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Abstract

//TRACE1 is a new approach for extracting and replaying
traces of parallel applications to recreate their I/O behav-
ior. Its tracing engine automatically discovers inter-node
data dependencies and inter-I/O compute times for each
node (process) in an application. This information is re-
flected in per-node annotated I/O traces. Such annota-
tion allows a parallel replayer to closely mimic the be-
havior of a traced application across a variety of stor-
age systems. When compared to other replay mecha-
nisms, //TRACE offers significant gains in replay accu-
racy. Overall, the average replay error for the parallel
applications evaluated in this paper is below 6%.

1 Introduction

I/O traces play a critical role in storage systems eval-
uation. They are captured through a variety of mech-
anisms [3, 4, 7, 16, 24, 50], analyzed to understand
the characteristics and demands of different applications,
and replayed against real and simulated storage systems
to recreate representative workloads. Often, traces are
much easier to work with than actual applications, par-
ticularly when the applications are complex to configure
and run, or involve confidential data or algorithms.

However, one well-known problem with trace replay is
the lack of appropriate feedback between storage re-
sponse times and the arrival rate of requests. In most sys-
tems, storage system performance affects how quickly
an application issues I/O. That is, the speed of a storage
system in part determines the speed of the application.
Unfortunately, information regarding such feedback is
rarely present in I/O traces, leaving replayers with little
guidance as to the proper replay rate. As a result, some
replayers use the traced inter-arrival times (i.e., timing-
accurate), some adjust the traced times to approximate
how a workload might scale, and some ignore the traced
times in favor of an “as-fast-as-possible” (AFAP) replay.
For many environments, none of these approaches is cor-
rect [17]. Worse, one rarely knows how incorrect.
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1Pronounced “parallel trace”
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Figure 1: An example trace replay. This graph plots band-
width over time, comparing an application to two different re-
players. The application [28] simulates the checkpointing of
a large-scale parallel scientific application. For this particular
configuration, the write phase has numerous data dependencies
(one outstanding I/O per process and a barrier synchronization
after each write I/O) and the read phase is dominated by com-
putation (processing of checkpoint data). AFAP replays the I/O
traces “as-fast-as-possible,” and //TRACE approximates both
the synchronization and compute time. Because AFAP ignores
synchronization and computation, it replays faster and places
different demands on the storage system. //TRACE, however,
closely tracks the application’s I/O behavior.

Tracing and replaying parallel applications adds com-
plexity to an already difficult problem. In particular, data
dependencies among the compute nodes in a parallel ap-
plication can further influence the I/O arrival rate and,
therefore, its demands on a storage system. So, in addi-
tion to computation time and I/O time, nodes in a par-
allel application also have synchronization time; such is
the case when, for example, one node’s output is another
node’s input. If a replay of a parallel application is to be-
have like the real application, such dependencies must be
respected. Otherwise, replay can result in unrealistic per-
formance or even replay errors (e.g., reading a file before
it is created). Figure 1 illustrates how synchronization
and computation can affect the replay accuracy.



Parallel applications represent an important class of ap-
plications in scientific and business environments (e.g.,
oil/gas, nuclear science, bioinformatics, computational
chemistry, ocean/atmosphere, and seismology). This pa-
per presents //TRACE, an approach to accurately tracing
and replaying their I/O in order to create representative
workloads for storage systems evaluation.

//TRACE actively manages the nodes in a traced appli-
cation in order to extract both the computation time and
information regarding data dependencies. It does so in a
black-box manner, requiring no modification to the ap-
plication or storage system. An application is executed
multiple times with artificial delays inserted into the I/O
stream of a selected node (called the “throttled” node).
Such delays expose data dependencies with other nodes
and also assist in determining the computation time be-
tween I/Os. I/O traces can then be annotated with this
information, allowing them to be replayed on a real stor-
age system with appropriate feedback between the stor-
age system and the I/O workload.

//TRACE includes an execution management script, a
tracing engine, multi-trace post-processing tools, and a
parallel trace replayer. Execution management consists
of running an application multiple times, each time de-
laying I/O from a different node to expose I/O depen-
dencies. The tracing engine interposes on C library calls
from an unmodified application to capture I/O requests
and responses. In the throttled node, this engine also de-
lays I/O requests. The post-processing tools merge I/O
traces from multiple runs and create per-node I/O traces
that are annotated with synchronization and computation
calls for replay. The parallel trace replayer launches a
set of processes, each of which replays a trace from a
given node by computing (via a tight loop that tracks the
CPU counter), synchronizing (via explicit SIGNAL() and
WAIT() calls), and issuing I/O requests as appropriate.

Experiments confirm that //TRACE can accurately recre-
ate the I/O of a parallel application. For all applications
evaluated in this paper, the average error is below 6%.
Of course, the cost of //TRACE is the extra time required
to extract the I/O dependencies. In the extreme, //TRACE

could require n runs to trace an application executed on
n nodes. Further, each of these runs will be slower than
normal because of the inserted I/O delays. Fortunately,
one can sample which nodes to throttle and which I/Os to
delay, thus introducing a useful trade-off between tracing
time and replay accuracy. For example, when tracing a
run of Quake [2] (earthquake simulation), delaying every
10 I/Os (an I/O sampling period of 10) increases tracing
time by a factor of 5 and yields a replay accuracy of 7%.
However, one can increase the period to 100 for an 18%
error and a tracing time increase of 1.7x.

This paper is organized as follows. Section 2 provides
more background, motivates the design of //TRACE, and
discusses the types of parallel applications for which it is
intended. Section 3 overviews the design of //TRACE.
Section 4 details the design and implementation of
//TRACE. Section 5 evaluates //TRACE. Section 6 sum-
marizes related work. Section 7 concludes.

2 Background & motivation

Storage system performance is critical for parallel appli-
cations that access large amounts of data. Of course, the
most accurate means of evaluating a storage system is to
run an application and measure its performance. How-
ever, taking such a “test drive” prior to making a de-
sign or purchase decision is not always feasible. Conse-
quently, the industry has relied on a wide variety of I/O
benchmarks (e.g., TPC benchmarks [46], Postmark [25],
IOzone [31], Bonnie [8], SPC [42], SPECsfs [41], and
Iometer [23]), many of which are even self-scaling [13]
and adjust with the speed of the storage system. Un-
fortunately, while benchmarks are excellent tools for de-
bugging and stress testing, using them to predict real
world performance can be challenging; they can also be
complex to configure and run [39]. In some cases, this
has led to the creation of pseudo-applications — bench-
marks crafted to reproduce the I/O activity of particular
applications [28]. Unfortunately, designing a pseudo-
application requires considerable expertise and knowl-
edge of the real application, making them rare.

Trace replay provides an alternative to benchmarks and
pseudo-applications: given a trace of I/O from a given
application, a replayer can read the trace and issue the
same I/O. The advantages of traces are their representa-
tiveness of real applications and their ease of use (appli-
cations can be difficult to configure or may even be confi-
dential). Unfortunately, existing tracing mechanisms do
not identify data dependencies across nodes (processes),
making accurate parallel trace replay difficult.

In general, the rate at which each node in a parallel ap-
plication issues I/O is influenced by its synchronization
with other nodes (its data dependencies) and the speed of
the storage system. In addition, the computation a node
performs between I/Os will determine the maximum I/O
rate. Unless I/O time, synchronization time, and com-
pute time are all considered, the I/O replay rate may dif-
fer substantially from that of the application.

This work explores a new approach to trace collection
and replay: a parallel trace replayer that issues the same
I/O as the traced application and approximates its inter-
I/O computation and data dependencies. In short, it tries
to behave just like the application.



2.1 Trace replay models

There are two common models for trace replay: closed
and open. In a closed model, I/O arrivals are dependent
on I/O completions. In an open model, they are not [40].
In a closed model, the replay rate is determined by the
think time between I/Os and the service time of each I/O
in the storage system. The faster the storage system com-
pletes the I/O, the faster the next one will be issued, until
think time is the limiting factor. In an open model, the
replay rate is unaffected by the storage system.

When viewed from the perspective of a storage system,
most I/O falls somewhere in between an open and closed
model [17]. This is particularly the case when file sys-
tems and other middleware (e.g., caches) modulate an
application’s I/O rate. However, when viewed from the
perspective of the application, the model is often a closed
one (i.e., a certain number of outstanding I/O requests
with a certain think time between I/Os). Therefore, as
long as the traces are captured above the caches of the
file and storage systems of interest (i.e., file-level as op-
posed to block-level), one can replay an application’s file
I/O using a closed model in order to create the same feed-
back as the traced application. The key challenge is de-
termining what portion of the think time is constant and
what portion will vary across storage systems.

For parallel applications, there are two components to
think time: compute time and synchronization time.
Compute time is that spent executing application code
and, for the purposes of storage system evaluation, can be
held constant during replay. Synchronization time, how-
ever, is variable — it represents time spent waiting on
other nodes because of a data dependency and can there-
fore vary based on the rates of progress of the nodes.

2.2 Synchronization and the effect on I/O

A variety of synchronization mechanisms are in use to-
day, including standard operating system mechanisms
(signals, pipes, lock files, memory-mapped I/O) [35],
message passing [20], shared memory [11], and remote
procedure calls [44]. Also, some applications use hybrid
approaches [34] (e.g., shared memory together with mes-
sage passing). Although many of these mechanisms can
be traced with a conventional tracing tool (e.g., ltrace,
strace, mpitrace), it is unclear how one could replay
asynchronous communication (e.g., applications using
select or poll) without a semantic understanding of the
application. Such asynchronous operations are used ex-
tensively in parallel applications in order to overlap com-
munication with computation. Further, some of these
synchronization mechanisms (e.g., shared memory) are
not traceable using conventional tracing software.
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Figure 2: A hypothetical parallel application. All nodes are
reading, modifying, and writing a shared data structure on disk,
and barriers are used between each stage to keep the nodes syn-
chronized. Node 1 happens to be the slowest node, forcing
nodes 0 and 2 to wait. Note that under a different storage sys-
tem, the I/O time for node 1 could change, thus resulting in
changes in the synchronization time for nodes 0 and 2.

For these reasons, tracing and replaying synchronization
calls is difficult. Namely, the variety of synchronization
mechanisms and their semantics would need to be un-
derstood, determining causality for asynchronous mes-
sages would require application-level knowledge, and
“untraceable” calls would not be easy to capture. Unfor-
tunately, ignoring synchronization is not a viable option.

Consider Figure 2 which illustrates a hypothetical paral-
lel application modifying a shared data structure; barri-
ers [33] are used to keep the nodes synchronized between
stages. As can be seen in the figure, the I/O time com-
poses only a fraction of the overall running time; there
is also compute time and synchronization (“wait”) time.
Moreover, if the speed of the storage system changes, the
time each node spends waiting on other nodes could also
change. These effects must be modeled during replay.

2.3 I/O throttling

The solution presented in this paper is motivated by
the desire for a portable tracing tool that does not re-
quire knowledge of the application or the synchroniza-
tion mechanisms being used. We accomplish this using
a well-known technique called I/O throttling [9, 21].



Throttling involves selectively slowing down the I/O re-
quests of an application, processing requests one at a
time in the order they are received. In doing so, one
can expose the data dependencies among the nodes in
a parallel application. Consider the case where one node
(node 0) writes a file that a second node (node 1) reads.
To ensure the proper ordering (write followed by read),
node 0 would signal node 1 after the file has been writ-
ten. However, if I/O requests from node 0 are delayed,
node 1 will block, waiting for the appropriate signal from
node 0 (e.g., a remote procedure call). Although an I/O
trace may not indicate the synchronization call, one can
determine that node 1 is blocked (e.g., because there is no
CPU or I/O activity) and conclude that it is blocked on
node 0. The I/O traces can then be annotated to include
this causal relationship between nodes 0 and 1.

Throttling I/O to expose dependencies and extract com-
pute time is suitable for applications with compute nodes
that produce deterministic I/O (i.e., for a given node, the
sequence of I/O is the same for each run). For example,
consider the case where n nodes write a file in a par-
titioned manner. That is, node 0 writes the first 1/nth

of the file, node 1 the second 1/nth, and so on. As
such, although the global I/O scheduling can vary non-
deterministically across multiple runs (e.g., due to pro-
cess scheduling), the I/O issued by each node is fixed.
For such applications, throttling will not change the I/O
issued by a given node, the order in which a given node
issues its I/O, or its data dependencies with other nodes;
throttling only influences the timing. Although a variety
of applications fit this model, we focus on parallel scien-
tific applications [37], as they produce interesting mixes
of computation, I/O, and synchronization.

3 Design overview

//TRACE discovers an application’s data dependencies
and compute time using I/O throttling. Summarizing
from Section 2, the design requirements are as follows:

1. To adjust with the speed of the storage system, the
traces must be replayed with a closed model.

2. To enforce data dependencies, the traces must be
annotated with the inter-node synchronization calls.

3. To model computation, the inter-I/O compute time
must be reflected in the traces.

4. To evaluate different file systems (e.g., log-
structured vs. journaled) and different storage sys-
tems (e.g., blocks vs. objects [29]), the traces must
be file-level traces, including all buffered and non-
buffered synchronous POSIX [32] file I/O (e.g.,
open, fopen, read, fread, write, fwrite, seek).

//TRACE is both a tracing engine and a replayer, designed
not to require semantic knowledge or instrumentation of
the application or its synchronization mechanisms. The
tracing engine, called the causality engine, is designed as
a library interposer [14] (which uses the LD PRELOAD
mechanism) and is run on all nodes in a parallel applica-
tion. The application does not need to be modified, but
must be dynamically linked to the causality engine. Any
shared library call issued by the application can be traced
and optionally delayed using this mechanism.

The objectives of the causality engine are to intercept
and trace the I/O calls, calculate the computation time
between I/Os, and discover any causal relationships (i.e.,
the data dependencies) across the nodes. All of this in-
formation is stored in a per-node annotated I/O trace. A
replayer (also distributed) can then mimic the behavior
of the traced application, by replaying the I/O, the com-
putation, and the synchronization. Although I/O calls to
any shared library (e.g., MPI-IO, libc) can be traced and
replayed, this work focuses on the POSIX I/O issued by
an application through libc.

3.1 Discovering data dependencies

In general, one can automatically discover the data de-
pendencies across all nodes by throttling each node in
turn. When a node is being throttled, its I/O is delayed
until all other nodes either exit or block/spin on an event.
If a node exits, then it is obviously not dependent on the
node being throttled. Conversely, any node that blocks
must have some data dependency, perhaps only indi-
rectly, with the throttled node. To reflect these dependen-
cies, the throttled node will add a SIGNAL() to its trace
and the blocking nodes will add a corresponding WAIT()
to their traces. Figure 3 illustrates an example.

Of course, delaying every I/O could increase the run-
ning time of an application considerably. For this rea-
son, one can selectively determine which I/Os to delay
(I/O sampling) and which nodes to throttle (node sam-
pling), thereby trading replay accuracy for tracing time.
This trade-off is discussed further in Section 5.

3.2 Discovering compute time

In addition to discovering data dependencies, throttling
assists in determining compute time. To determine the
compute time, one must ensure that synchronization time
is negligible or subtract the synchronization time from
the think time. This paper discusses both approaches,
but only the second is used in the evaluation.

Approach 1: The first approach recognizes that throt-
tling a node makes its synchronization time negligible.
When a node is being throttled, it is made to be slower



Node 0 (Throttled)

f h = open( “ f oo” )
COMPUTE( )
wr i t e( f h,  …)
COMPUTE( )
wr i t e( f h,  …)
COMPUTE( )
c l ose( f h)
SI GNAL( 1)
COMPUTE( )

Time Node 1 (Blocking)

WAI T( 0)
f h = open( “ f oo” )
COMPUTE( )
r ead( f h,  …)
COMPUTE( )
c l ose( f h)
COMPUTE( )

Figure 3: Example of trace annotation. In this example,
node 0 is writing to a file that node 1 is reading. By delay-
ing I/O on node 0, the dependency can be exposed. Node 1 will
block, waiting on node 0 to signal (through one of a number
of possible mechanisms) that the file has been closed. Once
the dependency has been discovered, the I/O traces are anno-
tated with SIGNAL() and WAIT() calls that can be replayed. In
addition, computation time can be added as COMPUTE() calls.

than all other nodes so as to expose data dependencies.
Consequently, the think time between I/Os is all com-
putation (e.g., node 1 in Figure 2 does not have to wait
on nodes 0 and 2, because node 1 is the slowest node).
The primary advantage of this approach is that it can be
used even if an application is using “untraceable” syn-
chronization mechanisms such as shared memory. The
disadvantage is that I/O sampling can affect the compu-
tation calculation. This is discussed more in Section 5.

Approach 2: The second approach recognizes that many
synchronization mechanisms are interrupt driven and
rely on library or system calls for synchronization (e.g.,
a node may block while reading a socket). Therefore,
given a list of calls that can potentially block, one can
interpose on and calculate the time spent in each call,
and then subtract this from the think time. Such an ap-
proach does not require a semantic understanding of any
of the synchronization calls. Of course, this approach
only works for synchronization mechanisms that issue
library or system calls and will not work with applica-
tions that use “untraceable” synchronization (e.g., shared
memory). Unlike the first approach, this one does not re-
quire a node to be throttled in order to extract computa-
tion, and the calculation is unaffected by I/O sampling.

Note, approaches 1 and 2 assume that multiple outstand-
ing I/Os are achieved via multiple threads, each issuing
synchronous I/O. The causality engine treats threads as
separate “nodes” and traces each independently.

3.3 Putting it all together

Trace collection is an iterative process, requiring that an
application be run multiple times, each time choosing a
different node to throttle. Then, given a collection of
traces (one trace for each of n application threads), a
distributed replayer (n replay threads, one per trace) can
replay the I/O, including any inter-I/O computation and
synchronization, against dummy data files. Figure 4 il-
lustrates this high-level architecture.

4 Detailed design

This section discusses the design of the causality engine
and trace replayer in greater detail.

4.1 The causality engine

There are two modes of operation for the causality en-
gine: throttled mode and unthrottled mode. For each run
of the application, exactly one node is in throttled mode;
all others are unthrottled. In both modes, each I/O is in-
tercepted by the causality engine and stored in a trace for
the respective node. This trace includes the I/O opera-
tions and their arguments. A node in throttled mode cre-
ates an I/O trace annotated with computation time (using
Approach 1 or 2 from Section 3.2) and the “signaling”
information. A node in unthrottled mode creates an I/O
trace annotated with the “waiting” information and also
the computation information if Approach 2 is used.

After m runs of an application (m ≤ n), each node has
m traces that must be merged. At most one of the traces
per node contains the I/O when that node is being throt-
tled, including SIGNAL() and COMPUTE() calls; all other
traces reflect the I/O when the node is in unthrottled
mode, including WAIT() calls, and also COMPUTE() calls
if Approach 2 is used. Note that regardless of the mode,
the I/O in all traces for a particular node should be identi-
cal, as our assumption is a deterministic I/O workload. If
the I/O being issued by the application changes, we can
easily detect this and report an appropriate error (e.g.,
“attempt to trace a non-deterministic application”).

4.1.1 Throttled mode

When a node is being throttled, up to three pieces of in-
formation are added to the trace for each I/O. First, the
compute time since the last I/O is determined (using Ap-
proach 1 or 2) and a COMPUTE(<seconds>) call is added
to the trace. Second, the I/O operation and its arguments
are added. Third, signaling information is added, as per
the I/O sampling period.
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Figure 4: High-level architecture. While an application is running (left half of figure) the nodes are traced by the causality engine
(a dynamically linked library) and selectively throttled to expose their data dependencies. Computation times are also estimated.
This information is then used to annotate the I/O traces with SIGNAL(), WAIT() and COMPUTE() calls that can be easily replayed in
a distributed replayer (right half of figure). During replay, dummy data files are use in place of the real data files.

The I/O sampling period determines how frequently the
causality engine delays I/O to check for dependencies
(e.g., a period of 1 indicates that every I/O is delayed)
and therefore determines how many data dependencies
are discovered. In general, if the sampling period is p,
the causality engine will discover dependencies within p
operations of the true dependency. Because the sampling
period determines the rate of throttling, too large a sam-
pling period can also affect the computation calculation.
In these cases, Approach 2 (Section 3.2) is preferred.

When an I/O is being delayed, the causality engine de-
lays issuing the I/O until all unthrottled nodes either exit
or block (i.e., a dependency has been found). A remote
procedure call is sent from the causality engine of the
throttled node to a watchdog process on each unthrot-
tled node to make this determination; some nodes may
have exited, others may be blocked. If a node has ex-
ited, then it is not dependent on the delayed I/O. Other-
wise, the throttled node adds a SIGNAL(<unthrottled
node id>) to its trace, and the unthrottled node adds a
corresponding WAIT(<throttled node id>) call to its
trace. After the throttled node has received a reply from
all of the watchdogs (one per unthrottled node), the I/O
is issued. Algorithm 1 shows the pseudocode.

Of course, delaying I/O in this manner can produce in-
direct dependencies. For example, referring back to
Figure 3, a sampling period of 1 will indicate that the
open() call for node 1 is dependent on each I/O from
node 0; namely, the open(), the two write() calls,
and the close() — and the traces will be annotated as
such to reflect this. However, the only signal needed is
that following the close() operation, and the redundant

SIGNAL() and WAIT() calls can be easily removed as a
preprocessing step to trace replay. The indirect depen-
dencies that cannot be removed are those due to tran-
sitive relationships. For example, if node 2 is depen-
dent on node 1, and node 1 on node 0, the causality en-
gine will detect the indirect dependency between nodes
0 and 2. Although these transitive dependencies add ad-
ditional SIGNAL() and WAIT() calls to the traces, they
never force a node to block unnecessarily.

As to selecting the proper sampling period, this depends
on the application and storage system. Some workloads
and storage systems may be more sensitive to changes in
inter-node synchronization than others, so no one sam-
pling period should be expected to work best for all. An
iterative approach for determining the proper sampling
period is presented in Section 5.

4.1.2 Unthrottled mode

When a node is being traced in unthrottled mode, up to
three pieces of information are added to the trace for each
I/O: a COMPUTE() call if Approach 2 is being used, the
I/O operation and its arguments, and optionally a WAIT()
call. The WAIT() is added by the watchdog process if it
determines that an application node is blocked.

Recall (Algorithm 1), when the throttled node delays an
I/O, it issues the NodeIsBlocked() call to each of the
unthrottled nodes. The watchdog is responsible for han-
dling this call. A node could block either in a system
call (e.g., while reading a socket) or through user-level
polling, and the watchdog should be able to handle both.



Algorithm 1: ThrottledMode. This function in-
tercepts every I/O operation issued by the throttled
node. First, the computation time since the previ-
ously issued I/O is added to the trace (Approach 1
shown). Computation time is simply the time since
the last I/O completed. Second, the current I/O op-
eration is added to the trace and optionally throttled
as per the sampling period. If the I/O is throttled, the
algorithm waits for all unthrottled nodes to block or
complete execution. If a node is blocked, NodeIs-
Blocked() will return true, and a signal to that node
will be added to the trace. Finally, the I/O is issued
and the completion time is recorded.

AddComputeToTrace(GetTime()−previousTime);1.1

AddOpToTrace();1.2

if opCount is divisible by SAMPLE PERIOD then1.3

foreach blocking node n do1.4

if NodeIsBlocked(n, thisNodeID) then1.5

AddSignalToTrace(n);1.6

endif1.7

endfch1.8

endif1.9

opCount← opCount +1;1.10

IssueIO();1.11

previousTime← GetTime();1.12

There are a variety of ways to determine if a node is
blocked; the approach used by //TRACE is a simple one.
Because blocking system calls used for inter-process
synchronization (e.g., socket I/O, polling, select, pipes)
can be intercepted by the causality engine, one can de-
termine the time spent in each call. Similarly, if polling
is used, the watchdog can just as easily determine the
time spent computing (i.e., the time since the last I/O call
completed). Therefore, to determine if an application is
blocked, the watchdog checks with the causality engine
(through shared memory) to see if the node is in a com-
pute phase or in a system call. It then checks if the time
spent in the compute phase or system call has exceeded a
predetermined maximum; if so, it is blocked waiting on
the throttled node. Note, this approach does not require
a semantic understanding of any of the synchronization
calls. Rather, the watchdog only needs to check that a
computation phase or system call is not taking too long.

The maximum length of a computation phase or system
call can be obtained from an analysis of an unthrottled
run of the application (e.g., by using Unix strace to de-
termine the maximum inter-arrival delay and system call
time). These maxima must be chosen large enough to
account for system variance. If too small a maximum
is used, the watchdog may prematurely conclude that an

--------- --------- ---------
Trace 0.0 Trace 0.1 Trace 0.2
--------- --------- ---------
read() WAIT(1) WAIT(2)
SIGNAL(1) read() read()
SIGNAL(2)
COMPUTE()

Figure 5: Before merging the traces. The application is such
that node 0 waits for nodes 1 and 2 before issuing its read()
and notifies nodes 1 and 2 after completing its read(). Trace
0.0 shows the trace for node 0 when node 0 is being throttled.
Trace 0.1 is the trace for node 0 when node 1 is being throt-
tled. And Trace 0.2 is the trace for node 0 when node 2 is
being throttled. Similar traces would exist for nodes 1 and 2.

application is blocked. In the best case, this introduces
extra synchronization. In the worst case, it can lead to
deadlock during replay. One heuristic used in this work
is to increase the maximum system call time by a few
factors. For example, if the maximum system call time
in an unthrottled run of the application is 50 ms, then the
maximum might be set to 100 ms; any system call taking
longer than 100 ms is assumed to be blocked. Selecting
too large a value only affects the trace extraction time.

4.2 Trace replay

Preparing traces for replay:

Following m runs of an application through the causality
engine, each node has m traces that must be merged. All
m traces for a given node should contain the same file
I/O calls, otherwise an error will be flagged indicating
that the application is not deterministic.

Recall that at most one of the m traces for a given node
has the SIGNAL() calls for that node; this is the trace
produced when the node is being throttled. The other
traces for that node only have the WAIT() calls; these are
the traces produced when other nodes are being throttled.
After the merge, each I/O has at most m− 1 preceding
WAIT() calls, m−1 succeeding SIGNAL() calls, and one
COMPUTE() call (obtained using Approaches 1 or 2).

The example in Figure 5 shows the trace files for a hy-
pothetical 3-node application. In this case, every node is
throttled in turn. Only the traces for node 0 are shown.
A merge of these three traces will produce the final trace
for node 0 (Figure 6).

Replaying the traces:

After traces have been annotated with COMPUTE(),
SIGNAL(), and WAIT() calls, replay is straightforward,
and the traces are easy to interpret. Each file operation
can be replayed almost as-is; the syntax is similar to that



-------
Trace 0
-------
WAIT(1)
WAIT(2)
read()
SIGNAL(1)
SIGNAL(2)
COMPUTE()

Figure 6: After merging the trace files. Trace 0.0, Trace
0.1, and Trace 0.2 are combined into one trace file for node
0. The merging process begins by creating a new trace file for
node 0. For each I/O, all WAIT() calls are added first (the order
does not matter), then the I/O call, then the SIGNAL() calls, and
finally the COMPUTE().

of Unix strace. Of course, filenames must be modified to
point to dummy data files (which must be created prior
to replay if they are not created by the application) and
the replayers must maintain a mapping between the file
handles in the trace and those assigned during replay.
As for the synchronization, developers are free to imple-
ment these calls using any synchronization library (e.g.,
MPI [20], Java [19, 43], CORBA [49]) that is convenient
(we use MPI); the COMPUTE() call is implemented by
spinning for the specified amount of time. Computation
is simulated by spinning, rather than sleeping, in order to
induce a CPU load on the system like the application.

Figure 7 shows a merged trace file, obtained via the
causality engine from a parallel scientific application [2].
In addition to enabling accurate replay, a trace instru-
mented with synchronization and computation reveals
interesting information regarding program structure.

5 Evaluation

This work is motivated by four hypotheses.

Hypothesis 1 Data dependencies and computation must
be independently modeled during replay, otherwise
the replay may differ from the traced application.

Hypothesis 2 By throttling every node and delaying ev-
ery I/O, the I/O dependencies and compute time can
be discovered and accurately replayed.

Hypothesis 3 Not every I/O necessarily needs to be de-
layed in order to achieve good replay accuracy.

Hypothesis 4 Not every node necessarily needs to be
throttled in order to achieve good replay accuracy.

To test these hypotheses, three applications are traced
and replayed across three different storage systems. The

/* barrier before opening output file */
WAIT(1)
WAIT(2)
SIGNAL(1)
SIGNAL(2)

/* open output file */
open64m("/pvfs2/output/mesh.e", 578, 416 ) = 17
COMPUTE(0.000148622)

/* write output file */
write(17, 4096) = 4096
COMPUTE(0.131106558)
_llseek(17, 8192, SEEK_SET) = 8192
COMPUTE(0.000000605)
write(17, 4096) = 4096
COMPUTE(0.000022173)

Figure 7: Example trace file. This is a snippet from a merged
trace file for node 0 in a 3-node run of Quake, a parallel scien-
tific application that simulates seismic events. The causality
engine discovers that all nodes synchronize before opening and
writing their output file (a mesh describing the forces during an
earthquake). When replaying this trace, the open calls must be
modified to point to dummy files that can be read and written.
The replayer must maintain a mapping between the file handles
in the trace (17 in this case) and those assigned during replay.

applications and storage systems chosen have different
performance characteristics in order to highlight how ap-
plication I/O rates scale (differently) across storage sys-
tems, and illustrate how //TRACE can collect traces on
one storage system and accurately replay them on an-
other. Recall, the primary goal of this work is to evaluate
a new storage system, using trace replay to simulate the
application. As such, traces are normally collected from
one storage system and replayed on another.

There are three replay modes we could use as a base-
line for comparison: a closed-loop as-fast-as-possible re-
play that ignores the think time between I/Os (AFAP), a
closed-loop replay that replays think time (we call this
think-limited), and an open-loop replay that issues I/O
at the same time they are issued in the trace (timing-
accurate [3]). Think-limited assumes that the think time
(some combination of compute and synchronization) be-
tween I/Os is fixed. In general, we find think-limited
to be more accurate than AFAP and therefore use it as
our baseline comparator. A timing-accurate replay is not
considered because, by definition, it will have an iden-
tical running time to the traced application. Note, a re-
player that only models compute time (and ignores syn-
chronization) requires some mechanism to distinguish
compute time from synchronization time (e.g., a causal-



ity engine). Think-limited is therefore the best one can
do before introducing such a mechanism.

Experiment 1 (Hypothesis 1) compares the running time
of think-limited against the application. Because think-
limited assumes a fixed synchronization time, one should
expect high replay error when an application with signifi-
cant synchronization time is traced on one storage system
and replayed on another that has different performance.

Experiment 2 (Hypothesis 2) uses the causality engine to
create annotated I/O traces. The traces are replayed and
compared against think-limited.

Experiment 3 (Hypothesis 3) uses I/O sampling to ex-
plore the trade-off between tracing time and replay accu-
racy. Similarly, Experiment 4 (Hypothesis 4) uses node
sampling to illustrate that not all nodes necessarily need
to be throttled in order to achieve a good replay accuracy.

For all experiments, the traces used during replay are ob-
tained from a storage system other than the one being
evaluated. In other words, if storage system A is being
evaluated, then the traces used for replay will have been
collected on either storage system B or C. We report the
error of the trace that produced the greatest replay error.

In all tests, running time is used to determine the replay
accuracy, and the percent error is the evaluation met-
ric. The reported errors are averages over at least 3 runs.
More specifically, percent error is calculated as follows:

ApplicationTime−ReplayTime
ApplicationTime

×100

Average bandwidth and throughput are not reported, as
these are simply functions of the running time.

5.1 Experimental setup

Three parallel applications are used in the evaluation:
Pseudo, Fitness, and Quake. All three applications use
MPI [20] for synchronization (none use MPI-IO).

Pseudo is a pseudo-application from Los Alamos Na-
tional Labs [28]. It simulates the defensive check-
pointing process of a large-scale computation: MPI pro-
cesses write a checkpoint file (with interleaved ac-
cess), synchronize, and then read back the file. Op-
tional flags specify whether or not nodes also synchro-
nize after every write I/O, and if there is computa-
tion on the data between read I/Os. Three versions of
the pseudo-application are evaluated: one without any
flags specified (Pseudo), one with barrier synchroniza-
tion (PseudoSync), and one with both synchronization
and computation (PseudoSyncDat2).

2We increased the computation after each read by a factor of 100 to
make PseudoSyncDat significantly different than PseudoSync.

Fitness is a parallel workload generator from In-
tel [22]. The generator is configured so that n MPI pro-
cesses read non-overlapping portions of a file in turn; the
first node reads its portion, then the second node, etc.
There are only n−1 data dependencies: node 0 signaling
node 1, node 1 signaling node 2, etc. This test illustrates
a case where nodes are not proceeding strictly in parallel,
but rather have some ordering that must be respected.

Quake is a parallel application developed at Carnegie
Mellon University, used for simulating earthquakes [2].
It uses the finite element method to solve a set of partial
differential equations that describe how seismic waves
travel through the Earth (modeled as a mesh). The execu-
tion is divided into three phases. Phase 1 builds a multi-
resolution mesh to model the region of ground under
evaluation. The model, represented as an etree [47], is
an on-disk database structure; the portion of the database
accessed by each node depends on the region of the
ground assigned to that node. Phase 2 writes the mesh
structure to disk; node 0 collects the mesh data from all
other nodes and performs the write. Phase 3 solves the
equations to propagate the waves through time; compu-
tation is interleaved with the I/O, and the state of the sim-
ulated region is periodically written to disk by all nodes.
Quake runs on a parallel file system (PVFS2 [10]) which
is mounted on the storage system under evaluation.

The applications are traced and replayed on three storage
systems. The storage systems are iSCSI [38] RAID ar-
rays with different RAID levels and varying amounts of
disk and cache space. Specifically, VendorA is a 14-disk
(400GB 7K RPM Hitachi Deskstar SATA) RAID-50 ar-
ray with 1GB of RAM; VendorB is a 6-disk (250GB 7K
RPM Seagate Barracuda SATA) RAID-0 with 512 MB of
RAM; and VendorC is an 8-disk (250GB 7K RPM Sea-
gate Barracuda SATA) RAID-10 with 512 MB of RAM.

The applications and replayer are run on dedicated com-
pute clusters. Pseudo and Fitness are run on Dell
PowerEdge 650s (2.67 GHz Pentium 4, 1 GB RAM,
GbE, Linux 2.6.12); Fitness is configured for 4 nodes,
Pseudo is configured for 8. Quake is run on a cluster
of Supermicros (3.0 GHz dual Pentium 4 Xeon, 2.0 GB
RAM, GbE, Linux 2.6.12), and is configured for 8 nodes.
The local disk is only used to store the trace files and the
operating system. Pseudo and Fitness access the arrays
in raw mode. For these applications, each machine in the
cluster connects to the same array using an open source
iSCSI driver [22]. For Quake, each node runs PVFS2
and connects to the same PVFS2 server, which connects
to one of the storage arrays via iSCSI.
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Figure 8: Think-limited error (Experiment 1). Think-
limited is most accurate for Pseudo, which contains lit-
tle synchronization. The other applications (PseudoSync,
PseudoSyncDat, Fitness, and Quake) experience more error.

5.2 Experiment 1 (think-limited)

Think-limited replays the trace files against the storage
devices with a fixed amount of think time between I/Os.
The I/O traces are collected through the causality engine
running in a special mode: no I/O is delayed and the
COMPUTE() calls also include any synchronization time.

Figure 8 shows the replay error of think-limited. The best
result is for Pseudo, which performs little synchroniza-
tion (a single barrier between the write phase and read
phase). The replay errors on the VendorA, VendorB, and
VendorC, storage systems are, respectively, 19%, 4%,
and 7% (i.e., the trace replay time is within 19% of the
application running time across all storage systems). Un-
fortunately, it is only for applications such as these (i.e.,
few data dependencies) that think-limited does well.

Looking now at PseudoSync, one can see the effects of
synchronization. All nodes write their checkpoints in
lockstep, performing a barrier synchronization after ev-
ery write I/O. The errors are 82%, 23%, and 31%, indi-
cating that synchronization, when assumed to be fixed,
can lead to significant replay error when traces collected
from one storage system are replayed on another.

In PseudoSyncDat, nodes synchronize between I/Os and
also perform computation. The errors are 33%, 21%, and
15%. In this case, adding computation makes the replay
time less dependent on synchronization.

Fitness is a partitioned, read-only workload. Each node
sequentially reads a 1 GB region of the disk, with no
overlap among the nodes. The nodes proceed sequen-
tially: node 0 reads its entire region first and then sig-
nals node 1, then node 1 reads its region and signals

node 2, etc. Ignoring these data dependencies during
replay will result in concurrent access from each node,
which in this case increases performance on each storage
system.3 The replay errors are 166%, 205%, and 40%.

Quake represents a complex application with multiple
I/O phases, each with a different mix of compute and
synchronization. The think-limited replay errors for
Quake are 21%, 26%, and 25%. As with the other ap-
plications tested, these errors in running time translate to
larger errors in terms of bandwidth and throughput. For
example, in the case of Quake, think-limited transfers the
same data in 79%, 74%, and 75% of the time, resulting
in bandwidth and throughput differences of 27%, 35%,
and 33%, respectively. This places unrealistic demands
on the storage system under evaluation.

5.3 Experiment 2 (I/O throttling)

Experiment two compares the accuracy of //TRACE and
think-limited. Results are shown in Figure 9, which is the
same as Figure 8, with //TRACE added for comparison.

//TRACE offers no significant improvement for Pseudo,
and this result is expected given that Pseudo has few
data dependencies. However, for both PseudoSync
and PseudoSyncDat, //TRACE offers substantial gains.
Namely, the maximum replay error is reduced from
82% to 17% for PseudoSync and 33% to 10% for
PseudoSyncDat. These improvements are due to the re-
played synchronization: a barrier after every write I/O,
which //TRACE approximates with 8 SIGNAL() and 8
WAIT() calls per node (a barrier requires all nodes to sig-
nal and wait on all other nodes before proceeding).

Looking at Fitness, one sees even greater improve-
ment. Namely, the maximum replay error is reduced
from 205% to 5%. There are only 3 data dependencies
approximated by //TRACE: node 0 signaling node 1 af-
ter it completes is read, 1 signaling 2, and 2 signaling
3. Nonetheless, these dependencies enforce a sequential
execution of the I/O (which is what Fitness intended);
when ignored, the result is concurrent access from all
nodes (a different workload altogether). Therefore, it is
not the number of data dependencies discovered that de-
termines replay accuracy, but rather how these dependen-
cies impact the storage system.

The Quake workload highlights how accurately //TRACE

replays complex applications with multiple I/O phases,
having different mixes of I/O, compute, and synchroniza-
tion. Relative to think-limited, the maximum replay error
is reduced from 26% to 8%.

3For storage devices with little cache space and no read-ahead, con-
current sequential read accesses can increase the number of seek oper-
ations and decrease performance.
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Figure 9: Think-limited vs. //TRACE (Experiment 2). The error incurred by //TRACE is less than think-limited across all
applications and storage arrays. The improvement is most pronounced for the applications with large amounts of synchronization.

5.4 Experiment 3 (I/O sampling)

The causality engine can throttle every I/O issued by ev-
ery node. However, sufficient replay accuracy can be ob-
tained in significantly less time. In particular, one can
sample across both dimensions (i.e., which I/Os to delay
and which nodes to run in throttled mode). This experi-
ment explores the first dimension, specifically the trade-
off between replay accuracy and the I/O sampling period.

Five sampling periods are compared (1, 5, 10, 100, and
1000). As discussed in Section 3, the period determines
the frequency with which I/O is delayed. If the sampling
period is 1, every I/O is delayed. If the sampling period
is 5, every 5th I/O is delayed, etc. Given this, one would
expect the sampling period to have the greatest impact on
applications with a large number of I/O dependencies.

Note, I/O sampling can affect the computation calcula-
tion when using the throttling-based approach (Approach
1 in Section 3.2). Recall that throttling a node makes it
slower than all the others. If the sampling frequency is
too low (a large sampling period), then that node may not
always be the slowest, thereby potentially introducing
synchronization time into the trace which would be inad-
vertently counted as computation. Therefore, timing the
system calls to determine computation time (Approach 2
in Section 3.2) is a more effective approach when using
large sampling periods. None of the applications evalu-
ated use “untraceable” mechanisms for synchronization,
allowing Approach 2 to work effectively.

Figure 10 plots replay accuracy against the I/O sampling
period, for each of the applications and storage systems
being evaluated. Beginning with Pseudo, for which there
are few data dependencies (i.e., all nodes must complete
their last write before any node begins reading the check-

point), one should expect little difference in replay error
among the different sampling periods. As shown in the
figure, the replay error for Pseudo is within 10% for all
sampling periods and storage arrays.

PseudoSync and PseudoSyncDat behave quite differ-
ently (i.e., a barrier after every write I/O) and high-
light the trade-off between tracing time and sampling pe-
riod. As shown in the figure, replay error quickly de-
creases with smaller sampling periods. Notice the promi-
nent staircase effect as the sampling is decreased from
1000 to 1. These applications represent the worst case
scenario for sampling, where data dependencies are the
primary factor influencing the replay rate.

Looking now at Fitness, one sees behavior very similar
to Pseudo. Both have few data dependencies and do not
require frequent I/O sampling for accurate replay. The
error for Fitness is within 5% for all sampling periods.

Quake performance is influenced by synchronization
(like PseudoSync and PseudoSyncDat). So, discover-
ing more data dependencies offers improvements in re-
play accuracy. For example, an I/O sampling period of 5
yields a 2.9% replay error, compared to 21% error for an
I/O sampling period of 1000.

5.4.1 I/O sampling discussion

To choose the “optimal” sampling period, one must con-
sider both the application and the storage system. The
only sampling period guaranteed to find all of the data
dependencies, for arbitrary applications and storage sys-
tems, is a period of 1. Larger sampling periods may be-
gin to introduce some amount of tracing error. The trade-
off is replay accuracy for tracing time.
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Figure 10: Sampling vs. accuracy trade-off (Experiment 3). By sampling which I/Os to delay, the tracing time can be reduced
at the potential cost of replay accuracy. This graph plots the replay error over each application and storage system, for different
sampling periods: 1000, 100, 10, 5, and 1. Think-limited (TL) is shown for comparison. The fractional increase in running time
for the application is shown above each bar. These graphs illustrate the trade-off between tracing time and replay accuracy, but also
show that larger sampling periods can achieve good replay accuracy, with minimal impact on the running time. (Note, the smallest
sampling period shown for Quake is 5, as this period already produces only a 2.9% replay error.)

Intuitively, applications with a large number of data de-
pendencies will realize longer tracing times as the data
dependencies are being discovered by the causality en-
gine. Recall from Section 4.1 that for every delayed I/O,
the throttled node waits for all other nodes to block or
complete execution, and the time for the watchdog to
conclude that a node is blocked is derived from the ex-
pected maximum compute phase or system call time for
that application node. Therefore, the tracing time can
vary dramatically across applications and storage sys-
tems. Figure 10 shows the average increases in appli-
cation running time for various I/O sampling periods. In
the best case, I/O sampling introduces almost no over-
head (a running time increase close to 1.0) and yields sig-
nificantly better replay accuracy than think-limited (e.g.,
sampling every 1000 I/Os of PseudoSync reduces the er-
ror of think-limited by over a factor of 3 on VendorA,
from 82% to 26%).

In practice, one can trace applications with a large sam-
pling period (e.g., 1000) and work toward smaller sam-
pling periods until a desired accuracy, or a limit on the
acceptable tracing time, is reached. Of course, the “op-
timal” sampling period of an application when traced
on one storage system may not be optimal for another.
Therefore, one should replay a trace across a collection
of different storage systems to help validate the accuracy
of a given sampling period. We believe that develop-
ing heuristics for validating traces across different stor-
age systems in order to determine a “globally optimal”
sampling period is an interesting area for future research.

However, even with an optimally selected sampling pe-
riod, an application is still run once for each application
node in order to extract I/O dependencies. Therefore,
node sampling (sampling which nodes to throttle) is nec-
essary to further reduce the tracing time.



5.5 Experiment 4 (Node sampling)

This experiment shows that low replay error can be
achieved without having to throttle every node. It com-
pares the replay error for various values of m (the number
of nodes throttled, chosen independently at random).

In some cases, node sampling can introduce error. Such
is the case with Fitness, which only has 3 data depen-
dencies. If any one of these is omitted, one of the nodes
will issue I/O out of turn (resulting in concurrent access
to the storage system). This represents a pathological
case for node sampling. For example, when running on
the VendorB platform, replay errors when throttling 1, 2,
3, and 4 nodes, are 37%, 29%, 17%, and 5%.

Quake and PseudoSyncDat are more typical applica-
tions. Figure 11 plots their error. With Quake, one
achieves an error of 13% when throttling 2 of the 8 nodes
(I/O sampling period of 5). Similarly, PseudoSyncDat
achieves an 8% error when throttling 4 of the 8 nodes
(I/O sampling period of 1). As with I/O sampling, one
can sample nodes iteratively until a desired accuracy is
achieved, and the traces can be evaluated across various
storage systems to validate accuracy.

Interestingly, throttling more nodes does not necessarily
improve replay accuracy (e.g., randomly throttling four
nodes in Quake produces more error than throttling two).
Because this experiment randomly selects the the throt-
tled nodes, the sampled nodes may not necessarily be
the ones with the most performance-affecting data de-
pendencies. Therefore, heuristics for intelligent node
sampling are required to more effectively guide the trace
collection process and further reduce tracing time. In
addition, learning to recognize common synchronization
patterns (e.g,. barrier synchronization) could reduce the
number of nodes that would need to be throttled. These
are both interesting areas of future research.

6 Related work

A variety of tracing tools are available for characterizing
workloads and evaluating storage systems [4, 7, 16, 24,
50]. However, these solutions assume no data dependen-
cies, making accurate parallel trace replay difficult.

There are also a number of tools for tracing, replaying
and debugging parallel applications [5, 15, 18, 26, 30,
36]. Because these tools are used to reduce the inher-
ent non-determinism in message passing programs in or-
der to make debugging easier (e.g., to catch race con-
ditions or deadlock), they deterministically replay non-
deterministic applications in order to produce the same
set of events, and hence synchronization times, that oc-
curred during the traced run. In contrast, the goal of
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Figure 11: Node sampling (Experiment 4). Low replay er-
ror can be achieved without having to throttle every node. This
graph plots the replay error for various values of m (number of
nodes throttled). For Quake, error increases when sampling 4
nodes instead of 2, indicating that the nodes randomly selected
for throttling determine the replay accuracy. (Not all storage
systems are presented in this graph. The PseudoSyncDat re-
sults are from the VendorC array and Quake is from VendorA.)

//TRACE is to replay I/O traces so as to reproduce (real-
istically) any non-determinism in the the global ordering
of I/O being issued by the compute nodes.

Throttling has been used successfully elsewhere to cor-
relate events [9, 21]. By imposing variable delays in sys-
tem components, one can confirm causal relationships
and learn much about the internals of a complex dis-
tributed system. //TRACE follows this same philosophy,
by delaying I/O at the system call level in order to expose
the causal relationships among nodes in a parallel appli-
cation; this information is then used to approximate the
causal relationships during trace replay.

There are also black-box techniques for intelligently
“guessing” causality, and these do not require throttling
or perturbing the system. In particular, message-level
traces can be correlated using signal processing tech-
niques [1] and statistics [12]. The challenge is distin-
guishing causal relationships from coincidental ones.

Operating system events can be used to track the resource
consumption of an application [6, 45] and also determine
the dominant causal paths in a distributed system. Such
“whitebox” techniques would complement //TRACE, es-
pecially when debugging the performance of a system,
by providing detail as to the source of a data dependency.
In addition, system call tracing has been successfully
used to discover dependencies among processes and files
for intrusion detection [27] and result caching [48].



7 Conclusion

This paper presents a technique for accurately extract-
ing and replaying I/O traces from parallel applications.
By selectively delaying I/O while tracing an application,
computation time and inter-node dependencies can be
discovered and approximated in trace annotations. Un-
like previous approaches to trace collection and replay,
such approximation allows a replayer to closely mimic
the behavior of a parallel application. Across the appli-
cations and storage systems evaluated in this study, the
average replay error is below 6%.
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