xi ≥ τ } (150)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:38 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

HereWideal is the set of workers for which Bi > 0 in time up to Tideal. We also note that

Tideal < Xi + τ (Bi + 1), for all i = 1, . . . ,p (151)

This is because at time Tideal each of the workers 1, . . . ,p, have completed B1, . . . ,Bp row-vector

product tasks respectively, but they may have partially completed the next task. The 1 added to

each Bi accounts for this edge effect, which is also illustrated in Fig. 6.

We will compare TMDS and Tideal for the following three cases assuming the same realizations of

initial delay Xi , i = 1, . . . ,p for both schemes (we will also assume without loss of generality that

X1 < X2 < . . . < Xp i.e Xi = Xi :p∀i):
• Case 1: If node k <Wideal, Bk = 0 in the ideal scheme. Thus if we use the ideal scheme the

latency is Tideal < Xk :p + τ (from (151)) whereas if we use the MDS coded scheme the latency

is TMDS = Xk :p + τm/k > Tideal.
• Case 2: If node k ∈ Wideal but Xk , maxi ∈Wideal

Xi then nodes 1, . . . ,k − 1 must also

lie in Wideal (since X1 < X2 < . . . < Xk) and at least one of nodes k + 1, . . . ,p must

also lie in Wideal (since Xk , maxi ∈Wideal
Xi . If we use the ideal scheme and assume that

node k performs m/k computations then nodes 1, . . . ,k − 1 must perform m/k or more

computations each (since since X1 < X2 < . . . < Xk). Together nodes 1, . . . ,p perform

at least k ×m/k = m computations and since at least one of nodes k + 1, . . . ,p must also

lie in Wideal, the total number of computations performed is greater thanm which is not

possible since the number of computations performed in the ideal scheme ism by definition.

Thus node k can perform at most (m/k − 1) computations and thus from (151) we have that

Tideal ≤ Xk :p + τ (m/k − 1) < TMDS.

• Case 3: If node k ∈ Wideal and Xk = maxi ∈Wideal
Xi then there are exactly k workers inWideal.

If Xk − X1 > τ then node 1 performs at least 1 more computation than node k since it takes

time τ for a node to perform a computation. In that case node k performs fewer thanm/k
computations since total number of computations performed by nodes 1, . . . ,k must bem.

Thus in this case Tideal < Xk + τm/k = TMDS (from (151)). Likewise for nodes 2, . . . ,k − 1 as

well. Thus Tideal = TMDS only when X1, . . . ,Xk−1 ≥ Xk − τ

Thus overall it is only in Case 3 above under specific circumstances that we can have Tideal = TMDS.

In all other cases Tideal < TMDS. Hence probabilistically Pr(TMDS > Tideal) = 1 − δMDS where

δMDS = Pr(Xk :p − X1:p ≤ τ ,Xk+1:p − Xk :p > τ
(m
k

− 1

)
) (152)

where the first condition is equivalent to X1:p , . . . ,Xk−1:p ≤ Xk :p by the definition of the order

statistics and the second condition ensures that Xk :p = maxi ∈Wideal
Xi (nodes k + 1, . . . ,p do not

start until node k has completedm/k computations). □

The following theorem shows that except in rare cases TRep is larger than Tideal.

Theorem 7 (Replication v/s Ideal). The latency of the replication coded strategy,Trep is larger than
the latency of the ideal strategy Tideal with a high probability. Specifically Pr(Trep > Tideal) = 1 − δrep
where

δrep = Pr

(
min

1≤i≤p/r
X (i)

2:r − max

1≤i≤p/r
X (i)

1:r > τ

(
mr

p
− 1

))
(153)

and X (i)
j = X(i−1)r+j .

Proof. In the r−replication scheme the matrix A is split into p/r submatrices A1, . . . Ap/r . Each
submatrix is replicated at r distinct workers and we wait for the fastest worker for each submatrix.

There are p/r such groups of workers, with all workers in group i computing the product Aix.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication 58:39

Following similar arguments to the MDS coded case, we can conclude that Trep = Tideal only
when the workers in each group other than the fastest worker do not start computing until the

fastest workers of all groups have finished their computations. The fastest worker group i is the
one that takes time Vi (in (113)) to compute Aix.
This is because in any other scenario the workers in the replications scheme that are not the

fastest in their respective groups perform redundant computations and hence some work is wasted

as compared to the ideal scheme where some computations could have been transferred from

the fastest workers to the slower workers in each group thus reducing the total time taken to

computem row-vector products. However if the slower workers in the groups do not start their

computations until after all the fastest workers across all groups complete their computations then

the replication and ideal schemes are essentially identical. This is because in this case even in the

ideal scheme no work could have been transferred from the fastest workers in each group to the

slow workers.

The following condition quantifies the above explanation,

min

1≤i≤p/r
X (i)

2:r − max

1≤i≤p/r
X (i)

1:r > τ

(
mr

p
− 1

)
(154)

This is becauseX (i)
1:r +τ (mr/p−1) is the time at which the fastest worker in group i (with initial delay

corresponding to X (i)
1:r) completesmr/p − 1 computations and starts working on the last ((mr/p)th)

computation. Thus even if the second slowest worker of the group (corresponding to X (i)
2:r) and

any other worker(s) starts after this time they cannot perform any computations before the fastest

worker completes all the computations assigned to it. Thus no computations are transferred to the

slower workers even in the ideal scheme in this case.

Here max
1≤i≤p/r X

(i)
1:r + τ

(
mr
p − 1

)
is the time taken by the slowest of the fastest workers across

all groups to completemr/p − 1 computations and min
1≤i≤p/r X

(i)
2:r is the initial delay of the worker

with the least initial delay among the second fastest workers of all groups.

Therefore Pr(Trep > Tideal) = 1 − δrep where

δrep = Pr

(
min

1≤i≤p/r
X (i)

2:r − max

1≤i≤p/r
X (i)

1:r > τ

(
mr

p
− 1

))
(155)

and X (i)
j = X(i−1)r+j □

F ADDITIONAL SIMULATIONS AND EXPERIMENTS
Additional Simulations: We simulate the MDS, replication, and LT-coded schemes under our

delay model ((5)) with initial delaysXi distributed according to a Pareto (1,3) distribution. The results

are summarised in Fig. 11. Once again we observe that LT coding (α = 2.0) clearly outperforms MDS

coding (k = 8) both in terms of latency (Fig. 11a), number of redundant computations (Fig. 11b),

and mean response time averaged over 10 trials with 100 jobs per trial and Poisson (λ) arrivals
(Fig. 11c).

Additional Experiments: We study the effect of worker failures in the different coded computing

strategies using an EC2 [1] cluster 10 t2.micro workers. Note that redundancy/coding is essential

if workers fail as the naive uncoded approach cannot handle the resulting loss of data. A is a

10000 × 10000 identity matrix and is encoded using replication (r = 2), MDS coding (k = 5), and
LT coding (α = 2.0). Results in Fig. 12 clearly show that the LT coded approach is more robust

multiple node failures than the other approaches.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

58:40 Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and Gauri Joshi

1 2 3
Number of Workers killed

0

1

2

3

4

5

6

7

T
im

e
(i

n
se

co
n

d
s)

2-Rep

MDS

LT

Fig. 12. Worker i has a random initial delay Xi , after which it completes row-vector product tasks (denoted
by the small rectangles), taking time τ per task. The latency T is the time until enough tasks have been
completed for the product b = Ax to be recovered.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 58. Publication date: December 2019.

	Abstract
	1 Introduction
	1.1 Previous Solution Approaches
	1.2 Rateless Coding Approach and its Benefits
	1.3 Main Theoretical and Experimental Results
	1.4 Organization

	2 Problem Formulation
	2.1 System Model
	2.2 Performance Criteria
	2.3 Benchmarks for Comparison

	3 Proposed Rateless Coded Strategy
	3.1 LT-Coded Matrix-vector Multiplication
	3.2 Distributed Implementation

	4 Performance Analysis
	4.1 Delay Model
	4.2 Ideal Load Balancing Strategy
	4.3 Rateless Coded Strategy
	4.4 MDS Coded Strategy
	4.5 Replication Strategy

	5 Queueing Analysis
	6 Experimental Results
	6.1 Parallel Computing Experiments
	6.2 Distributed Computing Experiments
	6.3 Serverless Computing Experiments

	7 Concluding Remarks
	8 Acknowledgements
	References
	A Properties of LT Codes
	B On the Order Statistics of Exponential Random Variables
	C Proof of Delay Analysis Results
	C.1 Ideal Load Balancing Strategy
	C.2 Rateless Coded Strategy
	C.3 MDS Coded Strategy
	C.4 Replication Strategy

	D Theoretical Results for Queueing Analysis
	E Additional Theoretical Results
	F Additional Simulations and Experiments

