Workshopon Interfacesand Abstractiondor ScientificData Storage(IASDS10),
co-locatedwith IEEE Int. Conferenceon ClusterComputing2010(Cluster10) Heraklion,Greece Septembe2010.

pWalrus: Towards Better Integration of Parallel File Systems into Cloud Storage

Yoshihisa Abe and Garth Gibson
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA
{yoshiabe, garth}@cs.cmu.edu

Abstract—Amazon S3-style storage is an attractive option
for clouds that provides data access over HTTP/HTTPS. At
the same time, parallel file systems are an essential component
in privately owned clusters that enable highly scalable data-
intensive computing. In this work, we take advantage of both of
those storage options, and propose pWalrus, a storage service
layer that integrates parallel file systems effectively into cloud
storage. Essentially, it exposes the mapping between S3 objects
and backing files stored in an underlying parallel file system,
and allows users to selectively use the S3 interface and direct
access to the files. We describe the architecture of pWalrus,
and present preliminary results showing its potential to exploit
the performance and scalability of parallel file systems.

Keywords-high performance computing; parallel and dis-
tributed file systems; cloud computing;

I. INTRODUCTION

The Amazon S3 API [1] has gained popularity as the
primary interface to public cloud storage. It provides cloud
users with a convenient way of uploading and downloading
data from persistent storage over HTTP/HTTPS. With a
S3 storage service users have easy access to their data
through this ubiquitous interface regardless of their personal
computer’s location. Once in the cloud, users’ applications
use the same HTTP interface to retrieve data from S3 before
processing it. Finally, the same or other users outside the
cloud can download results, or upload new data sets to be
processed the same way. The simplicity and ubiquity of
data access is a key advantage of S3 storage, while using
other methods such as network or distributed file systems to
transfer data usually involves administrative configuration
for each end-user environment and personal computer.

Although the ubiquitous data accessibility provided by
S3 services is also beneficial in private cloud computing
environments, such as Eucalyptus [2], private cloud users are
also likely to desire full use of the performance and capacity
of purchased storage resources. In particular, parallel file
systems, such as PVFS [3], PanFS [4], GPFS [5], and
Lustre [6], play a fundamental role in cluster computing
environments as storage capable of high performance and
scalability. In order to accommodate applications with very
high parallelism and performance, it is essential to ensure
that they are able to exploit the scalability of such parallel
file systems. If an S3 service is deployed in a cloud, it
would occupy physical storage that could otherwise have

978-1-4244-8396-9/10/$26.00 (©2010 IEEE.

been available to a parallel file system, reducing scalability
as well as capacity. In addition, if the S3 service and parallel
file system are separate storage options, users may end
up duplicating their data in both, which leads to further
inefficiency of storage capacity.

For this reason, private cloud administration demands
good integration of the convenience and performance ef-
ficiency that S3 storage and parallel file systems provide,
respectively. Table I summarizes characteristics of these
two storage options. As the table shows, S3 storage and
parallel file systems complement each other. S3 storage
enhances the accessibility of data, making it available to
users anywhere connected to the Internet, while data in a
parallel file system is available only to users in environments
properly configured and maintained by administrators to
access it. On the other hand, parallel file systems are capable
of handling high degrees of concurrency and allow direct and
efficient reads and writes to partial files, while S3 hides it
behind an interface that allows access only at the granularity
of whole objects, even for access from the cloud computer
nodes in the same data center. For the maximum usability
of data storage in clouds, users should have the opportunity
to selectively use those two types of access methods to their
data.

In this paper, we propose pWalrus, a single storage model
for cloud computing environments that takes advantage of
the benefits of both S3-style storage and parallel file systems.
In our model, an S3 service acts as a thin layer consisting
of multiple servers, built on top of a parallel file system
available in the underlying cluster environment. Users inside
the cluster have two access paths to their data: S3 and direct
access to the parallel file system. Thus, they may choose to
use either interface for convenience or performance reasons.
For example, if private cloud computing applications are
written using the POSIX interface, they can obtain direct
parallel file system access, while users outside the cloud
still have the universal access to their data that S3 offers.

pWalrus is implemented as a modification to Walrus, the
S3-compliant storage service of Eucalyptus [2]. pWalrus
seeks to improve the original storage model of Walrus by
(1) distributing workloads to multiple servers, (2) allowing
direct file system access to data in addition to access over
HTTP/HTTPS, (3) giving users the choice to read or write

jdigney
Text Box
Workshop on Interfaces and Abstractions for Scientific Data Storage (IASDS10),
co-located with IEEE Int. Conference on Cluster Computing 2010 (Cluster10), Heraklion, Greece, September 2010.

Table T
CHARACTERISTICS OF S3 STORAGE AND PARALLEL FILE SYSTEMS

Strengths

Restrictions

S3 - Facilitated access through a uniform interface
- Universal accessibility regardless of user environments

- PUT/GET access to objects in their entirety

Parallel File Systems | - Scalable performance

- POSIX interface with partial reads and writes

- Require administrative work to allow access

partial files, and (4) eliminating the process of copying
S3 objects to file systems before working on them, which
saves storage space as well as CPU time and networking
bandwidth.

The remainder of the paper is organized as follows. In
Section II, we summarize the background. We describe the
design of pWalrus in Section III and show the benefits
of providing a parallelized S3 service and allowing direct
access to a parallel file system in Section IV. Finally,
we summarize related work in Section V and conclude in
Section VI.

II. BACKGROUND
A. Amazon Simple Storage Service

Amazon Simple Storage Service (Amazon S3) [1] is an
Internet-based storage service with a simple set of function-
alities that provides virtually unlimited storage space. Users
periodically pay for the service based on the amount of data
stored, data transferred, and access requests made. The main
features of Amazon S3 are summarized below. We refer the
reader to Amazon’s online documentation of S3 for further
details.

o Users create buckets, which are containers for data, and
store in them objects, which are the base unit of user
data.

o Users upload or download entire objects in a single
operation, each up to 5 GB and with a unique key as
its identifier, from their own buckets through REST and
SOAP interfaces. The primary protocol for retrieving
objects is HTTP.

o REST requests for accessing S3 buckets or objects are
authenticated by Hash-based Message Authentication
Code (HMAC) [7]. Each user has a pair, Access Key
ID and Secret Access Key, and embeds the Access Key
ID in each S3 request, appending the hash of the request
content to it using the Secret Access Key to sign the
hash. Upon receiving a request, the S3 service retrieves
the Secret Access Key corresponding to the Access Key
ID embedded in the request, computes the content hash
using it, and compares the hash sent with the request
against the computed hash. If the hashes match, the
request is authenticated as that of the user who has
been assigned the specified Access Key ID.

e Access control is done through an access con-
trol list (ACL) associated with each bucket and

Cloud Controller Walrus

Cluster 1 Cluster N

Storage

Controller Controller

Node Node . Node
Controller Controller Controller

1
1
1
1
1
1
1
1
1
1
1
1
i
1
1 Cluster
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 1. Eucalyptus architecture.

object. An ACL can specify types of access
rights (READ, WRITE, READ_ACP, WRITE_ACP',
FULL_CONTROL) granted to individual S3 users.

o Versioning is supported and can be enabled on a per-
bucket basis. If versioning is enabled, there can be
multiple instances of the same object identifier as the
user overwrites it.

o The storage service is eventually consistent; users may
not see the newest content of an object identifier
immediately after it has been overwritten.

Using Amazon S3, user data can be stored in or nearby cloud
computing environments such as Amazon Elastic Compute
Cloud (EC2) [8].

B. Eucalyptus and Walrus

Eucalyptus [2] is an open-source infrastructure for cloud
computing. It follows the Amazon EC2 [8] model, in which
users configure virtual machines in the cloud and run tasks
on them. Figure 1 depicts the cloud model of Eucalyptus.
The cloud controller is a top-level entity in charge of
the entire cloud, managing resource allocation and user
accounts, as well as providing a web interface for cloud
management and EC2-compatible interfaces such as SOAP.
The cluster controller performs per-cluster scheduling and
networking, while the storage controller provides block store
services similar to Amazon Elastic Block Service (EBS) [9].
The node controller controls the hypervisor on each compute
node and sets up virtual machines on it.

IREAD_ACP and WRITE_ACP are read and write permissions, respec-
tively, for the access control list itself, as opposed to the bucket or object
protected by it.

User Accounts DB

username
password
isAdmin

Cloud
Controller

S3 Metadata DB
Buckets Objects

Users Outside
Cloud PUT/GET

Compute
Nodes

bucketName objectName
owner owner

size size
location md5

ACL lastModified
.. ACL

Local File System

jects
Ivar/lib/eucalyptus/bukkits/
bucket1/objectA.XYZ

Figure 2.

Architecture of Walrus (in Eucalyptus 1.6.2).

The S3 storage service implementation for a Eucalyptus
cloud is called Walrus. It provides a bucket-based object
store and exports interfaces compatible with Amazon S3.
REST-based tools that work with Amazon S3, such as
s3curl [10], are thus compatible with Walrus and work
without modification. As of Eucalyptus 1.6.2, Walrus is a
single instance per the entire cloud. As shown in Figure
2, it shares a Java-based database holding user account
information with the cloud controller, and accesses metadata
of S3 buckets and objects similarly stored in databases. The
storage space for buckets and objects is mapped to a single,
non-shared file system directory mounted on the machine on
which Walrus runs. Both users outside the cloud and user
applications running on compute nodes in the cloud upload
and download data through the REST interface of Walrus.

III. PWALRUS DESIGN

A. Overview

pWalrus is structured as an array of S3 servers that are
backed by the same parallel file system. All servers have
the same view of S3 storage as user data. S3 system state
is also stored in the shared file system. Thus, users can
connect to any of the servers to access their data with the S3
interface, which creates the opportunity for load balancing
using, for instance, DNS round-robin to map the URL for
the S3 service to an IP address of a server. In addition,
pWalrus allows for direct access to data in the parallel file
system by exposing the mapping between S3 objects and
the corresponding files used to store these objects, which
in Walrus are managed exclusively and hidden by the S3
service.

Figure 3 illustrates the architecture of pWalrus. The solid
arrows indicate the S3 interface to the storage service, and
the dotted arrow direct access to the parallel file system. In
order to make both interfaces available to users, pWalrus
uses the following kinds of information in the parallel file
system, most of which are stored in special files called
“.walrus”:

o User account information in a pWalrus management
file.

o Proof by S3 users, in per-user special files, that they
have access to the parallel file system as a certain
cluster user.

o Metadata of S3 buckets in special files under each
user’s root S3 directory, which contains the directories
backing buckets.

o Metadata of S3 objects in special files under each
directory backing an S3 bucket.

In the pWalrus management file, pWalrus keeps informa-
tion associated with each S3 user (which is identified by a
Query ID, Eucalyptus’ equivalent of Amazon S3’s Access
Key ID), including (1) authentication information like the
Secret Key (Eucalyptus’ equivalent of Amazon S3’s Secret
Access Key), (2) an associated cluster user account that is
used to access the parallel file system and is specified by
the user upon registration, and (3) the file system directory
used to store buckets and objects for that user.

The per-user .walrus file is created by each S3 user’
allowing direct file system access, and is referred to by
pWalrus to confirm the validity of the claimed association
between the S3 user and the cluster user account. After
creating an account (Query ID) in pWalrus, each user stores
his Query ID in the .walrus file under the home directory of
his cluster user account. This .walrus file should be writable
only by the user himself, and needs to be readable only
by the user and the pWalrus service. pWalrus confirms the
cluster user account association only if the Query ID stored
in the .walrus file matches that of the S3 request passing
the HMAC signature test. In this way, pWalrus effectively
delegates the task of confirming the identity and authority
of the user to cluster administration.

Finally, pWalrus uses other .walrus files in each bucket
directory to store information about S3 objects that may not
be supported by the parallel file system as file attributes. For
example, access control lists used for S3 access and object
content hashes (md5) are likely to be stored in .walrus files
instead of in file attributes.

B. 83 Request Handling

pWalrus handles S3 requests as follows. First, upon re-
ceiving a request naming a specific Query ID, pWalrus looks
up the corresponding Secret Key and uses it to confirm the
validity of the S3 request by HMAC. Next, pWalrus retrieves
from the pWalrus management file the cluster user account
information corresponding to the Query ID embedded in the
request, checks if that account has a .walrus file under the
cluster user’s home directory, and verifies that the contents
of this .walrus file match the request’s Query ID. If it does,

2 Although users in our prototype author their per-user .walrus files
themselves following a specific XML format, we recommend that .walrus
files be prepared automatically through, for example, the web interface of
Eucalyptus, to avoid formatting errors.

Array of
S3 servers

pWalrus

: S3-PFS User Mappings
: | S3_user=DX3QP9ZHCV...
PFS_user=andrew

. | Auth_info=xyz...

| Buckets_root

PUT/GET with
Query ID "DX3QP9ZHCV..."

=/pvfs/andrew/buckets

Per-User .walrus file
/home/~andrew/.walrus

pWalrus

Users Outside
Cloud

. [S3_user-DX3QP9ZHOV... |

S3 Bucket Metadata
/pvis/andrew/buckets/.walrus

bucketName=bucketX
location=US

pWalrus
-
- -
Compute -)
Nodes read/write
as "andrew"
Figure 3.

the request is authorized to access the parallel file system as
the cluster user and pWalrus proceeds with the request.

If the request wants to store a new object, pWalrus creates
a new file containing the request’s data in the appropriate
bucket directory and sets its owner to the corresponding
cluster user. If the request asks to retrieve an existing object,
pWalrus checks the access control lists of the bucket and
object. If the requester has READ permission to both the
bucket and object, the contents of the object’s file are
returned. Finally, if the request wants to read S3 metadata,
such as a list of buckets owned by the user, pWalrus
serves that request based on information contained in the
appropriate .walrus files.

C. Reconciling S3 and Parallel File Systems

The storage model of pWalrus exposes to users two access
paths to data and differences in the semantics of S3-style
storage and the underlying parallel file system. As a result,
two questions arise: (1) how we reconcile access semantics
differences like atomic overwrites and concurrent seek-and-
partial-write’s, and (2) how we map file names to S3 object
names, especially if versioning is supported. This is ongoing
work?; we propose to address the former by providing a
mechanism for users to explicitly expose (publish) their
files to the S3 interface, and the latter by a file-naming
convention.

To rephrase the first question, we need to ensure that
S3 access to a certain file and direct access to that file
in the parallel file system do not conflict with each other.

30ur prototype, measured in Section IV, expects users to cope with
semantic issues and employs a non-versioned direct mapping between file
and object names.

S3 Object Metadata
/pvis/andrew/
buckets/bucketX/.walrus

objectName=objectY
lastModified=06-15-2010....

Architecture of pWalrus.

Otherwise, it would be possible, for example, for pWalrus
to overwrite an existing file (when versioning is not used)
while the user is reading it directly through the file system.
Our approach is to let the file system user have explicit
control over what pWalrus may access. When a new file
is created in the file system, it is not seen by pWalrus
until the user executes a command to “export” it. Thus,
he is free to read or write the file without worrying about
possible access conflicts with pWalrus. Once he executes
the command, the corresponding S3 metadata, including
timestamp and content hash, is created in the appropriate
.walrus file and pWalrus is allowed to access the file. If
pWalrus reads a file whose timestamp or content hash has
changed, it marks the corresponding object as corrupted by
inappropriate external modification. If the user would like
to update the file directly at a later time, he can explicitly
“unexport” the object, removing the associated S3 metadata
so that pWalrus no longer views the object as existing. There
is less of a problem when a new file is created as a result of
an S3 object overwrite request, on the other hand, because
this always writes a new file. A newly written object’s
metadata is written by pWalrus so that the file has been
“exported” upon the completion of the request.

The second challenge is defining the mapping between
file and object names. A simple way is to use direct trans-
lation; a particular file name translates to the same object
name available through the S3 interface. This approach is
similar to FTP, which almost exposes the semantics of the
underlying file system. However, if versioning is enabled in
the S3 interface, there can be multiple files corresponding
to the same object. We suggest that this kind of file-to-
object mapping be done by a straightforward file-naming

PVFS

Metadata
Server
PVFES Client -
Client Machine PVFS 110 W
1 1 Server

s3curl pWalrus
PVFS Client -
Client Machine szzellro __.
2 o [L_Serer | W

pWalnis

Client Machine

PVFS Client
PVFS I/0 _
N N Server

Figure 4. Experimental set-up.

convention, such as “objectName.pwalrus.version,” where
objectName represents the name of the object, pwalrus
indicates that the file can be used by pWalrus, and version
is a unique number for distinguishing the file from the others
corresponding to different versions of the same object.

IV. PRELIMINARY PERFORMANCE RESULTS

We performed preliminary experiments to demonstrate the
performance benefits of the parallel S3 access provided by
pWalrus and of the direct access to the parallel file system
underlying S3 storage. The objectives of these experiments
are to confirm some of the advantages pWalrus offers: load
distribution to multiple storage servers and efficient access
to backing files rather than objects.

A. Experimental Set-up

Figure 4 shows our experimental set-up. We use PVFS
2.8.1 as the parallel file system that backs pWalrus, and
dedicate a single machine to be the PVFS metadata server.
There are N pWalrus servers running on distinct machines.
The Eucalyptus packages built from our modified source
code are installed on these server machines, and only the
functionalities relevant to pWalrus are used. Also, each
of the pWalrus server machines runs a PVES I/O server
exporting physical storage managed by Linux native xfs
file systems. Also, on these server machines, we run PVFS
client servers using the PVFS2 Linux kernel interface to
mount PVFS as a POSIX file system. As a result, pWalrus
servers transparently access the directories mapped to PVFS.

There are N (equivalent to the number of servers) clients
that make concurrent REST S3 requests using s3curl
to the pWalrus service, each downloading a 2 GB object
containing text. The number of servers and clients, N, is
varied from 1 to 16. The load on each server is evenly
distributed, and thus the number of clients per server is
always 1.

pWalrus: Per-Server ™= PVFS: Per-Server = ™ -pWalrus: Total
—+—PVES:Tofal, @ = Ideal Scaling

900 T

800

700
@ 600
g
= 500
£
3 i
3 400 ot]
c 3 s
© =
@ 300 =

~ =
200 =
100
0 - -
1 2 4 8 16
Number of Servers
Figure 5. Results of downloading data with pWalrus and direct access to
PVFS.

In addition to measuring S3 access bandwidth through
pWalrus servers, we also measure the time it takes for the
client machines to copy a 2 GB file each directly from
the parallel file system to their local disk. In this case, the
parallel file system client is mounted on the client machines
using the PVFS2 Linux kernel interface. The cp command is
used to copy each 2 GB file from a mounted PVFS directory
to another directory contained in a local file system. Similar
to the pWalrus measurements, the numbers of PVES 1/O
servers and clients are kept equal, and varied from 1 to 16.

Both the server and client machines are equipped with
two quad-core 2.83 or 3.0 GHz CPUs and 16 GB of memory
(except two client machines having 32 GB of memory), and
are connected through a 10 Gbps network. Each PVES I/O
server machine uses a SATA 7200 RPM hard disk with a 1
TB capacity as the physical storage for the local file system.
All the machines run Linux kernel version 2.6.32. Before
each measurement, the page, inode, and dentry caches are
cleared on the server machines using the proc file system to
ensure that the downloaded files are read from the disks.

B. Results

The results of our experiments are summarized in Figure
5. The x-axis shows the number of pWalrus servers for S3
access and that of PVFS I/O servers for direct file system ac-
cess. The y-axis shows the throughput of downloading data
from the servers. For each of the pWalrus and PVFS cases,
the aggregate bandwidth of all servers (shown as plotted
lines) and the bandwidth per server (which is equivalent to
per disk and shown as bars) are shown. The numbers shown
are the average of three measurements, which did not vary
significantly.

The graph shows that, compared to the single pWal-
rus server case of 50 MB/s, arrays of multiple pWalrus
servers are able to deliver increased aggregate bandwidth

as a storage service, with 16 servers providing 385 MB/s.
Overall, pWalrus bandwidth is only a little lower than the
corresponding PVFS bandwidth. The results also show how
fast we can retrieve data when we bypass the S3 interface
and access PVFS directly. Starting from a single I/O server
delivering 53 MB/s, PVFS achieved a maximum of 411
MB/s with 16 I/O servers. The bandwidth per server drops
to around 25 MB/s as the number of servers increases. In
these experiments both the numbers of servers and requests
are scaled, and thus ideally the per-server bandwidth would
remain constant. The limited scalability and performance
in the graph may be caused by poor tuning of the PVFS
configuration, or because we access PVFES through the kernel
interface rather than a library binding, a choice we made for
portability reasons.*

These results illustrate that the pWalrus storage model
improves data access efficiency by two ways. First, an array
of pWalrus servers can be used to distribute data writes and
reads to different PVFS 1/O servers, and has the potential to
make available the scalability of the underlying parallel file
system through the S3 interface. Second, the exposition of
the files backing S3 objects to users allow them to bypass the
S3 servers and directly benefit from the high performance
of the underlying parallel file system.

V. RELATED WORK

As cloud computing has gained increasing popularity, a
number of infrastructures for it have emerged. Examples of
such infrastructures, in addition to Amazon EC2 and Eu-
calyptus, include Tashi [11], vCloud [12], RightScale [13],
and GoGrid [14]. Some of these, such as Tashi and vCloud,
are used for hosting clouds in privately owned clusters,
while others offer physical computer resources as part of
virtualized computing environments as does Amazon EC2.
As mentioned previously, pWalrus behaves as a functionally
thin layer on top of a parallel file system, and exploits the
file system for sharing management data between its servers.
Therefore, pWalrus can be independent from other parts of
the infrastructure being used, and thus is expected to work
not only with Eucalyptus but also with other infrastructures
for private cloud computing environments.

The implementation of pWalrus transparently accesses
its physical storage through a regular mounted file system
directory. Thus, it is expected to work without extra effort
with a variety of parallel file systems that are commonly
used in cluster environments. Examples of those file systems
include PVFS [3], PanFS [4], GPFS [5], Lustre [6], HDFS
[15], PLFS [16], and pNFS [17]. Through the S3 interface,
pWalrus exposes the scalability of such file systems beyond
the boundary of the cluster to users accessing their data from
the outside.

4Also, there were a small number of Hadoop jobs running in the testbed
during our measurements, which affected the results to some extent.

Finally, there exist a number of tools for facilitated data
transfer over a network that are similar to pWalrus and S3.
GridFTP [18] is an extension to FTP capable of exploiting
higher parallelism at the TCP connection level compared
to S3. Recent proposals in the NFS v4 working group
[19] suggest support for pathless objects, which exist in a
flat name space that is different from traditional directory
hierarchies and closer to the S3 name space based on buckets
and objects. WebDAV [20] is also a web-based file store,
and has some similarities to pWalrus and S3 such as data
content identified by URI and metadata represented in XML
formats, although it has a different set of semantics from S3.

VI. CONCLUSION

In this paper, we proposed a storage model for cloud
computing environments that enables users to access their
data both through the S3 interface and through direct access
to the parallel file system backing the S3 storage. For its
simplicity and convenience, S3 storage has become a pri-
mary way of storing and accessing data in clouds. However,
rather than view it as a full-fledged storage service that hides
the physical storage system behind it and has users solely
rely on it, we use it as an additional interface that enables
users to further benefit from parallel file systems available
in their clusters. This would be of particular interest to the
administrators of private clouds, where the available storage
resources are fixed and it is important to exploit as much of
them as possible.

ACKNOWLEDGMENT

We would like to thank Rich Wolski and Neil Soman of
Eucalyptus for their explanations and advice, and our anony-
mous reviewers for their useful comments. The work in this
paper is based on research supported in part by the Betty and
Gordon Moore Foundation, by the Department of Energy,
under award number DE-FC02-06ER25767, by the Los
Alamos National Laboratory, under contract number 54515-
001-07, and by Google and Yahoo! research awards. We
also thank the member companies of the PDL Consortium
(including APC, DataDomain, EMC, Facebook, Google,
Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft, NEC,
NetApp, Oracle, Seagate, Sun, Symantec, and VMware) for
their interest, insights, feedback, and support.

REFERENCES

[1] “Amazon Simple Storage Service API reference, API version
2006-03-01,” 2006.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseft, and D. Zagorodnov, “The Eucalyptus open-source
cloud-computing system,” in CCGRID ’09: Proceedings of
the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid. — Washington, DC, USA: IEEE
Computer Society, 2009.

(3]

[4

—

[5

—

[6

—_

(7]

[8

—

[9

—

(10]

(11]

L. F. Haddad, “PVFS: a parallel virtual file system for Linux
clusters,” Linux Journal, 2000.

B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou, “Scalable performance of
the Panasas parallel file system,” in FAST’08: Proceedings of
the 6th USENIX Conference on File and Storage Technolo-
gies. Berkeley, CA, USA: USENIX Association, 2008.

F. Schmuck and R. Haskin, “GPFS: a shared-disk file system
for large computing clusters,” in FAST ’02: Proceedings of the
Ist USENIX Conference on File and Storage Technologies.
Berkeley, CA, USA: USENIX Association, 2002.

“Lustre File System,” http://www.lustre.org/.

H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-
hashing for message authentication,” 1997.

“Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.
amazon.com/ec2/.

“Elastic Block Storage,” http://aws.amazon.com/ebs/.

“Amazon Web Services Developer Community : Ama-
zon S3 Authentication Tool for Curl,” http://developer.
amazonwebservices.com/connect/entry.jspa?externalID=128.

M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser,
D. O’Hallaron, J. Cipar, E. Krevat, J. Lépez, M. Stroucken,
and G. R. Ganger, “Tashi: location-aware cluster manage-
ment,” in ACDC °09: Proceedings of the 1st workshop on
Automated control for datacenters and clouds. New York,
NY, USA: ACM, 2009.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

“Cloud Computing Services with VMware Virtualization
- Cloud Infrastructure,” http://www.vmware.com/solutions/
cloud-computing/.

“Cloud Computing Management Platform by RightScale,”
http://www.rightscale.com/.

“Cloud Hosting, Cloud Computing, Hybrid Infrastructure
from GoGrid,” http://gogrid.com/.

“HDFS Architecture,” http://hadoop.apache.org/common/
docs/current/hdfs_design.html.

J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczyn-
ski, J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint
filesystem for parallel applications,” in SC '09: Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis. New York, NY, USA: ACM, 2009.

“pNFS,” http://www.pnfs.com/.

“GridFTP universal data transfer for the grid (the Globus
project, white paper),” 2000.

D. Roy, M. Eisler, and A. RN, “NFS pathless objects
(internet-draft),” 2010.

L. Dusseault, “HTTP extensions for web distributed authoring
and versioning (WebDAV),” 2007.

