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Abstract
The Zoned Namespace (ZNS) interface represents a new di-

vision of functionality between host software and flash-based
SSDs. Current flash-based SSDs maintain the decades-old
block interface, which comes at substantial expense in terms
of capacity over-provisioning, DRAM for page mapping ta-
bles, garbage collection overheads, and host software com-
plexity attempting to mitigate garbage collection. ZNS offers
shelter from this ever-rising block interface tax.

This paper describes the ZNS interface and explains how it
affects both SSD hardware/firmware and host software. By ex-
posing flash erase block boundaries and write-ordering rules,
the ZNS interface requires the host software to address these
issues while continuing to manage media reliability within
the SSD. We describe how storage software can be special-
ized to the semantics of the ZNS interface, often resulting in
significant efficiency benefits. We show the work required to
enable support for ZNS SSDs, and show how modified ver-
sions of f2fs and RocksDB take advantage of a ZNS SSD to
achieve higher throughput and lower tail latency as compared
to running on a block-interface SSD with identical physi-
cal hardware. For example, we find that the 99.9th-percentile
random-read latency for our zone-specialized RocksDB is
at least 2–4× lower on a ZNS SSD compared to a block-
interface SSD, and the write throughput is 2× higher.

1 Introduction
The block interface presents storage devices as one-
dimensional arrays of fixed-size logical data blocks that may
be read, written, and overwritten in any order. Introduced ini-
tially to hide hard drive media characteristics and to simplify
host software, the block interface worked well for many gener-
ations of storage devices and allowed great innovation on both
sides of the storage device interface. There is a significant
mismatch, however, between the block interface and current
storage device characteristics.

For flash-based SSDs, the performance and operational
costs of supporting the block interface are growing pro-
hibitively [22]. These costs are due to a mismatch between
the operations allowed and the nature of the underlying flash
media. Although individual logical blocks can be written to
flash, the medium must be erased at the granularity of larger
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Figure 1: Throughput of a multi-threaded write workload that
overwrites usable SSD capacity four times. The SSDs all have
2 TB raw media and share the same hardware platform.

units called erase blocks. The SSD’s Flash Translation Layer
(FTL) hides this mismatch by using substantial DRAM for
dynamic logical-to-physical page mapping structures, and
by reserving substantial fractions (over-provisioning) of the
drive’s media capacity to lower the garbage-collection over-
head of erase-block data. Despite these efforts, garbage col-
lection often results in throughput limitations [17], write-
amplification [3], performance unpredictability [33, 64], and
high tail latencies [16].

The NVMe Zoned Namespace Command Set specifica-
tion [8], or ZNS for short, has recently been introduced as
a new interface standard for flash-based SSDs. Instead of
a single array of logical blocks, a ZNS SSD groups logical
blocks into zones. A zone’s logical blocks can be read in
random order but must be written sequentially, and a zone
must be erased between rewrites. A ZNS SSD aligns zone and
physical media boundaries, shifting the responsibility of data
management to the host. This obviates the need for in-device
garbage collection and the need for resource and capacity
over-provisioning (OP). Further, ZNS hides device-specific
reliability characteristics and media-management complexi-
ties from the host software.

Figure 1 illustrates some of the costs of the block inter-
face and the corresponding potential benefits of ZNS. The
three lines represent throughput for identical SSD hardware
exposed as a ZNS SSD (0% OP) and as a block-interface
SSD (measured with 7% OP and 28% OP), while concur-
rently overwriting the drive’s usable capacity 4 times. All
three SSDs provide high throughput for the first 2TB (which
is their raw capacity), but then the block-interface SSD expe-



riences a sharp drop in throughput as in-device garbage col-
lection kicks in. As expected, due to the reduction in garbage
collection overhead, 28% OP provides higher steady-state
write throughput than 7% OP. The ZNS SSD sustains high
throughput by avoiding in-device garbage collection and of-
fers more usable capacity (see line length) by eliminating the
need for over-provisioning.

This paper describes the ZNS interface and how it avoids
the block interface tax (§2). We describe the responsibilities
that ZNS devices jettison, enabling them to reduce perfor-
mance unpredictability and significantly eliminate costs by
reducing the need for in-device resources (§3.1). We also
describe an expected consequence of ZNS: the host’s respon-
sibility for managing data in the granularity of erase blocks.
Shifting FTL responsibilities to the host is less effective than
integrating with the data mapping and placement logic of
storage software, an approach we advocate (§3.2).

Our description of the consequences and guidelines that
accompany ZNS adoption is grounded on a significant and
concerted effort to introduce ZNS SSD support in the Linux
kernel, the fio benchmark tool, the f2fs file system, and the
RocksDB key-value store (§4). We describe the software
modifications required in each use case, all of which have
been released as open-source to foster the growth of a healthy
community around the ZNS interface.

Our evaluation shows the following ZNS interface advan-
tages. First, we demonstrate that a ZNS SSD achieves up to
2.7× higher throughput than block-interface SSDs in a con-
current write workload, and up to 64% lower average random
read latency even in the presence of writes (§5.1). Second, we
show that RocksDB on f2fs running on ZNS SSD achieves at
least 2-4× lower 99.9th-percentile random read latency than
RocksDB on file systems running on block-interface SSDs.
RocksDB running directly on a ZNS SSD using ZenFS, a
zone-aware backend we developed, achieves up to 2× higher
throughput than RocksDB on file systems running on block-
interface SSDs (§5.2).

The paper consists of five key contributions. We present the
first evaluation of a production ZNS SSD in a research paper,
directly comparing it to a block-interface SSD using the same
hardware platform, and optional multi-stream support. Sec-
ond, we review the emerging ZNS standard and its relation to
prior SSD interfaces. Third, we describe the lessons learned
adapting host software layers to utilize ZNS SSDs. Fourth,
we describe a set of changes spanning the whole storage stack
to enable ZNS support, including changes to the Linux ker-
nel, the f2fs file system, the Linux NVMe driver and Zoned
Block Device subsystem, the fio benchmark tool, and the de-
velopment of associated tooling. Fifth, we introduce ZenFS,
a storage backend for RocksDB, to showcase the full perfor-
mance of ZNS devices. All code changes are open-sourced
and merged into the respective official codebases.

2 The Zoned Storage Model
For decades, storage devices have exposed their host capacity
as a one-dimensional array of fixed-size data blocks. Through
this block interface, data organized in a block could be read,
written, or overwritten in any order. This interface was de-
signed to closely track the characteristics of the most popular
devices at the time: hard disk drives (HDDs). Over time, the
semantics provided by this interface became an unwritten
contract that applications came to depend on. Thus, when
SSDs were introduced, they shipped with complex firmware
(FTL) that made it possible to offer the same block interface
semantics to applications even though they were not a natural
fit for the underlying flash media.

The Zoned Storage model, originally introduced for Shin-
gled Magnetic Recording (SMR) HDDs [19,20,35], was born
out of the need to create storage devices free of the costs
associated with block interface compatibility. We detail those
costs with respect to SSDs (§2.1), and then continue to de-
scribe existing improvements to the block interface (§2.2) and
the basic characteristics of zoned storage (§2.3).

2.1 The Block Interface Tax
Modern storage devices, such as SSDs and SMR HDDs, rely
on recording technologies that are a mismatch for the block
interface. This mismatch results in performance and opera-
tional costs. On a flash-based SSD, an empty flash page can
be programmed on a write, but overwriting it requires an erase
operation that can occur only at the granularity of an erase
block (a set of one or more flash blocks, each comprising
multiple pages). For an SSD to expose the block interface,
an FTL must manage functionality such as in-place updates
using a write-anywhere approach, mapping host logical block
addresses (LBAs) to physical device pages, garbage collecting
stale data, and ensuring even wear of erase blocks.

The FTL impacts performance and operational costs con-
siderably. To avoid the media limitations for in-place updates,
each LBA write is directed to the next available location. Thus,
the host relinquishes control of physical data placement to
the FTL implementation. Moreover, older, stale versions of
the data must be garbage collected, leading to performance
unpredictability [1, 10] for ongoing operations.

The need for garbage collection necessitates the allocation
of physical resources on the device. This requires media to be
over-provisioned by up to 28% of the total capacity, in order
to stage data that are being moved between physical addresses.
Additional DRAM is also required to maintain the volatile
mappings between logical and physical addresses. Capacity
over-provisioning and DRAM are the most expensive compo-
nents in SSDs [18, 57], leading to higher cost per gigabyte
of usable capacity.

2.2 Existing Tax-Reduction Strategies
Two major approaches for reducing the block interface tax
have gained traction: SSDs with stream support (Stream



Figure 2: Zones within the LBA address space of a storage de-
vice. A write pointer per zone increases on successful writes,
and is reset by issuing an explicit reset command.

SSDs) and Open-Channel SSDs (OCSSDs).

Stream SSDs allow the host to mark its write commands with
a stream hint. The stream hint is interpreted by the Stream
SSD, allowing it to differentiate incoming data onto distinct
erase blocks [32] which improves the overall SSD perfor-
mance and media lifetime. Stream SSDs require that the host
carefully marks data with similar lifetimes in order to reduce
garbage collection. If the host mixes data of different lifetimes
into the same stream, Stream SSDs behave similarly to block-
interface SSDs. A Stream SSD must carry the resources to
manage such an event, so Stream SSDs do not shed the costs
of block-interface SSDs for extra media over-provisioning
and DRAM. We compare the performance of a Streams SSD
with a ZNS SSD in §5.3.

Open-Channel SSDs allow host and SSD to collaborate
through a set of contiguous LBA chunks [9, 38, 46, 60]. OC-
SSDs can expose these chunks such that they align with the
physical erase block boundaries of the media. This eliminates
in-device garbage collection overhead and reduces the cost of
media over-provisioning and DRAM. With OCSSDs, the host
is responsible for data placement. This includes underlying
media reliability management such as wear-leveling, and spe-
cific media failure characteristics (depending on the OCSSD
type). This has the potential to improve SSD performance and
media lifetime over Stream SSDs, but the host must manage
differences across SSD implementations to guarantee durabil-
ity, making the interface hard to adopt and requiring continual
software upkeep.

The ZNS interface, which we describe next, builds on
the lessons of OCSSDs and SMR HDDs. It utilizes, and
is compatible with, the zoned storage model defined in the
ZAC/ZBC [28, 29] specifications. It adds features to take
advantage of the characteristics of flash-based SSDs. ZNS
aims to eliminate the mismatch between SSD media and
the device interface. It also provides a media-agnostic next-
generation storage interface by avoiding to directly manage
media-specific characteristics like OCSSD [59].

2.3 Tax-free Storage with Zones
The fundamental building block of the zoned storage model
is a zone. Each zone represents a region of the logical address
space of the SSD that can be read arbitrarily but must be writ-

ten sequentially, and to enable new writes, must be explicitly
reset. The write constraints are enforced by a per-zone state
machine and a write pointer.

A per-zone state machine determines whether a given
zone is writeable using the following states: EMPTY, OPEN,
CLOSED, or FULL. Zones begin in the EMPTY state, transition
to the OPEN state upon writes, and finally transition to FULL
when fully written. The device may further impose an open
zone limit on the number of zones that can simultaneously
be in the OPEN state, e.g., due to device resource or media
limitations. If the limit is reached and the host attempts to
write to a new zone, another zone must be transitioned from
the OPEN to the CLOSED state, freeing on-device resources
such as write buffers. The CLOSED zone is still writeable, but
must be transitioned to the OPEN state again before serving
additional writes.

A zone’s write pointer designates the next writeable LBA
within a writeable zone and is only valid in the EMPTY and
OPEN states. Its value is updated upon each successful write
to a zone. Any write commands issued by the host that (1)
do not begin at the write pointer, or (2) write to a zone in
the FULL state will fail to execute. When a zone is reset,
through the reset zone command, the zone is transitioned to
the EMPTY state, its write pointer is updated to the zone’s
first LBA, and the previously written user data is no longer
accessible. The zone’s state and write pointer eliminate the
need for host software to keep track of the last LBA written to
a zone simplifying recovery, e.g., after an improper shutdown.

Whilst the write constraints are fundamentally the same
across zoned storage specifications, the ZNS interface intro-
duces two concepts to cope with the characteristics of flash-
based SSDs.

The writeable zone capacity attribute allows a zone to
divide its LBAs into writeable and non-writeable, and allows
a zone to have a writeable capacity smaller than the zone size.
This enables the zone size of ZNS SSDs to align with the
power-of-two zone size industry norm introduced with SMR
HDDs. Figure 2 shows how zones can be laid out over the
logical address space of a ZNS SSD.

The active zone limit adds a hard limit on zones that can be
in either the OPEN or CLOSED state. Whereas SMR HDDs
allow all zones to stay in a writeable state (i.e., CLOSED),
the characteristics of flash-based media, such as program dis-
turbs [15], require this quantity to be bounded for ZNS SSDs.

Although the ZNS interface increases the responsibilities of
host software, our study shows various use cases can benefit
from a set of techniques (§3.2) that ease its adoption.

3 Evolving towards ZNS

This section outlines aspects of ZNS SSDs that affect appli-
cation performance, both in terms of hardware impact (§3.1)
and adapting host applications to the ZNS interface (§3.2).



3.1 Hardware Impact
ZNS SSDs relinquish responsibilities traditionally carried out
by the FTL, associated with supporting random writes. The
ZNS interface enables the SSD to translate sequential zone
writes into distinct erase blocks, thus eliminating the interface-
media mismatch. Since random writes are disallowed by the
interface and zones must be explicitly reset by the host, the
data placement managed by the device occurs at the coarse-
grained level of zones. This means that the SSD garbage
collection routine responsible for moving valid data between
erase blocks (to free up writeable capacity) becomes the re-
sponsibility of the host. This implies that write amplification
on the device is eliminated, which eliminates the need for
capacity over-provisioning, while also improving the overall
performance and lifetime of the media [17, 23]. We quantify
these benefits in §5.

While ZNS offers significant benefits for the end-user, it
introduces the following tradeoffs in the design of the SSD’s
FTL.

Zone Sizing. There is a direct correlation between a zone’s
write capacity and the size of the erase block implemented
by the SSD. In a block-interface SSD, the erase block size is
selected such that data is striped across multiple flash dies,
both to gain higher read/write performance, but also to protect
against die-level and other media failures through per-stripe
parity. It is not uncommon for SSDs to have a stripe that con-
sists of flash blocks from 16-128 dies, which translates into a
zone with writeable capacity from hundreds of megabytes to
low single-digit gigabytes. Large zones reduce the degrees of
freedom for data placement by the host, so we argue for the
smallest zone size possible, where die-level protection is still
provided, and adequate per-zone read/write performance is
achieved at low I/O queue depths. If the end-user is willing
to compromise on data reliability, the stripe-wide parity can
be removed, and thus smaller writeable sizes can be achieved,
but at the expense of host complexity, such as host-side parity
calculation and deeper I/O queue depths to get the same per-
formance as ZNS SSDs with larger zones or block-interface
SSDs.

Mapping Table. In block-interface SSDs, the FTL maintains
a fully-associative mapping table [21] between LBAs and
their physical locations. This fine-grained mapping improves
garbage collection performance, but the table size often re-
quires 1GB of mappings per 1TB of media capacity. For
consumer and enterprise SSDs, mappings are typically stored
within device DRAM, whereas embedded SSDs may deploy
a caching scheme at the expense of lower performance. Be-
cause ZNS SSD zone writes are required to be sequential,
we can transition from complex, fully-associative mapping
tables to coarse-grained mappings maintained either entirely
at the erase block level [34] or in some hybrid fashion [31,48].
As these mappings account for the largest usage of DRAM
on an SSD, this can significantly reduce or even completely

eliminate the need for DRAM.

Device Resources. A set of resources is associated with each
partially-written erase block (i.e., active zone). This set in-
cludes hardware resources, such as XOR engines, memory
resources, such as SRAM or DRAM, and power capacitors to
persist parity data following a power failure. The data and par-
ity can range from hundreds of kilobytes to megabytes, e.g.,
due to two-step programming [13]. Due to these requirements
and associated costs, ZNS SSDs are expected to have 8-32
active zones. Although the number of active zones can be
further increased by adding extra power capacitors, utilizing
DRAM for data movement, reduce parity requirements, or
deploying a form of write-back cache (e.g., SLC).

3.2 Host Software Adoption
We now discuss three approaches for adapting host software
to the ZNS interface. Applications that perform mostly se-
quential writes are prime candidates for adopting ZNS, such
as Log Structure Merge (LSM) tree-based databases. Ap-
plications that primarily perform in-place updates are more
challenging to support without fundamental modifications to
core data structures [47].

Host-side FTL (HFTL). An HFTL acts as a mediator be-
tween (1) a ZNS SSD’s write semantics and (2) applications
performing random writes and in-place updates. The HFTL
layer is similar to the responsibilities of the SSD FTL, but
the HFTL layer manages only the translation mapping and
associated garbage collection. Although it has less responsi-
bility than an SSD FTL, an HFTL must manage its utiliza-
tion of CPU and DRAM resources because it shares them
with host applications. An HFTL makes it easier to integrate
host-side information and enhances control of data placement
and garbage collection, while also exposing the conventional
block interface to applications. Existing work, such as dm-
zoned [44], dm-zap [24], pblk [9], and SPDK’s FTL [40],
shows the feasibility and applicability of an HFTL, but only
dm-zap currently supports ZNS SSDs.

File Systems. Higher-level storage interfaces (such as the
POSIX file system interface) enable multiple applications
to access storage by means of common file semantics. By
integrating zones with higher layers of the storage stack, i.e.,
ensuring a primarily sequential workload, we eliminate the
overhead that is otherwise associated with both HFTL and
FTL data placement [30], as well as the indirection over-
head [64] associated with them. This also allows additional
data characteristics known to higher storage stack layers to
be used to improve on-device data placement (at least to the
degree that the application’s actual workload allows this in-
formation to permeate to such layers).

The bulk of the file systems developed today primarily per-
form in-place writes and are generally difficult to adapt to
the Zoned Storage model. Some file systems, however, such
as f2fs [36], btrfs [53], and zfs [41] exhibit overly-sequential



write patterns and are already adapting so that they can sup-
port zones [4, 43]. Although not all of their writes are se-
quential (such as superblock and some metadata writes), file
systems like these can be extended with strict log-structured
writes [43], a floating superblock [4], and similar functionality
to bridge the gap. These file systems effectively mimic the
HFTL logic (with the LBA mapping table managed on-disk
through metadata) while also implementing garbage collec-
tion to defragment data and free up space for new writes.
Although zone support exists for f2fs and btrfs, they support
only the zone model that is defined in ZAC/ZBC. As part
of this work, we implement the necessary changes to f2fs to
showcase the relative ease of supporting ZNS’s zone model,
and evaluate its performance (§4.1).

End-to-End Data Placement. In an ideal world, zone-write
semantics would be aligned with an application’s existing data
structures. This would allow the highest degree of freedom
by enabling the application to manage data placement, while
at the same time eliminating indirection overheads from file-
system and translation layers. While end-to-end data place-
ment enables a collaboration between the application and
ZNS SSD, and has the potential to achieve the best write
amplification, throughput, and latency improvements, it is as
daunting as interacting with raw block devices.

File semantics are a useful abstraction, and by forgoing
them one must not only integrate zone support, but also pro-
vide tools for the user to perform inspection, error checking,
and backup/restore operations. Like file systems, applications
that exhibit sequential write patterns are prime candidates for
end-to-end integration. This includes LSM-tree-based stores
such as RocksDB, caching-based stores such as CacheLib [7],
and object stores such as Ceph SeaStore [55]. To showcase
the benefits of end-to-end integration, we introduce ZenFS, a
new RocksDB zoned storage backend and compare it to both
(1) the XFS file system and (2) the f2fs file system, with and
without integrated ZNS support.

4 Implementation
We have added support to four major software projects to
evaluate the benefits of ZNS. First, we made modifications to
the Linux kernel to support ZNS SSDs. Second, we modified
the f2fs file system to evaluate the benefits of zone integration
at a higher-level storage stack layer. Third, we modified the
fio [6] benchmark to support the newly added ZNS-specific
attributes. Fourth, we developed ZenFS [25], a novel storage
backend for RocksDB that allows control of data placement
through zones, to evaluate the benefits of end-to-end integra-
tion for zoned storage. We describe the relatively few changes
necessary to support ZNS when building upon the existing
ZAC/ZBC support for the first three projects [5, 42, 52] (§4.1)
and finally detail the architecture of ZenFS (§4.2).

Table 1 shows the lines modified for each software project.
All the modifications have been contributed and accepted into
the respective codebases [12, 25, 50, 51].

Project Lines Added Lines Removed

Linux Kernel 647 53
f2fs (kernel) 275 37
f2fs (mkfs tool) 189 15
fio 342 58
ZenFS (RocksDB) 3276 2

Total 4729 165

Table 1: Lines modified across projects to add ZNS support.

4.1 General Linux Support
The Linux kernel’s Zoned Block Device (ZBD) subsystem
is an abstraction layer that provides a single unified zoned
storage API on top of various zoned storage device types. It
provides both an in-kernel API and an ioctl-based user-space
API supporting device enumeration, report of zones, and zone
management (e.g., zone reset). Applications such as fio utilize
the user-space API to issue I/O requests that align with the
write characteristics of the underlying zoned block device,
regardless of its low-level interface.

To add ZNS support to the Linux kernel and the ZBD
subsystem, we modified the NVMe device driver to enumerate
and register ZNS SSDs with the ZBD subsystem. To support
the ZNS SSD under evaluation, the ZBD subsystem API was
further extended to expose the per zone capacity attribute and
the active zones limit.

Zone Capacity. The kernel maintains an in-memory repre-
sentation of zones (a set of zone descriptor data structures),
which is managed solely by the host unless errors occur, in
which case the zone descriptors should be refreshed from the
specific disk. The zone descriptor data structure is extended
with a new zone capacity attribute and versioning, allowing
host applications to detect the availability of this new attribute.

Both fio and f2fs are updated to recognize the new data
structure. Whereas fio simply had to avoid to issue write I/Os
beyond the zone capacity, f2fs required additional changes.

f2fs manages capacity at the granularity of segments, typ-
ically 2MiB chunks. For zoned block devices f2fs manages
multiple segments as a section, the size of which is aligned
to the zone size. f2fs writes sequentially across a section’s
segments, and partially writeable zones are not supported. To
add support for the zone capacity attribute in f2fs, the kernel
implementation, and associated f2fs-tools, two extra segment
types are added to the three conventional segment types (i.e.,
free, open, and full): an unusable segment type that maps
the unwriteable part of a zone, and a partial segment type
that covers the case where a segment’s LBAs cross both the
writeable and the unwriteable LBAs of a zone. The partial
segment type explicitly allows optimizing for the case when
segment chunk size and the zone capacity of a specific zone
are unaligned, utilizing all of the writeable capacity of a zone.

To allow backward compatibility for SMR HDDs, which
do not expose zone capacity, the zone capacity is initialized



to the zone size attribute.

Limiting Active Zones. Due to the nature of flash-based
SSDs, there is a strict limit on the number of zones that can be
active simultaneously, i.e., either in OPEN or CLOSED state.
The limit is detected upon zoned block device enumeration,
and exposed through the kernel and user-space APIs. SMR
HDDs do not have such a limit and the attribute is initialized
to zero (read: infinity).

No modifications were made to fio to support the limit, so
it is the responsibility of the fio user to respect the active-limit
constraint, which otherwise results in an I/O error when no
more zones can be opened.

For f2fs, the limit is linked to the number of segments that
can be open simultaneously. f2fs limits this to a maximum of
6, but can be reduced to align with the available active zone
limit. This limit is set at the time the file system is created,
and f2fs-tools is modified to check for the zone active limit,
and if the zoned block device does not support enough active
zones, the number of open segments is configured to align
with what is available by the device.

f2fs requires its metadata to be stored on a conventional
block device, necessitating a separate device. We do not di-
rectly address this in our modifications, as the evaluated ZNS
SSD exposes a fraction of its capacity as a conventional block
device. If this is not supported by the ZNS SSD, write-in-
place functionality can be added similar to btrfs [4], or a
small translation layer [24] can expose a limited set of zones
on the ZNS SSD through the conventional block interface.
Note that the Slack Space Recycling (SSR) feature (i.e., ran-
dom writes) is disabled for all zoned storage devices, which
decreases the overall performance. However, due to overall
higher performance achieved by ZNS SSDs, we demonstrate
superior performance to block-interface SSDs which have
SSR enabled (§5.2).

4.2 RocksDB Zone Support
In this section we show how to adapt the popular key-value
database RocksDB to perform end-to-end data placement
onto zoned storage devices using the ZenFS storge backend.
ZenFS takes advantage of the log-structured merge (LSM)
tree [45] data structure of RocksDB that it uses to store and
maintain its data, and its associated immutable sequential-
only compaction process.

The LSM tree implementation consists of multiple lev-
els, as shown in Figure 3. The first level (L0) is managed
in-memory and flushed to the level below periodically or
when full. Intermediate updates between flushes are made
durable using a Write-Ahead Log (WAL). The rest of the
levels (L1, ...,Ln) are maintained on-disk. New or updated
key-value data pairs are initially appended to L0, and upon
flush the key-value data pairs are sorted by key, and then
written to disk as a Sorted String Table (SST) file.

The size of a level is typically fitted to a multiple of the
level above, and each level contains multiple SSTs with each

Figure 3: Data organization in RocksDB. Dark grey squares
represent SSTs. Light grey with lines squares represent SSTs
selected for compaction.

SST containing an ordered set of non-overlapping key-value
data pairs. Through an explicit compaction process, an SST’s
key-value data pairs are merged from one level (Li) to the next
(Li+1). The compaction process reads key-value data pairs
from one or more SSTs and merges them with the key-value
pairs from one or more SSTs in the next level. The merged
result is stored in a new SST file and replaces the merged
SSTs in the LSM tree. As a result of this process, SST files
are immutable, written sequentially, and created/removed as a
single unit. Furthermore, hot/cold data separation is achieved
as key-value data pairs are merged into levels below.

RocksDB has support for separate storage backends
through its file system wrapper API that is a unified abstrac-
tion for RocksDB to access its on-disk data. At its core, the
wrapper API identifies data units, such as SST files or Write-
Ahead Log (WAL), through a unique identifier (e.g., a file-
name) that maps to a byte-addressable linear address space
(e.g., a file). Each identifier supports a set of operations (e.g.,
add, remove, current size, utilization) in addition to random
access and sequential-only byte-addressable read and write
semantics. These are closely related to file system semantics,
where identifier and data is accessible through files, which is
RocksDB’s main storage backend. By using a file system that
manages files and directories, RocksDB avoids managing file
extents, buffering, and free space management, but also looses
the ability to place data directly into zones, which prevents
end-to-end data placement onto zones, and therefore reduces
the overall performance.

4.2.1 ZenFS Architecture

The ZenFS storage backend implements a minimal on-disk
file system and integrates it using RocksDB’s file-wrapper
API. It carefully places data into zones while respecting their
access constraints, and collaborates with the device-side zone
metadata on writes (e.g., write pointer), reducing complexity
associated with durability. The main components of ZenFS
are depicted in Figure 4 and described below.

Journaling and Data. ZenFS defines two types of zones:
journal and data zones. The journal zones are used to recover
the state of the file system, and maintains the superblock
data structure, and mapping of WAL and data files to zones,
whereas the data zones store the file content.

Extents. RocksDB’s data files are mapped and written to a



Figure 4: ZenFS Architecture

set of extents. An extent is a variable-sized, block-aligned,
contiguous region that is written sequentially to a data zone,
containing data associated to a specific identifier. Each zone
can store multiple extents, but extents do not span zones.
Extent allocation and deallocation events are recorded in an
in-memory data structure and written to the journal when a file
is closed or the data is requested to be persisted by RocksDB
through an fsync call. The in-memory data structure keeps
track of the mapping of extents to zones, and once all files
with allocated extents in a zone has been deleted the zone can
be reset and reused.

Superblock. The superblock data structure is the initial entry
point when initializing and recovering ZenFS state from disk.
The superblock contains a unique identifier for the current
instance, magic value, and user options. A unique identifier
(UUID) in the superblock allows the user to identify the file-
system even if the order of block device enumeration on the
system changes.

Journal. The responsibility of the journal is to maintain (1)
the superblock and (2) the WAL and data file to zone transla-
tion mapping through extents.

The journal state is stored on dedicated journal zones, and
is located on the first two non-offline zones of a device. At
any point in time, one of the zones are selected as the active
journal zone, and is the one that persists updates to the jour-
nal state. A journal zone has a header that is stored at the
beginning of the specific zone. The header stores a sequence
number (incremented each time a new journal zone is ini-
tialized), the superblock data structure, and a snapshot of the
current journal state. After the header are stored, the remain-
ing writable capacity of the zone is used to record updates to
the journal.

To recover the journal state from disk, three steps are re-
quired: 1 the first LBA for each of the two journal zones
must be read to determine the sequence number of each, where
the journal zone with the highest value is the current active
zone; 2 the full header of the active zone is read and initial-
izes the initial superblock and journal state; and finally 3

SST file size 128 MiB 256 MiB 512 MiB

Write Amp. 11.9× 12.0× 12.0×
Runtime (s) 15,430 15,461 14,918
99.99 RW lat (ms) 102 102 105
99.99 RWL lat (ms) 77 73 73

Table 2: RocksDB’s write amplification and runtime during
the fillrandom benchmark, and 99.99-th percentile tail laten-
cies during the readwhilewriting benchmark with no rate
limits (RW) and with writes rate-limited to 20 MiB/s (RWL),
with different SST file sizes.

journal updates are applied to the header’s journal snapshot.
The amount of updates to apply is determined by the zone’s

state, and its write pointer. If the zone is in the OPEN (or
CLOSED) state, only records up to the current write pointer
value are replayed to the journal, whereas if the zone is in the
FULL state, all records stored after the header are replayed.
Note that if the zone is full, after recovery a new active journal
zone is selected and initialized to enable persisting journal
updates.

The initial journal state is created and persisted by an ex-
ternal utility that is similar to existing file system tools that
generate the initial on-disk state of a file system. It writes
the initial sequence number, superblock data structure and an
empty snapshot of the journal to the first journal zone. When
ZenFS is initialized by RocksDB, the above recovery process
is executed, after which it is ready for data accesses from
RocksDB.

Writeable Capacity in Data Zones. Ideal allocation, re-
sulting in maximum capacity usage over time, can only be
achieved if file sizes are a multiple of the writeable capacity of
a zone allowing file data to be completely separated in zones
while filling all available capacity. File sizes can be config-
ured in RocksDB, but the option is only a recommendation
and sizes will vary depending on the results of compression
and compaction processes, so exact sizes are not feasible.
ZenFS addresses this by allowing a user-configurable limit
for finishing data zones, specifying the percentage of the zone
capacity remaining. This allows the user to specify a file size
recommendation of, e.g., 95% of device’s zone capacity by
setting the finish limit to 5%. This allows for the file size to
vary within a limit and still achieve file separation by zones. If
the file size variation is outside the specified limit, ZenFS will
make sure that all available capacity is utilized by using its
zone allocation algorithm (described below). Zone capacities
are generally larger than the RocksDB recommended file size
of 128 MiB and to make sure that increasing the file size does
not increase RocksDB write amplification and read tail laten-
cies we measured the impact on different file sizes. Table 2
shows that increasing SST file sizes does not significantly
reduce performance.



Data Zone Selection. ZenFS employs a best-effort algorithm
to select the best zone to store RocksDB data files. RocksDB
separates the WAL and the SST levels by setting a write-
lifetime hint for a file prior to writing to it. Upon the first
write to a file, a data zone is allocated for storage. ZenFS tries
first to find a zone based on the lifetime of the file and the max
lifetime of the data stored in the zone. A match is only valid
if the lifetime of the file is less than the oldest data stored in
the zone to avoid prolonging the life of the data in the zone.
If several matches are found, the closest match is used. If no
matches are found, an empty zone is allocated. If the file fills
up the remaining capacity of the allocated zone, another zone
is allocated using the same algorithm. Note that the write life
time hint is provided to any RocksDB storage backend, and is
therefore also passed to other compatible file systems and can
be used together with SSDs with stream support. We compare
both approaches to pass hints in §5.3. By using the ZenFS zone
selection algorithm and the user-defined writeable capacity
limits, the unused zone space or space amplification is kept
at around 10%.

Active Zone Limits. ZenFS must respect the active zone
limits specified by the zoned block device. To run ZenFS, a
minimum of three active zones are required, which are sepa-
rately allocated to the journal, WAL, and compaction process.
To improve performance, the user can control the number of
concurrent compactions. Our experimentation has shown that
by limiting the number of concurrent compactions, RocksDB
can work with as few as 6 active zones with restricted write
performance, while more than 12 active zones does not add
any significant performance benefits.

Direct I/O and Buffered Writes. ZenFS leverages the fact
that writes to SST files are sequential and immutable and
performs direct I/O writes for SST files, bypassing the kernel
page cache. For other files, such as the WAL, ZenFS buffers
writes in memory and flushes the buffer when it is full, the
file is closed, or when RocksDB requests a flush. If a flush
is requested, the buffer is padded to the next block boundary
and an extent with the number of valid bytes is stored in
the journal. The padding results in a small amount of write
amplification, but it is not unique to ZenFS, and is similarly
done in conventional file system.

5 Evaluation
To evaluate the benefits and compare the performance of ZNS
SSDs, we utilize a production SSD hardware platform that can
expose itself as either a block-interface SSD or a ZNS SSD.
As such, we enable an apples-to-apples comparison between
the two interfaces. The block-interface SSD is formatted to
have either 7% OP or 28% OP, and supports streams. ZNS
SSD-specific details are shown in Table 3.

Our evaluation of ZNS is constructed around evaluating
the following aspects:

• Raw device I/O performance (§5.1). We perform an

SSD Interface Conv. Conv. ZNS

Media Capacity 2 TiB 2 TiB 2 TiB
Host Capacity 1.92 TB 1.60 TB 2 TB
Over-provisioning 7% 28% 0%
Placement Type None None Zones
Max Active Zones N/A N/A 14
Zone Size N/A N/A 2048 MiB
Zone Capacity N/A N/A 1077 MiB

Table 3: Feature summary of the evaluated SSDs

apples-to-apples comparison between the block-interface
SSDs and the ZNS SSD. We find that the ZNS SSD achieves
higher concurrent write throughput and lower random read
latency in the presence of writes.

• End-to-end application performance (§5.2). We com-
pare the performance of RocksDB on a block-interface
SSD running the XFS and f2fs file systems, with the per-
formance of RocksDB when running on a ZNS SSD using
our ZenFS backend. We find that RocksDB achieves up
to 2× higher read and write throughput, and an order of
magnitude lower random read tail latency when running
over the ZNS SSD.

• End-to-end performance comparison with SSD
Streams (§5.3). We compare the performance of the ZNS
SSD with a Streams-enabled block-interface SSD, by
running RocksDB on XFS and f2fs. We find that RocksDB
achieves up to 44% higher throughput on ZNS and up to
half the tail latency compared to the Stream SSD.

All experiments are performed on a Dell R7515 system
with a 16-core AMD Epyc 7302P CPU and 128 GB of DRAM
(8×16GB DDR4-3200Mhz). The baseline system configura-
tion is an Ubuntu 20.04 distribution, updated to the 5.9 Linux
kernel—the first version that includes our contributions as
described in §4.1. RocksDB experiments were carried out
on RocksDB 6.12 with ZenFS included as a backend storage
plugin.

5.1 Raw I/O Characteristics
To ensure that the same workload is applied to both the block-
interface SSD and ZNS SSDs, we divide the block-interface
SSD address space into LBA ranges that have the same num-
ber of LBAs as the zone capacity exposed by the ZNS SSD.
These zones, or LBA ranges, respect the same sequential write
constraint as ZNS, but the zone reset is simulated by trimming
the LBA range before writing. We measure performance after
the SSD has reached its steady-state with a given workload.

Sustained Write Throughput. We evaluate SSD through-
put to show the internal SSD garbage collection impact on
throughput and its ability to consume host writes. The exper-
iment issues 64KiB write I/Os to 4 zones. When one zone
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Figure 5: Measured (a) write throughput and (b) average
random read latency during rate-limited writes.

is full, a new zone is chosen, reset, and written sequentially.
While running the experiment, we measure the drive’s ability
to reach a specific host write throughput target ranging from
0 to 1GiB/s. Figure 5 (a) shows the achieved write throughput
for each write target. The block-interface SSDs sustain target
writes up to 300MiB/s (0% OP) and 500MiB/s (28% OP),
whereas the ZNS SSD sustains 1GiB/s. This aligns with the
measured steady-state throughput shown in Figure 1, which
shows that the block-interface SSDs achieve 370MiB/s (7%
OP) and 590MiB/s (28% OP), respectively. The ZNS SSD
with 0% OP, however, reaches 1010MiB/s. This is 1.7−2.7×
higher write throughput, and 7− 28% more storage capac-
ity which is no longer required by the device-side garbage
collection.

The ZNS SSD achieves higher throughput and lower write
amplification as it can align writes onto distinct erase blocks
and avoid garbage collection. The block-interface SSD mixes
data onto the same erase block, which is ultimately garbage
collected at separate points in time, increasing garbage col-
lection overhead.

Random Reads and Writes. To demonstrate the reduced
latency of random reads on a ZNS SSD, a second process
is added to the previous experiment, which simultaneously
performs random 4 KiB read I/Os across the SSD. We mea-
sure its average read latency while gradually increasing the
host write target. Figure 5 (b) shows the average random read
latency of the block-interface SSDs and the ZNS SSD. With
no ongoing writes, both block-interface SSDs report a 4KiB
read latency of 85µs. Compared to the SSDs with 7% and
28% OP, the random latency of the ZNS SSD is 19% and 5%
lower at 50MiB/s write throughput, 45% and 16% lower at
150MiB/s write throughput, and finally 64% and 27% lower
at 300MiB/s write throughput. The ZNS SSD’s throughput
continues to increase linearly with the write target, unlike the
block-interface SSDs.

5.2 RocksDB
Next, we demonstrate the performance improvements
achieved by RocksDB when it runs on a ZNS SSD accessed
either through f2fs with ZNS support added, or on top of our
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Figure 6: Throughput of RocksDB with write-heavy
benchmarks— fillrandom followed by overwrite using the
block-interface SSD with 28% OP and the ZNS SSD.

end-to-end optimized storage backend ZenFS. We compare
these two setups against RocksDB running on XFS and f2fs
using the block-interface SSD. f2fs supports both storage
interfaces, allowing us to compare the impact of a file sys-
tem running of top of a ZNS SSD. Furthermore, ZenFS is
optimized for ZNS, showing the benefits of integrating data
placement into an I/O intensive application.

Five workloads are executed for each setup. fillrandom
is a write-intensive workload pre-conditioning the SSDs for
follow-on benchmarks by issuing writes to fill drive capacity
several times. Second, overwrite measures the overall perfor-
mance when overwriting. Third, readwhilewriting performs
random reads while writing. Fourth, random reads performs
as described. Finally, readwhilewriting performs as described
with the addition of write rate-limiting. The last three bench-
marks are ran three times each and their results are averaged.

The benchmarks are scaled to 80% of the SSD. As a re-
sult, the actual over-provisioned space is 27% and 48% with
respect to 7% OP and 28% OP. In the interest of space, we
show mainly the 28% results, but show the performance dif-
ference for the write-heavy benchmarks and the rate-limited
readwhilewriting benchmark. A 128 MiB target SST file size
is used in all benchmarks except for the ZenFS workloads
where the target file size is configured to align with the zone
capacity.

Write Throughput. We first study the write throughput im-
provements, using two write-heavy benchmarks on the SSD
with 28% OP and the ZNS SSD. First, we populate the
database using the fillrandom benchmark with 3.8 billion
20B keys and 800B values (compressed to 400B). Then, we
randomly overwrite all values using the overwrite benchmark.

Figure 6 shows the average throughput of the two bench-
marks over the four setups. In the fillrandom benchmark, we
report the average of write operations per second (ops/s) for
each run and is executed from a clean state. Thus, the result is
impacted by the lower garbage collection overhead until the
SSD reaches a steady-state. As a result, the full write ampli-
fication impact can be first seen in the overwrite benchmark.
Both benchmarks show the XFS and f2fs setups perform
lower than f2fs (ZNS) and ZenFS. The most significant im-
pact is seen in the overwrite benchmark, in which the garbage
collection overhead heavily impacts the overall performance.
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ZenFS is 183% faster than XFS, and f2fs (ZNS) performs
42% better than XFS and 33% better than f2fs.

While the performance of f2fs ZNS increases, the garbage
collection overhead associated to large section size requires
more data to be moved upon cleaning, which ultimately im-
pacts the host-side garbage collection. To confirm, we mea-
sure the write amplification factor on the block-interface SSD,
which is reported as 2.0× for XFS, and 2.4× for f2fs, whereas
no device-side garbage collection (i.e., 1.0×) occured for
f2fs (ZNS) and ZenFS.

Read While Writing. As we have already shown (§5.1),
the ZNS SSD achieves lower read latency during concur-
rent writes because there are no in-device garbage collection
operations to interfere with reads during writes. We now
demonstrate how this affects the latency of RocksDB read
throughput using two read-intensive benchmarks: random-
read and readwhilewriting. The first initiates 32 threads that
perform a random reads of key-value pairs on a drive that
has been pre-conditioned by the write-intensive benchmarks.
The second initiates an extra thread that performs random
overwrites, in addition to the 32 threads performing reads.

First, we run the randomread benchmark, next we run read-
whilewriting while rate-limiting writes to 20 MiB/s (i.e., 25.6
Kops/s), and finally we run readwhilewriting with no rate-
limiting of writes. We run each of these benchmarks for 30
minutes, two times, again in the same four setups as before,
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Figure 9: Throughput of RocksDB writes during (a) fillran-
dom, (b) overwrite, and (c) readwhilewriting benchmark, us-
ing the block-interface SSD with 7% OP, as well as 28%
OP.

and report read/write throughput in Figure 7 and the average
and tail read latencies per operation in Figure 8.

For the randomread benchmark, we observe that each com-
bination achieves similar number of write ops/s and aver-
age latency, which is expected as there is no writes ongo-
ing. However, the 99th percentile (P99) latencies show that
ZenFS is 25% lower than XFS, and 6% lower than f2fs, while
f2fs (ZNS) has 32% lower latency than XFS and 16% lower
than f2fs.

Next, we study the throughput when performing rate-
limited writes. We first notice that only ZenFS is able to
sustain 20MiB/s writes while reading, with the other file sys-
tems are doing 15% less writes. f2fs (ZNS) performs the most
read ops/s, followed by ZenFS, f2fs and XFS. Furthermore,
we observe that ZenFS and f2fs (ZNS) have the lowest av-
erage latencies, and are able to achieve P99.9 read latencies
that are 2× and 4× lower than for XFS and f2fs, respectively.

Finally, we remove the write rate-limit, and then measure
the overall impact. Removing the write limit allows ZenFS
to achieve 2× the write ops/s compared to f2fs and XFS
on consumer SDDs at higher level of read ops/s. f2fs (ZNS)
achieves the highest amount of read ops/s and significantly
higher write throughput than XFS and f2fs. The P99.99 read
tail latencies stand out for ZenFS and f2fs (ZNS) which are
an order of magnitude lower than f2fs and XFS.

Impact of Capacity Over-Provisioning. We also evaluate
the impact of SSD capacity over-provisioning on RocksDB
performance. Whereas block-interface SSDs thrive on unused
capacity, as garbage collection is improved and thereby lower-
ing its write amplification factor. The ZNS SSD do not exhibit
this behavior and can use all available capacity, while still
maintaining a write amplification factor of ∼ 1×.

Figure 9 shows the measured number of operations per
second for XFS and f2fs when executing the fillrandom, over-
write, and rate-limited textitreadwhilewriting benchmarks.
The benchmarks are executed with 7% OP and 28% OP, re-
spectively. For the fillrandom benchmark, an improvement
between 14% and 16% in overall operations is seen, whereas
in the overwrite benchmark, XFS only sees a modest 4% im-
provement, while f2fs is improved by 25%. Finally, in the
readwhilewriting benchmark we see an improvement between
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Figure 10: The throughput of RocksDB during the fillran-
dom and overwrite benchmarks when executing on an block-
interface SSD with 7% OP and stream support.

12% and 18% for f2fs and XFS. While the overall throughput
is important, the latency is as well. For XFS, the tail latency
improves by 30% and by 23% for P99 and P99.9. Thus, if
latency is more important than throughput, then one must
budget with addition over-provisioning to lower the overall
latency caused by extra garbage collection.

5.3 Streams
Finally, we evaluate the performance of a block-interface SSD
with stream support against the performance of a ZNS SSD.

Figure 10 shows the throughput of the fillrandom and over-
write benchmarks executing on top of a block-interface SSD
with 7% OP and with streams enabled or disabled on top of
XFS and f2fs. RocksDB on XFS shows higher throughput
by 11% and 16% with Streams on fillrandom and overwrite
respectively. RocksDB on f2fs shows higher throughput by
24% and 4% with Streams on fillrandom and overwrite respec-
tively. f2fs (ZNS) achieves 17% and 44% higher throughput
compared to f2fs on a block-interface SSD with Streams for
fillrandom and overwrite respectively.

Furthermore, the P99 latency for f2fs drops from 9,435µs to
6,529µs with Streams support. This is very close to ZenFS’s
P99 latency during the same benchmark of 3,734µs. We there-
fore find that RocksDB achieves up to 44% higher throughput
on ZNS and close to half the tail latency compared to a block-
interface SSD with streams [56].

6 Related Work
This section covers related work on host-device collabora-
tion, research platforms, and key-value store designs. This
section covers work that was not already covered as necessary
background (§2.2).

Host-Device Collaboration. Significant research has gone
into optimizing the storage interface between host and SSD.
Josephson et al. implement DFS [30], a host-side file system
tightly integrated with the underlying hardware. SDF [46]
exposes individual flash dies to the host through a custom-
designed storage controller, and FlashBlox [26] uses dedi-
cated channels and dies for each application to improve iso-
lation. Application-Managed Flash [38] defines an interface
based on fixed-size segments that can be written sequentially
and reset by a trim operation. ZNS does not fix the number of
erase blocks per zone, which allows the SSD implementation

to map erase blocks dynamically to zones. Zhang et al. exam-
ine sharing the responsibility of data placement by enabling
the SSD to notify the host upon data relocation events [67].
ZNS provides a path to have both high performance and low
cost, while leaving the reliability and coarse-grained manage-
ment to the device.

Research Platforms. Various SSD hardware [14, 37, 58] and
software [11, 39, 66] platforms have been developed over the
years to expose the characteristics inherent to SSDs [10, 23].
This enables key research on storage interfaces [30, 54, 63]
and makes it possible to improve upon the block device inter-
face [27,62]. Each of these works target specific optimizations
and platforms, enabling the storage community to build on
them. ZNS is built upon these advancements, each of which
has enabled further exploration of the block interface design
space.

Key-value Store Designs. Previous work introduces multiple
key-value store designs for non-block interfaces. LOCS [61]
takes end-to-end design to the extreme and modifies Lev-
elDB to leverage the channel parallelism in OCSSDs. Unlike
LOCS, which is tied to a specific OCSSD platform, ZenFS tar-
gets the general zone interface and thereby enables RocksDB
to run on both ZNS SSDs and HM-SMR HDDs. Similarly,
SMRDB [49], GearDB [65], and BlueFS [2] target strictly
HM-SMR HDDs and are therefore unable to take the advan-
tage of ZNS extensions and run on ZNS SSDs.

Conclusion

ZNS enables higher performance and lower-cost-per-byte
flash-based SSDs. By shifting responsibility for managing
data organization within erase blocks from FTLs to host soft-
ware, ZNS eliminates in-device LBA-to-page maps, garbage
collection and over-provisioning. Our experiments with ZNS-
specialized f2fs and RocksDB implementations show sub-
stantial improvements in write throughput, read tail latency,
and write-amplification when compared to conventional FTLs
running on identical SSD hardware.
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