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Abstract

Inspired by Google’s BigTable, a variety of scalable, semi-structured, weak-semantic table stores
have been developed and optimized for different priorities such as query speed, ingest speed,
availability, and interactivity. As these systems mature, performance benchmarking will advance
from measuring the rate of simple workloads to understanding and debugging the performance of
advanced features such as ingest speed-up techniques and function shipping filters from client to
servers.

This paper describes a set of extensions, called YCSB4++4, to the Yahoo! Cloud Serving
Benchmark (YCSB) to improve performance understanding and debugging of these advanced
features. YCSB++ includes multi-tester coordination for increased load and eventual consistency
measurement, multi-phase workloads to quantify the consequences of work deferring and the benefits
of anticipatory configuration optimization such as B-tree pre-splitting or bulk loading, and abstract
APIs for explicit incorporation of advanced features in benchmark tests. To enhance performance
debugging, we customized an existing cluster monitoring tool to gather the internal statistics of
YCSB++, table stores, system services like HDFS and operating systems, and to offer easy
post-test correlation and reporting of performance behaviors. YCSB4++4 features are illustrated
in case studies of two BigTable-like table stores, Apache HBase and DoD IcyTable, developed to
emphasize high ingest rates and fine-grained security.



1 Introduction

Large-scale table stores, such as BigTable [10], Dynamo [15], HBase [3] and Cassandra [4, 31],
are becoming increasingly important for Internet services. To meet the desired scalability and
availability requirements, these table stores were designed to be more simple and lightweight than
traditional relational databases [38, 41]. Today, these table stores are used both by application
services and by critical systems infrastructure. Applications ranging from business analytics to
scientific data analysis rely on table stores [9, 40] and the next version of GoogleFS, called Colossus,
stores all file system metadata in BigTable [18].

This growing adoption, coupled with spiraling scalability and tightening performance require-
ments, has motivated the inclusion of a range of (often re-invented) optimization features that
significantly increase the complexity of understanding the behavior and performance of the system.
Table stores that began with a simple table model and single-row transactions are being extended
with new mechanisms for consistency, concurrency, data partitioning, indexing, and query analysis.

Features to speed up ingest-intensive workloads are required for many applications that gener-
ate and store petabytes of data in a table store at very high speeds [40]. Typically data is ingested
in a table using iterative insertions or bulk insertions. Iterative insertions add new data through
“insert” or “update” operations and they are optimized using numerous techniques that include
buffering at the clients, disabling logs [1, 35], relying on fast storage devices [43], and using index-
ing structures optimized for high-speed inserts [21-23, 36]. Bulk insertions load existing data-sets
by converting them from their current storage format to the format of the respective table store.
Proposals to speed-up bulk insertion in scalable table stores include using optimization frameworks
to pre-split partitions [42] and running Hadoop jobs to parallelize data loading [2, 7].

Another new feature in table stores is the ability to run distributed computations directly on
table store servers instead of clients. Google’s BigTable coprocessors allow arbitrary application
code to run directly on tablet servers even when the table is growing and expanding over multiple
servers [9, 13]. HBase plans to use a similar technique for server-side filtering and fine-grained access
control [25, 26, 29]. This server-side execution model, inspired from early work in parallel databases
[16], is designed to drastically reduce the amount of data shipped to the client and significantly
improve performance, particularly of scan operations with an application-defined filter.

With the rising importance and profusion of table stores, it is natural for a benchmarking
framework to be developed. Yahoo! Cloud Serving Benchmark (YCSB) is a great framework for
measuring the basic performance of several popular table stores including HBase, Voldemort, Cas-
sandra and MongoDB [12]. YCSB has an abstraction layer for adapting to the API of a specific
table store, for gathering widely recognized performance metrics and for generating a mix of work-
loads. Although it is useful for characterizing the baseline performance of simple workloads, such
as random or sequential row insertions, lookups or deletions, YCSB lacks support for benchmarking
advanced functionality perceived to be important and increasingly supported by table stores.

Our goal is to extend the scope of table store benchmarking to more complex features and
optimizations than are supported by YCSB. We seek a systematic approach to benchmark ad-
vanced functionality in a scalable and distributed manner. The design and implementation of our
techniques require no changes to the table stores being evaluated; however, the abstraction layer
adapting a table store to a benchmarking crafted API for specific advanced functions may be simple
or complex, depending on the capabilities of the underlying table store.

Table 1 summarizes the contributions of our paper. The first contribution is a set of bench-
marking techniques to measure and understand five commonly found advanced features: weak
consistency, bulk insertions, table pre-splitting, server-side filtering and fine-grained access control.
The second contribution is implementing these techniques, which we collectively call YCSB++, in



Extensions to the YCSB framework

Observations in HBase and IcyTable

Ingest-intensive workload extensions

External Hadoop tool that loads all data in a table
store file in a format used by the table store servers

Bulk insertion delivers highest data ingest rate of all
ingestion techniques, but the servers may end up re-
balancing the data regions

Pre-splits supported by a new workload executor for
key range partitioning and API extensions to send
keys to appropriate partitions

Ingest throughput of HBase increases by 20% but if
range partitioning is not known a priory the HBase
servers may incur re-balancing and merging overhead

Offloading functions to the DB servers

New workload executor that generates “determinis-
tic” data to allow setting appropriate filters and DB
client API extensions to send filters to servers

Server-side filtering benefits HBase and ICYTABLE
only when the client scans a enough data (more than
10 MB) to mask the overhead of network transfer and
disk reads

Fine grained access control (Detailed in Appendix A)

New workload generator and API extensions to DB
clients to test both schema-level and cell-level access
control models (HBase does not support access con-
trol [3] but IcYTABLE does)

IcYTABLE’s access control increases the size of the ta-
ble and may reduce insert throughput (if client CPU
is saturated) or scan throughput (when server returns
ACLs wit the data)

Distributed testing using multiple YCSB client nodes

ZooKeeper-based barrier synchronization for multi-
ple YCSB clients to coordinate the start and end of
different tests

Distributed testing benefits multi-client, multi-phase
testing (used to evaluate weak consistency and table
pre-splits)

Distributed event notification using ZooKeeper to
understand the cost (measured as read-after-write la-
tency) weak consistency

Both HBase and IcYTABLE support strong consis-
tency, but using client-side batch writing for higher
throughput results in weak consistency with higher
read-after-write latency as batch sizes increase

Table 1. Summary of contributions. For each advanced functionality that YCSB++ benchmarks,
this table describes the techniques implemented in YCSB and the key observations from our HBase and

IcYTABLE case studies.

the YCSB framework. Our final contribution is the experience of analyzing these features in two
table stores derived from Google BigTable, HBASE [3] and IcyTable.

2 YCSB++ Design

This section presents an overview of HBase, ICYTABLE and YCSB, followed by the design and im-
plementation of advanced functionality benchmarking techniques in the current YCSB framework.

2.1 Overview of HBase and IcyTable

HBase and IcYTABLE are BigTable-like scalable semi-structured table stores that store data in a
multi-dimensional sorted map where keys are tuples of the form {row, column, timestamp}. HBase
is developed as a part of the open-source Apache Hadoop project [3, 24] and ICYTABLE is developed
for the U.S. Department of Defense. Both are written in Java and layered on top of the Hadoop
distributed file System (HDFS) [27]. They support efficient storage and retrieval of structured data,
including range queries, and allow using ICYTABLE tables as input and output for MapReduce
jobs. Other features in these systems include automatic load-balancing and partitioning, data
compression and server-side user-defined function such as regular expression filtering. In addition,
IcYTABLE also supports fine-grained security labels for tables, columns and individual cells. To
avoid terminology differences in HBase and ICYTABLE, the rest of the paper will use the terminology
from the Google BigTable paper [10].



At a high-level, each table is indexed as a B-tree where all records are stored on the leaf nodes
called tablets. An installation of these table stores consists of tablet servers running on all nodes
in the cluster. Each tablet server is responsible for handling requests for several tablets. A tablet
consists of rows in a contiguous range in the key space and is stored as one or more files stored
in HDFS. Different table stores represent these files in their custom formats (BigTable uses an
SSTable format, HBase uses an HFile format and ICYTABLE uses a RegionFile format); we will
refer to them as store files. Both HBase and ICYTABLE provide columnar abstractions that allow
users to group a set of columns in a locality group. By storing a locality group in its separate store
file in HDFS, these systems can perform scans efficiently without reading excess data (from other
other columns). Both table stores use a master server that manages schema details and assigns
tablets to tablet servers in a load-balanced manner.

When a table is first created, it has a single tablet managed by one tablet server. To access
a table, clients contact the master to get the location of the tablet servers. All inserts are sent to
this server and buffered in memory; this in-memory buffer corresponding to each tablet is called a
memstore. When this memstore fills up, the tablet server flushes it to create a store file in HDF'S;
this process is called minor compaction. As the table grows, the memstore fills up again and is
flushed to create another store file. All store files are a part of the same tablet managed by a tablet
server. Once a tablet exceeds its threshold size, the tablet server splits the overflow tablet (and its
key range) by creating a new tablet on another tablet server and transferring the rows that belong
to the key range of the new tablet. This process is called a split. A large table may have large
number of tablets and each tablet may have many store files. To keep a bounded number of store
files, a periodic major compaction operation combines merges all the store files in a region into one
new store file. All files are stored in HDFS and these table stores rely on HDF'S for durability and
availability of data.

2.2 YCSB background

The Yahoo! Cloud Serving Benchmark (YCSB) is a popular extensible framework designed to
compare different table stores under identical synthetic workloads [12]. At a high level, YCSB
consists of the following components, shown as the light boxes in Figure 1.

The workload executor module is responsible for loading the test data and generating op-
erations that will be issued by DB Clients to the table stores. The default workload provided by
YCSB issues a series of basic operations including reads, updates, deletes and scans. In YCSB, a
“read” may be reading a single row or scanning a series of consecutive rows and an “update” may
either insert a new row or update an existing one. Operations are issued one at a time per thread
and their distributions are based on proportions specified in the workload parameter file for a
benchmark

YCSB allows users to specify the type of benchmark using a set of workload parameter
files. Each parameter file includes properties that identify the types of operations to perform and
their distributions. YCSB distribution includes five default workload files (called Workloads A, B,
C, D, E) that generate read-intensive, update-intensive and scan-intensive workloads (or a mix of
these).

DB Clients are wrapper classes around the APIs of various table stores. Currently YCSB
supports HBase, Cassandra, MongoDB and Voldemort; in this work, we added a new client for the
IcYTABLE table store. For a given table store, its DB client converts a ‘generic’ operation issued by
the workload executor to an operation specific for the table store under test. For example, for an
HBase cluster, if the workload executor generates a read() operation, the HBase DB client issues
a get () operation to the HBase servers.
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Figure 1. YCSB++ functionality testing framework. Unshaded boxes show modules in YCSB
v0.1.3 [12] and dark gray boxes show our extensions.

To start executing a benchmark, YCSB uses the client threads module to start multiple
threads that all call the workload executor to issue operations and then report the measured
performance to the stats module. Users specify the number of work generating threads, the table
store being evaluated and the workload parameter file as command line parameters.

2.3 New extensions in YCSB++

YCSB’s excellent modular structure made it natural for us to integrate testing of additional func-
tionality as YCSB extensions. In this section, we show how YCSB++ implements functionality
extensions in different YCSB modules, denoted by dark shaded boxes in Figure 1.

Parallel testing — The first extension in YCSB—-++4 enables multiple clients, on different
machines, to coordinate start and end of benchmarking tests. This modification is necessary be-
cause YCSB was originally designed to run on a single node and this one instance of YCSB, even
with hundreds of threads, may be insufficient to effectively test large deployments of cloud table
stores. YCSB++ controls execution of different workload generator instances through distributed
coordination and event notification using Apache ZooKeeper. ZooKeeper is a service that provides
distributed synchronization and group membership services, and is widely used by open-source
cloud table stores, including HBase and ICYTABLE [5, 28]

YCSB++ implements a new class, called ZKCoordination, that provides two abstractions —
barrier-synchronization and producer-consumer — through ZooKeeper. We added four new param-
eters to the workload parameter file: status flag, ZooKeeper server address, barrier-sync variable,
and size of the client coordination group. The status flag checks whether coordination is needed
among the clients. Each coordination instance has a unique barrier-sync variable to track the
number of processes entering or leaving a barrier. ZooKeeper uses a hierarchical namespace for
synchronization and, for each barrier-sync variable specified by YCSB-++, it creates a “barrier”
directory in its namespace. Whenever a new YCSB++ client starts, it joins the barrier by contact-
ing ZooKeeper server that in turn creates a new entry, corresponding to this client’s identifier, in



the “barrier” directory. Number of entries in a “barrier” directory indicates the number of clients
that have joined the barrier. If all clients have joined, ZooKeeper sends a callback to these clients
to begin executing their workloads; if not, YCSB++ clients block and wait for more clients to
join. Upon finishing the test (or a phase of a test), YCSB++ clients notify the ZooKeeper about
leaving the barrier.

Weak consistency — Table stores provide high throughput and high availability by eliminat-
ing expensive features, such as ACID properties, of traditional relational databases. Based on the
CAP theorem, many table stores tolerate network Partitions and provide high Availability by giv-
ing up on strong Consistency guarantees [8, 20]. Most systems offer “loose” or “weak” consistency
semantics, such as eventual consistency [15, 45], in which acknowledged changes are not seen by
other clients for significant time delays. This lag in change visibility may introduce challenges that
programmers may need to explicitly handle in their applications (i.e., actions taken on receiving
stale data). YCSB-++ measures the time lag before a different client can successfully observe a
value that was most recently written by other clients.

To evaluate the time to consistency, YCSB-++ uses the aforementioned ZKCoordination
module’s producer-consumer abstraction for asynchronous directed coordination between multiple
clients. YCSB++ clients interested in benchmarking weak consistency specify three properties in
the workload parameter file: status flag to check if a client is a producer or a consumer, ZooKeeper
server address, and a reference to the shared queue data-structure in ZooKeeper. Synchronized ac-
cess to this queue is provided by ZooKeeper: like the barrier abstraction, for each queue, ZooKeeper
creates a directory in its hierarchical namespace, and adds (or removes) a file in this directory for
every key inserted in (or deleted from) the queue. Clients that are inserting or updating records are
“producers” who add keys of recently inserted records in the ZooKeeper queue. The “consumer”
clients register a callback on this queue at start-up and, on receiving a notification from ZooKeeper
about new elements, remove a key from the queue to read it from the table store. If the read fails,
“producers” put the key back on the queue and try reading the next available key. Excessive use
of ZooKeeper for inter-client coordination may affect the performance of the benchmark; we avoid
this issue by sampling a small set of keys for read-after-write measurements. The “read-after-write”
time lag for key K is the difference from the time a “producer” inserts K until the first time a
“consumer” can successfully read that key from the table store server; we only report the lag for
keys that needed more than one read attempt.

Table pre-splitting for fast ingest — Recall that both HBase and IcYTABLE distribute
a table over multiple tablets. Because these stores use B-tree indices, each tablet has a key range
associated with it and this range changes when a tablet overflows to split into two tablets. These
split operations limit the performance of ingest-intensive workloads because table store implemen-
tations lock the tablet during splits and, until the split finishes, refuses any operation (including a
read) addressed to this tablet. One way to avoid this splitting overhead is to pre-split a table into
multiple key ranges based on a priori knowledge of the workload.

YCSB++ adds a pre-split function (in the DB clients module) that takes the split points
as input and sends it to the servers to pre-split a table. To enable pre-splits in a benchmark,
YCSB++ specifies a property in the workload parameter files that can specify either a list of
variable sized ranges in key space or a number of fixed-size partitions to split the key range.

Bulk loading using Hadoop — To add massive data-sets, table stores rely on high through-
put, specialized bulk loading tools [2]. YCSB++ supports bulk loading using an interface that is
different from YCSB’s API for normal insert operations. We built an external tool that directly
processes the incoming data, stores it in an on-disk format specific to the table store and notifies
the servers about the existence of this new data-set (files). YCSB-++ uses a Hadoop application
for the processing and storing phase of bulk load and a custom import() API call for notifying



the table store about the data files. Table store servers make this data-set available to users after
successfully updating internal data-structures used to reference these new data files.

To facilitate better understanding of bulk load operations, our Hadoop tool runs a multi-phase
task that generates the data, sorts it, partitions it and finally stores it in appropriate table store
file formats. The generated data can also be used for other YCSB benchmarks.

Server-side filtering — Current YCSB distribution contains basic support for simple filtering
that allows users to create tests that request reads or scans from only a single column. To evaluate
the effects of filtering, Y CSB-++ provides support to control the length of a scan and to manipulate
locality groups. Having precise control over scan length makes it easier to reason about the amount
of data that must be processed for each request for the performance gains of filtering to outweigh
its costs.

We added a new property that signals the DB clients to store each column in a separate locality
group (if the table store supports this feature).! YCSB++ includes four advanced server-side filters
that are currently not supported in YCSB: filters that return keys that match a specified pattern,
filters that return columns that match a specified pattern, filters that return columns whose value
matches a specified pattern, and filters that return entire rows for keys where a specified column
has a value that matches a specified pattern.

Filters are specified in the workload parameter files, detected and configured by the workload
generator modules, and implemented by the DB clients for HBase and IcYTABLE. YCSB++
also enhanced the DB client API to allow implementations to optionally support these filters. By
default, both HBase and ICYTABLE, use regular expressions to specify patterns, but our extensions
allow users to other alternate schemes supported by a table store.

2.4 Performance monitoring in YCSB++4

There are many tools for cluster-wide monitoring and visualization such as Ganglia [34], Col-
lectd [11], and Munin [44]. These tools are very powerful for large scale data gathering, transport,
and visualization. While such tools make it easy to view application-agnostics metrics such as ag-
gregate CPU load in a cluster, to investigate the performance of cluster-wide table stores servers we
require application-specific performance monitoring and analysis. Rather than simply extracting
virtual memory statistics for the sum of all processes running on a cluster, what we really want is
the aggregate memory usage of a MapReduce task, or a history of HBase’s compaction operations.
Using Ganglia as a base, we built a custom monitoring tool, named Otus [37], for YCSB++.
On each cluster host, Otus runs a daemon process that periodically collects metrics from different
table store components including tablet servers, master node, HDFS and data nodes. Users can
aggregate and analyze the collected data through a tailored web-based visualization system. Otus’s
metrics are stored in a central repository that users can access for post-processing and analysis.
For the purpose of YCSB++ benchmarks, Otus collects metrics from the operating system,
the table store and the YCSB++ clients. The OS-level resource utilization for individual table store
processes is obtained from the Linux /proc file system. These metrics include per-process CPU
usage, memory usage, and disk and network I/O activities. Table store-specific metrics, such as the
number of tablets and store files, provide information about the inner workings of these systems.
Otus currently supports metrics from HBase and ICYTABLE. Extending support for another table
store involves writing a Python script to extract its metrics. In addition, we extended the YCSB
client to periodically send the performance metrics to Otus. Through the web interface, a user can
query and display metrics for the table store components pertaining to a benchmarking experiment.

! Ideally, we would like fine-grained control over locality groups and support for sparse inserts that do not specify
values for all columns.



By storing the collected data in a central repository and providing a flexible web interface to
access the data, users can rely on fine-grained time series of different metrics coming from different
layers in the system and establish relations between the way various components behave. We used
Otus to observe and analyze the behavior of table stores while our benchmarking tests executed.
Figure 2 is an example of output from Otus showing a combined simultaneous display of three
metrics collected during an experiment: HDFS data node traffic, tablet server CPU utilization and
the number of store files in the system.
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Figure 2. Combined display of metrics collected with Otus.

3 Analysis

All our experiments are performed on the 64-node “OpenCloud” cluster at CMU. Each node has a
2.8 GHz dual quad core CPU, 16 GB RAM, 10 Gbps Ethernet NICs, and four Seagate 7200 RPM
SATA disk drives. These machines were drawn from two racks of 32 nodes each with an Arista
7148S top-of-the-rack switch. Both rack switches are connected to an Arista 7124S head-end switch
using six 10 Gbps uplinks each. Each node was running Debian Lenny 2.6.32-5 Linux distribution
with the XFS file system managing the test disks.

Our experiments were performed using Hadoop-0.20.1 (that includes HDFS) and HBase-0.90.2
which use the Java SE Runtime 1.6.0. HDFS was configured with a single dedicated metadata
server and 6 data servers. Both HBase and ICYTABLE were running on this HDFS configuration
with one master and 6 region servers — a configuration similar to the original YCSB [12].

The rest of this section shows how YCSB++ was used to study the performance behavior
of advanced functionality in HBase and IcYTABLE. We use our performance monitor (from Sec-
tion 2.4) to better understand the observed performance of all software and hardware components
in the cluster.
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3.1 Effect of batch writing

Both HBase and ICYTABLE coalesce application writes in a client-side buffer before sending them
to a server. Batch writing helps improve the throughput by avoiding a round-trip latency for
each write. To measure the effect of batch size, we configured both 6-node HBase and ICYTABLE
clusters layered on a HDFS cluster (with two other nodes acting as master). We used 6 YCSB++
clients, on separate machines, that each inserts 9 million rows in a single table using 50 threads for
IcYTABLE and, at most, 4 threads for HBase.?

Figure 3 reports the insert throughput, i.e., number of rows inserted per second, for different
sizes of the batch-writing buffer. To measure the baseline performance, we configured YCSB++ to
run 50 threads with one only client when testing ICYTABLE, and at this configuration, ICYTABLE
does not observe any performance gain from using larger batch sizes. Using our Otus monitors,
we discovered the insert rate is limited because the YCSB++ client is running at almost 100%
CPU utilization and cannot generate enough work to keep a 6-node ICYTABLE cluster busy; Figure
4 shows this for an experiment when the client batch size was 100 KB (we observed the same
phenomenon for all other batch sizes).

In our next experiment on ICYTABLE, we used six YCSB++ clients, each with 6 threads.
Figure 3 shows that increasing the batch size from 10 KB to 100 KB doubles the throughput.
However, insert throughput does not improve, and roughly stays the same, for higher batch sizes.
Our monitoring information for this experiment, shown in Figure 5, shows that for batch sizes of
100KB or more all six ICYTABLE servers are close to saturation, operating at more than 80% CPU
utilization. (Note that this graph shows the average CPU utilization on a six node cluster.)

Figure 3 also shows HBase performance with a single YCSB++ client with one thread, 6
YCSB++ clients with one thread and 4 threads each. Unlike ICYTABLE, HBase does not benefit
from different batch sizes. We also observed that HBase is less robust than IcYTABLE at handling
large number of client threads.

2HBase, when configured with 50 threads per client, was unable to complete the test successfully without crashing
any server during the test.
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3.2 Weak consistency due to batch writing

One key side-effect of batching is that any newly written objects are not written to the server
until the batch is full or the time-out on the buffer expires. Although both HBase and ICYTABLE
support strong consistency [3], such delayed writes violate the read-after-write consistency expected
by many applications; that is, a client may fail to read the most recently written object.

To understand this cost of batch writing, we used ZooKeeper-based producer-consumer abstrac-
tion with a two YCSB++ client setup. Cj inserts 1 million records in one table and randomly
samples 1% of these inserts to be enqueued at the ZooKeeper server, while Cs tries to read the keys
inserted in the ZooKeeper queue. We use four different batch sizes (10 KB, 100 KB, 1 MB and 10
MB) to measure the “read-after-write” time lag observed in both HBase and ICYTABLE.

Figure 6 shows a cumulative distribution of the time lag as observed by Cy. This data excludes
the time lag of any keys that are read successfully the first time Cy tries to do so. Out of 10,000
keys inserted in ZooKeeper, less that 1% keys experience a lag for 10 KB batch in both HBase
and ICYTABLE, 1.2% and 7.4% of the keys experience a time lag for a 100 KB batch in IcYTABLE
and HBase respectively, 14% and 17% for a 1 MB batch, and 33% and 23% for a 10 MB batch in
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Figure 6. CDF of read-after-write time lag for different batch sizes

IcyTABLE and HBase respectively. This happens because the smallest batch fills up quickly and
is flushed to the server more often, while the largest batch takes longer to fill up.

This phenomenon also explains the distribution of the time lag for the different batch sizes
in Figure 6. For the smallest batch size (10KB), HBase has a median lag of 100 ms and and at
most 150 seconds of lag, while ICYTABLE has an order of magnitude higher median (about 900 ms)
and an order of magnitude lower maximum lag (about 10 seconds). However, the time lag for both
systems is similar for all higher batch sizes; for the largest batch size (10 MB), the median lag is 140
seconds and maximum lag is 200 seconds. Interestingly, we observe that large batches may cause
some keys to be visible more than 100 seconds after they were written by other clients. In summary,
with large batched writes, the programmer must be prepared to cope with read-after-write time
lags in the order of minutes.

3.3 Table pre-splitting

For ingest heavy workloads, if the key distribution is known a priori, YCSB++ can enable clients
to pre-split a table such that the key ranges (and corresponding tablets) are well balanced across
all tablet servers. This allows a table store to avoid splitting tablets during the ingest phase, which
often results in high ingest performance. However, the number of tablets (or key ranges) that are
created after a pre-split has a tradeoff: fewer tablets may result in a load imbalance while many
tablets may increase load (memory and CPU) on tablet servers. Moreover, in the latter case,
having more tablets incurs higher memory pressure from large number of memstores leading to less
memory per memstore and frequent minor compactions.

As Table 2 shows, there are six phases in our pre-splitting illustrative experiment. Various

Phase Workload

Pre-load Pre-load 6M rows in range [0, 12B5]
Pre-split Pre-split tablet [0, 72M] evenly
Load Load 48M rows in range [0, 72M]

Measurement 1 | Half update and half read for 4 min-
utes with 600 ops/s target

Sleep Sleep for 5 minutes

Measurement 2 | Same as measurement one

Table 2. Different phases in pre-split experiment
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Figure 7. Load test with pre-splits

number of pre-splits are added after pre-load phase to understand their effect on the load phase.
Keys are distributed evenly across the whole range for every phase. In the pre-split phase, we split
uniformly in the range [0,72M]. There are two measurement phases with low target operation
throughput to measure the latency of read operations. There is a sleep phase in between to let the
system be idle and trigger compactions.

We use three clients to run the workload against ICYTABLE. Each tablet server holds 1GB
for memstore files. Figure 7 shows the shortest and longest completion time among three clients
for pre-load and load phases with different number of pre-splits added to the table. Pre-load phase
is always operated on an empty table, so it takes about the same amount of time. More pre-split
helps reducing the completion time from at least 1810 seconds to 1486 seconds, which is about 20%
improvement. With more pre-splits, the throughput of inserts is higher in the beginning because
every server processes insert requests. As the table grows, more splits are triggered and the load is
balanced across all the servers. With 17, 35 and 59 pre-splits, we observe a 10% improvement in
completion time. 143 pre-splits are enough and because no more splits occurred in the load phase,
we observer another 10% improvement in performance.

We also observed that that the read operations during the second measurement phase had
uniformly low latencies of approximately 7 ms. During the first measurement phase, immediately
following the load, however, read latencies were sometimes as high as 1500 ms or more. To explain
this phenomenon we consulted our Otus monitoring tool for metrics recorded during this run.
Figure 8 shows the instantaneous read latency (as extracted from YCSB++) and the number of
running concurrent minor and major compactions (as extracted from ICYTABLE) over the course of
the first measurement phase for the 143 pre-split run. We note that the presence of a high number
of major and minor compactions is correlated to peaks in read latencies, which gradually drop off as
the compactions complete. This is another example of how using our Otus monitoring tool helped
us form a hypothesis linking benchmark performance to the internal state of the table store.

If the distribution of pre-loaded data matches the distribution of future data, and there are al-
ready enough tablets to load balance the servers, little benefit is expected from pre-splitting. When
we changed the pre-load distribution to match the load distribution and repeated our experiments,
we saw benefits as small as 7%. In this case, bulk load may still be effective because it may use
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Figure 8. Read latency after intensive inserts

more efficient code path for the construction of store files.

3.4 Bulk loading using Hadoop

Recall that YCSB++ uses an external Hadoop/MapReduce application to test bulk insertions in
HBase and ICYTABLE. Experiments to test the bulk loading mechanisms in HBase and ICYTABLE
are modeled after the pre-splitting experiments in Section 3.3. Each experiment is divided into
six phases shown in Figure 10. Phase (1), MR pre-load, executes the data generation MapReduce
job to create 6 M rows with 10 cells per row. Phase (2), Pre-load import, refers to the adoption of
the generated files by the tablet servers. Phase (3), R/U 1, executes the read/update workload for
measurement purposes. Phases (4) & (5), MR for load and Load import, comprise the generation of
48 M additional rows for bulk loading. Phases (6) & (8) correspond to two additional R/U workload
executions for latency measurement, separated by a 5 minute pause in Phase (7). The R/U phases
are set up to place low load on the system. We measured the request latency as observed by the
clients.

We ran three test cases using this section: (1) HBase with splits, (2) HBase without splits,
and (3) IcYTABLE. In other words, some runs of the test against HBase experience dynamic re-
balancing (splits and major compactions), and some do not. The results are shown in Figures 9-13.

HBase with splits: In this experiment, the first R/U phase has a query latency under 10 ms as
shown in Figure 9(a). Phases R/U 2 and R/U 3 experience much higher latency around 100 ms,

(a) HBase split (Read latency) (b) HBase no split (Read latency) (c) lcyTable (Read latency)
70 1000
B n - RIUT wmime - -
€ E o RU2 —— E
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Figure 9. Read latency during the measurement phases for the bulk load experiments
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Figure 10. Six phase experiment used to understand the bulk load feature in HBase and
IcyTable

Scenario Rows MR Load Total

106 min:sec sec min:sec

HBase split Ez(;l((i)ad 42 ;22 27; 1;;3
HBase nosplit E(I;lead 42 i g: 23 ;3471
TeyTable E;‘;E’ad 42 iég g ;(1)8

Table 3. Bulk load running times

and as high as 5000 ms at the beginning of second R/U phase. This high latency in R/U 2 can
be explained by the time needed to read the newly bulk loaded data to warm up the cache in the
tablet servers. The subsequent high latency (above 100ms / query) is due to the work performed
by the tablet servers to split tablets and major compact a large number of store files. Figure 11
shows the number of store files and tablets in the table, as well as the compaction rate on a timeline
for the duration of the experiment.

HBase without splits: In this scenario, no splits occur throughout the duration of the experi-
ment. This is confirmed by the tablet count and number of store files metrics shown in Figure 12.
All the loaded files belong to a single tablet, thus all the queries are processed by a single tablet
server. Compared to the previous case with split and compaction activity, the query latency during
the R/U phases remains relatively low during, between 5 and 30 ms, as shown in Figure 9(b).

We also observe that ICYTABLE implements a more aggressive split/compaction policy. Fig-
ure 13 shows the number of store files and compactions during the experiment. ICYTABLE starts
splitting regions to balance the load as soon as the initial set of files is loaded. It also aggressively
performs compactions as new write operations are performed. Figure 9(c) shows that the query
latency increases following a bulk load, both in phases R/U 1 and R/U 2. The re-balancing and
compaction work is performed in approximately 3 minutes, which affected the response time for
R/U 1 and R/U 2. Phase R/U3 exhibits low query latency as the system has already finished
performing the background work.

3.5 Server-side filtering

By default, a row read or scan in YCSB from table stores such as HBase or ICYTABLE returns
all columns to the client, potentially much more than the application may be interested in. Using
server-side filtering, clients can pass a filter the server and possibly receive only the desired data.
Consequently, this may reduce the network and computation overhead at the client.
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Figure 12. HBase bulk ingest without splits.

To benchmark the effects of filtering, we created a dataset with 100 times as much data per
row as the standard YCSB configuration in 10 times as many fields (one hundred total). On this
dataset, we ran a custom workload consisting of scans of constant length ranging from 1 to 1000,
and measured throughput (number of rows read per second) at the client for both HBase and
IcYTABLE with and without filtering enabled.

Figure 14 shows the results of filtering on ICYTABLE. We observe that for smaller scan lengths
filtering does not provide any benefit — in fact, it degrades the performance. This behavior results
from the implementation of ICYTABLE tablet servers. For scan requests, ICYTABLE uses a scanner
batch which is the amount of data returned by the tablet server and the IcCY TABLE servers return the
requested data to the client only when the batch fills up. If the amount of data returned by a scan
request that does not fill up the batch size, the ICYTABLE servers do “extra” work that degrades
the performance. Figure 14 also shows that, for the unfiltered case, the collection is relatively easy
as the server just has to read directly from the tablet. In the filtered case, however, the tablet
server processes each row, eliminates all columns except the unfiltered one, adds the result to the
batch and then processes the next row. Recall that in this set-up there are one hundred columns in
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Figure 14. Performance of basic filtering on IcyTable for varying scan lengths

each row and filtering out all but one of them. As a result, in the filtered case, the tablet server is
reading one hundred times as many rows as the unfiltered case and performing processing on them.

The third configuration in Figure 14 is the “filtered (buffer scaled)” case which sets the scanner
batch size to a value more appropriate to the number of columns and rows we are interested in. We
set the batch size to the number of records requested times 1000 bytes (the size of an entry in our
set-up). Servers process an amount of data proportional to what the client actually is interested in
and this results in a performance improvement for all cases. Our analysis shows that while server
side filtering may be a tremendous win, the effects of server side overhead for techniques, such
as prefetching, may potentially be magnified if one imposes server side operations in an ad-hoc,
ill-informed manner.

To understand why filtering helps, let us examine the cluster metrics during the period of time
corresponding to the run when scan length was set to 1000 scan length run in ICYTABLE. Let us
examine the CPU load on the client as shown in Figure 15-left. During the first, filtering-disabled,
segment of the run the client is busy processing records. Without filtering, all columns are being
examined and copied into a buffer before being returned from YCSB4+4-. With larger data size
and higher number of columns to examine, the overhead piles up. On the other hand in the second,
filtering enabled segment of the run when the client only has to examine a single column (1/100th
the date of the unfiltered case), CPU load is comparatively light.
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Figure 15. CPU load, network traffic, and scan latency on the YCSB++ client during
the period of 1000-record scans. Filtering is enabled at 17:53

Network traffic, in Figure 15—center, shows the amount of data sent to the client. Since
we saturated the network during our experiments (which use a 10GigE NIC), this confirms our
hypothesis that filtering can have a linear effect on network traffic. Both network overhead and
CPU processing impose a penalty on the latency of each scan operation, as shown in Figure 15—
right, which drops the throughput. It is notable that the performance benefits were not directly
proportional to the CPU overhead differences as there are still some constant computation overheads
as well as network speed considerations and RTTs.
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Figure 16. Performance of basic filtering on HBase for varying scan lengths

We performed the same experiment on HBase and Figure 16 shows the results of our analysis.
Note that HBase does not require manipulation of the batch size because it performs less aggressive
prefetching than ICYTABLE.

3.6 Fine-grained access control

Because only ICYTABLE supports fine grained access control, we could not perform a comparison
with HBase.? However, YCSB++ has been extended to enable testing the cost and benefits of
access control implementation in ICYTABLE. Appendix A has details about our extensions to YCSB
and preliminary analysis.

3 HBase has proposed to add security features in future releases [29]
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4 Related Work

To the best of our knowledge, this is the first work to propose systematic benchmarking techniques
for advanced functionality in table stores and implement them to enhance the YCSB framework
[12], which currently supports whole-system performance benchmarking for different workloads. All
advanced features discussed in this paper and, in general, added to table stores are inspired from
decades of research in traditional databases. We focus on work in scalable and distributed table
stores.

Weak consistency: Various studies have measured the performance impact of weaker consis-
tency semantics used by different table stores and service providers [32, 46]. Using a first read-after-
write measurement similar to YCSB++, one study has found that 40% of reads return inconsistent
results when issued right after a write [32]. Another study found that Amazon SimpleDB’s even-
tually consistent model may cause users to experience stale reads and inter-item inconsistencies
[33, 46]. Unlike our approach to measure the time required for first successful read, the SimpleDB
study also checked if subsequent reads also returned stale values [46]. In contrast to SimpleDB’s
eventual consistency, both HBase and ICYTABLE provide strong data consistency if batch writ-
ing is disabled at their respective clients. Orthogonal approaches to understand weak consistency
includes theoretical models [30], algorithmic properties [6, 17].

Ingest-intensive optimizations. Since many open-source table stores rely on systems services
provided by the Hadoop framework, they rely of running an external Hadoop job that process and
stores massive data-sets in a tabular form understood by the table store servers. This approach is
common among users of HBase table store that uses a Hadoop job to insert data [2, 7]. An alternate
approach adopted by the PNUTS system is to use an optimization-based planning phase before
inserting the data [42]. This phase allows the system to gather statistics about the data-set that
may lead to efficient splitting and balancing. In contrast to Hadoop based bulk load tool that we
use, PNUTS-like planned approach may be useful for pre-splitting optimizations that rely on the
distribution of keys in the data-set. Because our work is focused on benchmarking, the YCSB++
workload generator can be modified to include a planning phase (along with several heuristics) than
can generate a range of dynamically changing key distributions to better understand the tradeoffs
of using table pre-splits.

Server-side filtering. Shipping functions to the server is an old idea that has been studies in dif-
ferent forms including active disks (in a single-node setting) [39], MapReduce (in cloud computing)
[14] and key-value stores (in wide-area networks) [19]. Because Hadoop/MapReduce framework is
built on the premise of collocating compute and data, both HBase and BigTable have proposed
the use of co-processors to allow application level code to run on the tablet servers [9, 13, 25, 26].
YCSB++ approach to testing server-side filtering has much narrower focus on regular expression
based filters than the general abstractions proposed by HBase [25, 26].

5 Conclusion

Scalable table stores started with simple data models, lightweight semantics and limited function-
ality. But today they feature a variety of performance optimizations, such as batch write-behind,
tablet pre-split, bulk loading, and server side filtering, and enhanced functionality, such as per-cell
access control. Coupled with complex deferring and asynchronous online re-balancing policies, the
performance implications of these optimizations are neither assured nor simple to understand, and
yet important to the goals of high ingest rate, secure scalable table stores.

Benchmarking tools like YCSB help with basic, single-phase workload testing of the core create-
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read-update-delete interfaces, and we initially constructed multi-phase tests of advanced features
by scripting combinations of YCSB tests. However, the extensibility of YCSB allows us to integrate
our testing into YCSB++, a distributed multi-phase YCSB with an extended abstract table API
for pre-splitting, bulk loading, server side filtering, and cell-level access control lists.

To enable more effective performance debugging, YCSB-++ exposes its internal statistics to an
external monitor like Otus, where they are correlated with statistics from the table store under test
and system services like file systems and MapReduce job control. Collectively comparing metrics of
internal behaviors of the table store (such as compactions), the benchmark, the network and CPU
usage of these service, yields a powerful tool for understanding and improving scalable table store
systems.
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Appendix A: Fine-grained access control

Cloud table stores are often used in a shared environment where multiple users and applications manipulate
the same table even if each user or application may not always manipulate the same column family. In
BigTable, a table and a column family form a unit of access control [10] and HBase proposes to support this
model [29]. In this paper, the model is referred as a schema-level access control since an access control list
is stored and checked at the schema/metadata level. This schema-level access control is not sufficient for all
users; in an environment where entries in the same column require different levels of security clearance finer-
grain access control is needed. One possible model for a fine-grain access control is proposed by ICYTABLE
where an individual access control list is associated with each cell in a column. This model is referred to as
cell-level access control since an access control list is stored along with each cell. In ICYTABLE, this fine-grain
access control is used only for read permissions while write permissions are still limited to a schema-level
access control.

YCSB++4 supports both the schema-level and cell-level access control models. This is done by ex-
tending the DB client API to pass credentials and an access control list from YCSB client and workload
executor to the table stores. We have implemented a security extension to YCSB’s core workload executor
to set credentials for read operations and schema-level access control at the beginning of each benchmark
while a cell-level access control is passed to the DB client before each insert operation.

5.1 Fine-grained access control

While a fine-gain access control in ICYTABLE can offer a greater control over who can access a particular
cell, the overhead for supporting this fine-grain access control may be significant since each access control
list is added to every cell in a table. The overhead comes in two ways. First, more bytes are sent over a
network and stored in disks at servers to support access control lists. Secondly, there is a computational
overhead to process an access control list while inserting and to verify credentials when a cell is accessed.
This type of overhead may depend on the number of entries (i.e. users and groups) in an access control list.

Row Key Column Family Column
~ 12 bytes 3 bytes 6 bytes
Access Control Value Timestamp
=~ 100 bytes 2 bytes 8 bytes

Table 4. Table setting: a size of each column
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Figure 17. Insert Throughput. Throughput decrease as the number of clauses increase in
case where CPU is a limiting resource.
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Figure 18. YCSB++ client CPU utilization. A single client inserting records becomes
CPU limited resulting in lower throughput as the number of entries in each access control list
1NCreases.

To understand the overhead of additional bytes, we designed an experiment where the length of an
access control list is much larger than the combined length of the key and value. Table 4 shows the settings
used in this experiment.

To measure the computational overhead with the effects of space overhead, we constructed access control
lists such that the total length of each access control list stays the same while each entry within the list
becomes smaller. Each access control list consists of three segments of entries. First a series of entries whose
combined size is fixed while their number increases. By increasing their number while decreasing the size of
each entry this segment allows us to increase the total number of entries in the access control list without
increasing its size. The second segment is two fixed entries that appear on every access control list. We use
these entries to test our credentials. Since we are interested in measuring overhead for this experiment we
configured the credentials and these entries such that all scans would succeed. Finally, the last entry in the
access control list is the name of the row so that all access control lists for the column are different from
each other.

Two benchmarks are used to measure the security overhead: A benchmark for insert operations and
another for scan operations. For insert operations, only one record is inserted per YCSB request. However,
there is a buffer inside the database client to buffer these operations before sending them to the server. In
the case of ICYTABLE, a client is configured to buffer up to 100KB before sending requests to a server. For
scan operations, each operation scans 1,000 records with a random starting key. From the results presented
in Section 3, we decided to pre-split a table into 24 tablets before starting the insert experiment so that all
servers would receive even load from the start. A table is empty before insertion with only single column.
For each round of the benchmark, 48 million rows are inserted into the table and 320 million rows are
scanned. We used two settings for YCSB++ clients: a single client with 100 threads and 6 clients using
our coordination extensions with 16 threads each (96 threads in total).
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Insert — Figure 17 reports the insert throughput, i.e. the number of records inserted per second, for
varying numbers of entries in each access control list. A value of zero entries means that no security was
used. An average of three runs with a standard deviation shown. In the case of a single client setting, we
observe that the throughput decreases as the number of entries in each access control list increases from a
24% throughput reduction in the 4-entry access control list setting to a 47% throughput reduction in the
11-entry access control list setting. Using our Otus monitor, Figure 18 shows that the YCSB+-+ client is
running at almost 100% CPU utilization. So as the number of entries in each access control list increases,
more computation is required to process the additional entries, reducing the insert throughput. Once 6
clients are used, the insert throughput does not decrease as the number of entries in each access control list
increased although the average CPU utilization of all clients increased from 18% in a no security setting and
22% in a 4-entry setting to 29% in a 11-entries setting.
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Figure 19. Scan Throughput. A significant drop once a fine-gain security is used.
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Figure 20. Aggregate network traffic of 6 YCSB++ clients. Significantly more bytes
are sent from ICYTABLE servers to YCSB++ client while scanning records with access control
lists.

Scan — Figure 17 reports the scan throughput, i.e., number of records scanned per second, for different
number of entries in each access control list. Again, a value of zero means no security used. An average of
three runs with a standard deviation shown. For both a single client setting and 6-clients setting, we observe
a significant drop (40% - 50%) in a scan throughput once a fine-gain access control is used while an increase
in the number of entries in each access control list does not form any obvious overhead. Using Otus, Figure
20 shows that significant more data is sent from a server to a client once a security is used. ICYTABLE opts
to send a whole access control list back to a client, although in many situations an access control list yields
no benefit to the client once an access is allowed.
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