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ABSTRACT
This paper presents an erasure-coded Byzantine fault-tolerant block
storage protocol that is nearly as efficient as protocols that tolerate
only crashes. Previous Byzantine fault-tolerant block storage pro-
tocols have either relied upon replication, which is inefficient for
large blocks of data when tolerating multiple faults, or a combina-
tion of additional servers, extra computation, and versioned stor-
age. To avoid these expensive techniques, our protocol employs
novel mechanisms to optimize for the common case when faults
and concurrency are rare. In the common case, a write operation
completes in two rounds of communication and a read completes
in one round. The protocol requires a short checksum comprised
of cryptographic hashes and homomorphic fingerprints. It achieves
throughput within 10% of the crash-tolerant protocol for writes and
reads in failure-free runs when configured to tolerate up to 6 faulty
servers and any number of faulty clients.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault tolerance; H.3.4
[Information Storage and Retrieval]: Systems and Software—
Distributed systems; D.4.7 [Operating Systems]: Organization
and Design—Distributed systems

General Terms: Performance, Reliability, Security

Keywords: Byzantine fault-tolerant storage

1. INTRODUCTION
Distributed storage systems must tolerate faults other than

crashes as such systems grow in size and importance. Protocols
that can tolerate arbitrarily faulty behavior by components of the
system are said to be Byzantine fault-tolerant [25]. Most Byzan-
tine fault-tolerant protocols are used to implement replicated state
machines, in which each request is sent to a server replica and each
non-faulty replica sends a response. Replication does not introduce
unreasonable overhead when requests and responses are small rel-
ative to the processing involved, but for distributed storage, large
blocks of data are often transferred as a part of an otherwise simple
read or write request. Though a single server can return the block
for a read request, the block must be sent to each server for a write
request.

A storage protocol can reduce the amount of data that must be
sent to each server by using an m-of-n erasure code [31, 32]. Each
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block is encoded into n fragments such that any m fragments can
be used to decode the block. Unfortunately, existing protocols that
use erasure codes struggle with tolerating Byzantine faulty clients.
Such clients can write inconsistently encoded fragments, such that
different subsets of fragments decode into different blocks of data.

Existing protocols that use erasure codes either provide each
server with the entire block of data or introduce expensive tech-
niques to ensure that fragments decode into a unique block. In the
first approach, the block is erasure-coded at the server [8], which
saves disk bandwidth and capacity but not network bandwidth. The
second approach [18] saves network bandwidth but requires addi-
tional servers and a relatively expensive verification procedure for
read operations. Furthermore, in this approach, all writes must be
versioned because clients may need to read several versions of a
block before read verification succeeds, and a separate garbage col-
lection protocol must be run to free old versions of a block [2].

This paper takes a different approach. We propose novel mech-
anisms to optimize for the common case when faults and concur-
rency are rare. These optimizations minimize the number of rounds
of communication, the amount of computation, and the number of
servers that must be available at any time. Also, we employ ho-
momorphic fingerprinting [20] to ensure that a block is encoded
correctly. Homomorphic fingerprinting eliminates the need for ver-
sioned storage and a separate garbage collection protocol, and it
minimizes the verification performed during read operations.

Analysis and measurements from our distributed block storage
prototype demonstrate throughput close to that of a system that tol-
erates only benign crash faults and well beyond the throughput re-
alized by competing Byzantine fault-tolerant approaches. Our pro-
tocol achieves within 10% of the throughput of an ideal crash fault-
tolerant system when reading or writing 64 kB blocks of data and
tolerating up to 6 faulty servers and any number of faulty clients.
Across a range of values for the number of faulty servers toler-
ated, our protocol outperforms competing approaches during write
or read operations by more than a factor of two.

2. BACKGROUND
Reliability has long been a primary requirement of storage sys-

tems. Thus, most non-personal storage servers (whether disk arrays
or file servers) are designed to tolerate faults of at least some com-
ponents. Until recently, tolerance of any single component fault
was considered sufficient by many, but larger systems have pushed
developers toward tolerating multiple component faults [12, 15].

Faults are tolerated via redundancy. In the case of storage sys-
tems, data is stored redundantly across multiple disk drives in order
to tolerate faults in a subset of them. Two common forms of data
redundancy are replication and m-of-n erasure coding, in which a
block of data is encoded into n fragments such that any m can be
used to reconstruct the original block. For disk arrays, the trade-off
between the two has been extensively explored for two-way mirror-
ing (i.e., two replicas) versus RAID-5 (i.e., (n−1)-of-n erasure cod-
ing) or RAID-6 ((n− 2)-of-n erasure coding). Mirroring performs



well when the number of faults tolerated is small or when writes
are small, RAID-5 and RAID-6 perform better for large writes, and
all three perform well for reads [11, 39]. The Google File System
(GFS) [15], for example, uses replication for a mostly-read work-
load and by default tolerates two faults.

For distributed storage, as the number of faults tolerated grows
beyond two or three, erasure coding provides much better write
bandwidth [37, 38]. A few distributed storage systems support era-
sure coding. For example, Zebra [19], xFS [4], and PanFS [29] sup-
port parity-based protection of data striped across multiple servers.
FAB [34], Ursa Minor [3], and RepStore [40] support more general
m-of-n erasure coding.

2.1 Beyond crash faults
A common assumption is that tolerance of crash faults is suffi-

cient for distributed storage systems, but an examination of a mod-
ern centralized storage server shows this assumption to be invalid.
Most such servers integrate various checksum and scrubbing mech-
anisms to detect non-crash faults. One common approach is to store
a checksum with every block of data and then verify that checksum
upon every read (e.g., ZFS [7] and GFS [15]). This checksum can
be used to detect problems such as when the device driver silently
corrupts data [7, 15] or when the disk drive writes data to the wrong
physical location [3, 7].

For example, if a disk drive overwrites the wrong physical block,
a checksum may be able to detect this corruption, but only if the
checksum is not overwritten as well. To prevent the checksum from
being incorrect along with the data, the checksum is often stored
separately (e.g., with the metadata [7, 15]).

In short, various mechanisms are applied to detect and recover
from non-crash faults in modern storage systems. These mecha-
nisms are chosen and combined in an ad hoc manner based on the
collective experience of the organizations that design storage sys-
tems. Such mechanisms are inherently ad hoc because no fault
model can describe just the types of faults that must be handled in
distributed storage; as systems change, the types of faults change.
In the absence of a more specific fault model, general Byzantine
fault tolerance [25] can be used to cover all possibilities.

2.2 The cost of Byzantine fault tolerance
Byzantine fault-tolerant m-of-n erasure-coded storage protocols

require at least m + 2 f servers to tolerate f faulty servers. Re-
quiring this many servers is less imposing than it sounds; modern
non-Byzantine fault-tolerant erasure-coded storage arrays already
use a similar number of disk drives. A typical storage array will
have several primary disk drives that store unencoded data (e.g.,
m = 5) and a few parity drives for redundancy (e.g., f = 2). Be-
yond these drives, however, an array will often include a pool of
hot spares with f or more drives (sometimes shared with neighbor-
ing arrays). The reason for this setup is that once a drive fails or
becomes otherwise unresponsive, the storage array must either halt
or decrease the number of faults that it tolerates unless it replaces
that drive with a hot spare. This setup is similar to providing m+ f
responsive drives to a Byzantine fault-tolerant protocol but making
an additional f drives available as needed (for a similar approach,
see Rodrigues et al. [33]). In other words, the specter of additional
hardware should not scare developers away from Byzantine fault
tolerance.

Byzantine fault-tolerant protocols often require additional com-
putational overhead. For example, our protocol requires data to be
cryptographically hashed for each write and read operation. This
overhead, however, is less significant than it appears for two rea-
sons. First, data must be hashed anyway if it is to be authenticated

when sent over the network. Of course, data must be structured
properly to use a hash for both authentication and fault tolerance.
Second, many modern file systems hash data anyway. For exam-
ple, ZFS supports hashing all data with SHA-256 [36], and EMC’s
Centera hashes all data with either MD5 or a concatenation of MD5
and SHA-256 to provide content addressed storage [30].

2.3 Byzantine fault-tolerant storage
Many Byzantine fault-tolerant protocols are used to implement

replicated state machines. Implementations of recent protocols can
be quite efficient due to several optimizations. For example, Castro
and Liskov eliminate public-key signatures from the common case
by replacing signatures with message authentication codes (MACs)
and lazily retrieving signatures in cases of failure [10]. Abd-El-
Malek et al. use aggressive optimistic techniques and quorums to
scale as the number of faults tolerated is increased, but their proto-
col requires 5 f +1 servers to tolerate f faulty servers [1]. Cowling
et al. use a hybrid of these two protocols to achieve good perfor-
mance with only 3 f +1 servers [13]. Kotla and Dahlin further im-
prove performance by using application-specific information to al-
low parallelism [24]. Though a Byzantine fault-tolerant replicated
state machine protocol can be used to implement a block storage
protocol, doing so requires writing data to at least f +1 replicas.

When writing large blocks of data and tolerating multiple faults,
a Byzantine fault-tolerant storage protocol should provide erasure-
coded fragments to each server to minimize the bandwidth over-
head of redundancy. Writing erasure-coded fragments has been
difficult to achieve because servers must ensure that a block is en-
coded correctly without seeing the entire block. Goodson et al.
introduced PASIS, a Byzantine fault-tolerant erasure-coded block
storage protocol [18]. In PASIS, servers do not verify that a block
is correctly encoded during write operations. Instead, clients verify
during read operations that a block is correctly encoded.

This technique avoids the problem of verifying erasure-coded
fragments but introduces a few new ones. First, fragments must
be kept in versioned storage [35] because clients may need to read
several versions of a block before finding a version that is encoded
correctly. Second, the read verification process is computationally
expensive. Third, PASIS requires 4 f +1 servers to tolerate f faults.
Fourth, a separate garbage collection protocol must eventually be
run to free old versions of a block. A lazy verification protocol,
which also performs garbage collection, was proposed to reduce the
impact of read verification by performing it in the background [2],
but this protocol consumes significant bandwidth.

Cachin and Tessaro introduced AVID [8], an asynchronous ver-
ifiable information dispersal protocol, which they used to build a
Byzantine fault-tolerant block storage protocol that requires only
3 f +1 servers to tolerate f faults [9]. In AVID, a client sends each
server an erasure-coded fragment. Each server sends its fragment
to all other servers such that each server can verify that the block
is encoded correctly. This all-to-all communication, however, con-
sumes slightly more bandwidth in the common case than a typical
replication protocol. Our paper describing homomorphic finger-
printing provides a protocol that reduces this overhead but still re-
quires all-to-all communication and the encoding and hashing of
3 f + 1 fragments [20, Section 4]. We address these shortcomings
in Section 3.1.1.

Many of the problems in PASIS are caused by the need to han-
dle Byzantine faulty clients. Faulty clients should be tolerated in a
Byzantine fault-tolerant storage system to prevent such clients from
forcing the system into an inconsistent state. For example, though a
faulty client can corrupt blocks for which it has write permissions,
it must not be allowed to write a value that is read as two differ-



ent blocks by two different correct clients; if not, a faulty client
at a bank, e.g., could provide one account balance to the auditors
but another to the ATM. Liskov and Rodrigues [26] propose that
servers provide public-key signatures to vouch for the state of the
system. This technique can be used to tolerate Byzantine faulty
clients in a quorum system. In the next section, we will adapt this
technique to use only MACs and pseudo-random nonce values in a
PASIS-like protocol.

3. THE PROTOCOL
This section describes the block storage protocol. A separate

instance is executed for each block, so this section does not discuss
block numbers. Section 3.1 describes the design of the protocol,
including how it builds on prior protocols. Section 3.2 describes
the system model. Section 3.3 provides pseudo-code for write and
read operations. Section 3.4 discusses liveness and linearizability.
Section 3.5 discusses protocol extensions.

3.1 Design
Consider the following replication-based protocol [26], which

requires 3 f + 1 servers to tolerate f faults. To write a block, a
client hashes the block and sends the hash to all servers (the pre-
pare phase). The servers respond with a signed message contain-
ing the hash and a logical timestamp, which is always greater than
any timestamp that the server has seen. If there are not at least
2 f + 1 matching timestamps, the client requests that each server
sign a new message using the greatest timestamp found. The client
commits the write by sending the entire block along with 2 f + 1
signed messages with matching timestamps to each server. The
server verifies that the signatures are valid and that the hash of the
block matches the hash in the signed message. Because this proto-
col uses public-key signatures, the client can verify the responses
from the prepare phase before it attempts to commit the write.

To read the block, the client queries all servers for their most
recent timestamp and the 2 f + 1 signatures generated in the pre-
pare phase. The client reads the block with the greatest timestamp
and 2 f + 1 correctly signed messages. The signatures allow the
the client to verify that 2 f + 1 servers provided signatures in the
prepare phase, which ensures that some client invoked a write of
this block at this timestamp (at least one of these servers is correct
and, hence, would only provide signatures to a client in the prepare
phase). To ensure that other clients see this block, the client writes
it back to any servers with older timestamps.

Sending the entire block causes overhead that could be elim-
inated by sending erasure-coded fragments instead. Writing
erasure-coded fragments, however, poses a problem, in that servers
can no longer agree on what is being written. A faulty or malicious
client can write fragments that decode to different blocks depend-
ing upon which subset of fragments is decoded. PASIS [18] uses a
cross-checksum [17], which is a set of hashes of the erasure-coded
fragments, to detect such inconsistencies. To write a block, a client
requests the most recent logical timestamp from all servers in the
first round. In the second round, the client sends each server its
fragment, the cross-checksum, and the greatest timestamp found.
Unfortunately, PASIS requires 4 f + 1 servers to tolerate f faults,
so 4 f + 1 fragments must be encoded and hashed, which is a sig-
nificant expense. To read a block, the client reads fragments and
cross-checksums from each server, starting with the most recent
timestamp, until it finds m fragments whose hashes correspond to
their respective locations in the cross-checksum. From these frag-
ments, the client decodes the block, re-encodes n fragments, and
recomputes the cross-checksum. If this cross-checksum does not
match the one provided by the servers, then the write operation

for that timestamp was invalid and the client must try reading frag-
ments at an earlier timestamp. If cross-checksums match, the client
writes fragments back to servers as needed.

3.1.1 Improvements
The replication-based protocol requires only 3 f + 1 servers but

relies on public-key signatures and replication. PASIS improves
write bandwidth but has a number of drawbacks, as discussed in
Section 2.3. Our protocol improves on these approaches with the
following four techniques.

No public-key cryptography: As in the replication-based pro-
tocol [26], the response to a prepare request in our protocol includes
an authenticated timestamp and checksum that allows the client to
progress to the commit phase once enough timestamps match. Cas-
tro and Liskov [10] avoid using signatures for authentication by
using message authentication codes (MACs) in the common case
but lazily retrieving signatures when needed. This lazy retrieval
technique does not work for the Liskov and Rodrigues protocol,
however, because signatures are stored for later use to vouch for
the state of the system [26, Section 3.3.2].

Instead, we eschew signatures altogether and rely entirely on
MACs and random nonce values. All servers share pairwise MAC
keys (clients do not create or verify MACs). Each server provides
MACs to the client in the prepare phase, which the client sends in
the commit phase to prove that enough servers successfully com-
pleted prepare requests at a given timestamp. Of course, a faulty
server may provide faulty MACs during the prepare phase, or it
may reject valid MACs during the commit phase. To recover from
this, a client may need to gather more MACs from the prepare phase
after it has entered the commit phase, but a commit eventually com-
pletes.

The replication-based protocol also uses signatures to allow
servers to prove to a reader that a block was written by some client;
that is, to prevent a server from returning fabricated data. Instead
of signatures, each server provides a pseudo-random nonce value in
the prepare phase of our protocol. The client aggregates these val-
ues and provides them to each server in the commit phase. During a
read operation, a server provides the client with these nonce values
to prove that some client invoked a write at a specific timestamp, as
will be described in Section 3.3 and Lemma 5 of Section 3.4.2.

Early write: Before committing a write, a correct server in
our protocol must ensure that enough other correct servers have
fragments for this write, such that a reader will be able to recon-
struct the block. The replication-based protocol does not face this
problem because each server stores the entire block. Our proto-
col could solve this problem with another round of communication
for servers to confirm receipt of a fragment. Instead, in our proto-
col and unlike previous protocols, clients send erasure-coded frag-
ments in the first round of the prepare phase, which saves a round
of communication. With this approach, a faulty client may send
a fragment in the first phase without committing the write. As in
PASIS [2], a server may limit this by rejecting a write from a client
with too many uncommitted writes.

Partial encoding: PASIS encodes and hashes fragments for all
n servers. Encoding this many fragments is wasteful because f
servers may not be involved in a write operation. Instead, our
protocol encodes and hashes fragments for only the first n− f
servers, which lowers the computational overhead. We call this par-
tial encoding because we only partially encode the block for most
write operations. The computational savings are significant: for
m = f +1, our protocol encodes only 2 f +1 fragments, which is the
same number encoded by a non-Byzantine fault-tolerant erasure-
coded protocol. Many m-of-n erasure codes encode the first m frag-



ments by dividing a block into m fragments (such codes are said to
be systematic), which takes little if any computation. Hence, en-
coding 2 f +1 fragments requires computing f +1 values, whereas
encoding 4 f +1 fragments (as in PASIS) requires computing 3 f +1
values.

The drawback of this approach is that if one of the first m + f
servers is non-responsive or faulty, the client may need to send
the entire block to convince another server that its fragment cor-
responds to the checksum. This procedure is expensive: not only
does it consume extra bandwidth, but the server must verify the
block against the checksum. To verify a block, the server encodes
the block into m + f fragments, hashes each fragment, and com-
pares these hashes to the checksum provided by the client. If the
hashes match the checksum, the server encodes its fragment from
the block. Fortunately, the first m+ f servers should rarely be non-
responsive or faulty.

Distributed verification of erasure-coded data: One problem
in PASIS is that each server knows only the cross-checksum and its
fragment, and so it is difficult for a server to verify that its fragment
together with the corresponding fragments held by other servers
form a valid erasure coding of a unique block. We recently solved
this problem [20]. The solution relies on a data structure called
a fingerprinted cross-checksum. The fingerprinted cross-checksum
includes a cross-checksum, as used in PASIS, along with a set of
homomorphic fingerprints of the first m fragments of the block.
The fingerprints are homomorphic in that the fingerprint of the era-
sure coding of a set of fragments is equal to the erasure coding of
the fingerprints of those fragments. The overhead of computing
homomorphic fingerprints is small compared to the cryptographic
hashing for the cross-checksum.

The ith fragment is said to be consistent with a fingerprinted
cross-checksum if its hash matches the ith index in the cross-
checksum and its fingerprint matches the ith erasure coding of the
homomorphic fingerprints. Thus, a server can determine if a frag-
ment is consistent with a fingerprinted cross-checksum without ac-
cess to any other fragments. Furthermore, any two blocks decoded
from any two sets of m fragments that are consistent with the finger-
printed cross-checksum are identical with all but negligible proba-
bility [20]. A server can check that a fragment is consistent with
a fingerprinted cross-checksum shared by other servers on commit,
allowing it to overwrite old fragments. Thus, only fragments that
are in the process of being written must be versioned, obviating the
need for on-disk versioning. This technique also eliminates most of
the computational expense of validating the cross-checksum during
a read operation.

3.1.2 Protocol overview
This section provides an overview of the protocol. The protocol

provides wait-free [21] writes and obstruction-free [22] reads of
constant-sized blocks while tolerating a fixed number of Byzantine
servers and an arbitrary number of Byzantine clients in an asyn-
chronous environment. Figure 1 provides an outline of the pseudo-
code for both write operations and read operations. The line num-
bers in Figure 1 match those of Figures 2 and 3. Figure 2 provides
detailed pseudo-code for a write operation and is described line-by-
line in Section 3.3.2. Figure 3 provides detailed pseudo-code for a
read operation and is described line-by-line in Section 3.3.3.

To write a block, a client encodes the block into m+ f fragments,
computes the fingerprinted cross-checksum, and sends each server
its fragment and the fingerprinted cross-checksum (lines 100–206).
The server responds with a logical timestamp, a nonce, and a MAC
for each server of the timestamp, fingerprinted cross-checksum,
and nonce (line 505). If timestamps do not match, the client re-

c_write(B):
100: d1, . . . ,dm+ f ← encode1,...,m+ f (B) /∗ Partial encoding ∗/
101: for (i ∈ {1, . . . ,m+ f}) do fpcc.cc[i]← hash(di)
102: for (i ∈ {1, . . . ,m}) do fpcc.fp[i]← fingerprint(hash(fpcc.cc),di)
. . . : for (i ∈ {1, . . . ,m+ f}) do
206: Prepare[i]← Si.s_rpc_prepare_frag(di,ts, fpcc)
505: /∗ Server returns 〈ts,nonce,〈MACi, j(〈ts, fpcc,nonce〉)〉1≤ j≤n〉 ∗/
214: if (Prepare[i].ts 6= ts) then /∗ Retry prepare ∗/
. . . : . . . /∗ See lines 209-217 ∗/
. . . : for (i ∈ {1, . . . ,m+ f}) do
228: Si.s_rpc_commit(ts, fpcc,Prepare)

c_read():
. . . : for (i ∈ {1, . . . ,2 f +1}) do
705: 〈ts, fpcc〉 ← Si.s_rpc_find_timestamp()
. . . : for (i ∈ {1, . . . ,m}) do
720: di← Si.s_rpc_read(ts, fpcc)
917: B← decode(d1, . . . ,dm)
. . . : /∗ Client verifies the consistency of block B in c_find_block ∗/
726: return B

Figure 1: Pseudo-code outline. Line numbers match Figures 2 and 3.

quests new MACs at the greatest timestamp found (line 214). Un-
like the signatures in the Liskov and Rodrigues protocol, the client
cannot tell if these MACs are valid.

The client then commits this write by sending the timestamp,
fingerprinted cross-checksum, nonces, and MACs to each server
(line 228). A correct server may reject a commit with MACs from
faulty servers or a faulty server may reject a commit with MACs
from correct servers. Faults should be uncommon, but when they
occur, the client must contact another server. The client can either
try the commit at another server or it can send the entire block
to another server in order to garner another prepare response. A
write operation returns after at most three rounds of communication
with correct servers. Because faults and concurrency are rare, the
timestamps received in the first round of prepare will often match,
which allows most write operations to complete in only two rounds.

To read a block, a client requests timestamps and fingerprinted
cross-checksums from 2 f +1 servers (line 705) and fragments from
the first m servers (line 720). If the m fragments are consistent
with the most recent fingerprinted cross-checksum, and if the client
can determine that some client invoked a write at this timestamp
(using nonces as described in Section 3.3.3), a block is decoded
(line 917) and returned (line 726). (In Figure 3, the client verifies
read responses and decodes a block in c_find_block.) Most read
operations return after one round of communication with correct
servers. If a concurrent write causes a fragment to be overwritten,
however, the client may be redirected to a later version of the block,
as described in Section 3.3.3.

3.2 System model
The point-to-point communication channel between each client

and server is authenticated and in-order, which can be achieved in
practice with little overhead. Communication channels are reliable
but asynchronous, i.e., each message sent is eventually received,
but there is no bound assumed on message transmission delays.
Reliability is assumed for presentational convenience only; the pro-
tocol can be adapted to unreliable channels as discussed by Martin
et al. [27, Section 4.3].

Up to f servers and an arbitrary number of clients are Byzantine
faulty, behaving in an arbitrary manner. An adversary can coordi-
nate all faulty servers and clients. To bound the amount of storage
used to stage fragments for in-progress writes, there is a fixed upper
bound on the number of clients in the system and on the number of
prepare requests from each client that are not followed by subse-
quent commits.



We assume that there is a negligible probability that a MAC can
be forged or that a hash collision or preimage can be found. The
fingerprinted cross-checksum requires that the hash function acts
as a random oracle [6]. All servers share pairwise MAC keys. The
value labeled nonce must not be disclosed to parties except as pre-
scribed by the protocol, in order to prove Lemma 5 in Section 3.4.2.
This value is small and can be encrypted at little cost.

The protocol tolerates f Byzantine faulty servers and any num-
ber of faulty clients given an m-of-n erasure code and n = m + 2 f
servers, where m ≥ f + 1. As in PASIS, the protocol may be de-
ployed with m > f +1 to achieve higher bandwidth for fixed f .

3.3 Detailed pseudo-code
This section provides detailed pseudo-code for write and read

operations. Pseudo-code for a write operation is described line-by-
line in Section 3.3.2. Pseudo-code for a read operation is described
line-by-line in Section 3.3.3. Presentation simplicity of the pseudo-
code is chosen over optimizations that may be found in an actual
implementation.

3.3.1 Notation
The protocol relies on concurrent requests that are described in

the pseudo-code by remote procedure calls and coroutines. The
cobegin and parallel bars represent the forking of parallel threads
of execution. Such threads stop at end cobegin. The main thread
continues to execute after forking threads; that is, the main thread
does not wait to join forked threads at end cobegin. Threads are
not preempted until they invoke a remote procedure call or wait on
a semaphore. Semaphores are binary and default to zero. A WAIT

operation waits on a semaphore, and SIGNAL releases all waiting
threads. A return statement halts all threads and returns a value.

Each operation is assigned a logical timestamp, represented by
the pair 〈ts, fpcc〉. Timestamps are ordered according to the value
of the integer ts or, if they share the same ts, by comparison of
the binary value fpcc. Timestamps that share the same ts and fpcc

are equal. The most recent commit at a server is represented as
latest_commit; this value is initialized to 〈0, NULL〉 before the pro-
tocol starts. Each server stages fragments for concurrent writes and
stores committed fragments; both staged and committed fragments
are kept in the store table.

A block is represented as B and a fragment as d in
the pseudo-code. A cross-checksum, abbreviated to cc in
the pseudo-code, contains n hashes, cc[1], . . . ,cc[n]. The
fingerprinted cross-checksum, abbreviated to fpcc, contains
m fingerprints, fpcc.fp[1], . . . , fpcc.fp[m], and m + f hashes,
fpcc.cc[1], . . . , fpcc.cc[m+ f ].

The encode j(B) function encodes block B into its jth

erasure-coded fragment. The decode(. . .) function will de-
code the first m fragments provided in its arguments, and the
index of each fragment is passed implicitly. We abbrevi-
ate encode j(decode(di1 , . . . ,dim)) to encode j(di1 , . . . ,dim). The
fingerprint(h,d) function fingerprints fragment d given random
value h. The random value in our protocol is provided by
a hash of the cross-checksum, which is secure so long as the
hash function acts as a random oracle [6]. The homomor-
phism of the fingerprints provides the following property [20]:
if d1, . . . ,dn ← encode1,...,n(B) and fpi ← fingerprint(h,di), then
fpi0 = encodei0(fpi1 , . . . , fpim) for any set of indices i0, . . . , im.

3.3.2 Write
Pseudo-code for write is provided in Figure 2. A write operation

is invoked with a block of data as its argument and returns SUCCESS

as its response. Write is divided into prepare and commit phases.
The pseudo-code breaks write into a wrapper function, c_write,
and a main function, c_dowrite, such that the main function can
be reused for writing back fragments during a read operation. The
wrapper function encodes the block into m+ f fragments and com-
putes a fingerprinted cross-checksum (lines 100–102). It then calls
c_dowrite (line 103).

Prepare, lines 200–221: The prepare phase is described in the
top half of c_dowrite. The client invokes s_rpc_prepare_frag at
each of the first m + f servers with its fragment and the finger-
printed cross-checksum (line 206); ts will be NULL. A correct
server Si verifies that this fragment is consistent with the finger-
printed cross-checksum. To do so, it first computes the finger-
print and the hash of the fragment (line 300). It then computes
the ith erasure coding of the homomorphic fingerprints in the fin-
gerprinted cross-checksum (line 301). Finally, it ensures that this
erasure coding is equal to the fingerprint of this fragment, and that
the hash is equal to the ith hash in the cross-checksum (line 302).
If the fragment is consistent, the server prepares a response in
s_prepare_common (line 303).

Because of partial encoding, there are only m+ f erasure-coded
fragments, so if one of the first m+ f servers is not responsive or if
commit fails, the client may need to invoke s_rpc_prepare_block
with the entire block (line 207). A correct server Si verifies that
the erasure coding of the block contains at least m fragments that
are consistent with the fingerprinted cross-checksum. To do so, it
encodes the block into each of m + f fragments (line 403), com-
putes the fingerprint and the hash of each fragment (line 404), and
computes the appropriate erasure coding of the homomorphic fin-
gerprints in the fingerprinted cross-checksum (line 405). It counts
the number of fragments for which the fingerprint is equal to the
erasure coding of the homomorphic fingerprints and the hash is
equal to the appropriate hash in the fingerprinted cross-checksum
(line 406). If there are at least m such consistent fragments, server
Si computes the ith fragment di and the rest of the cross-checksum
of all n fragments and prepares a response in s_prepare_common
(lines 407–409).

Invoking s_rpc_prepare_block allows a client to write a frag-
ment that is not consistent with the fingerprinted cross-checksum,
so long as this fragment can be erasure-coded from a block with m
erasure-coded fragments that are consistent with the fingerprinted
cross-checksum. This will be useful in the read protocol to ensure
that any fragment can be written back as needed.

The response prepared in s_prepare_common consists of a ts,
a nonce, and n MACs (one for each server). The ts may be pro-
vided by the client; if not, it is assigned to one greater than the ts

portion of the logical timestamp used in the most recent commit
(line 500). The nonce is a pseudo-random value that is unique for
each timestamp (line 501); we use a MAC of the timestamp to en-
sure this property. An array of n MACs is computed with the shared
pairwise MAC keys (line 505). The MACs are used in the commit
phase to authenticate the timestamp and nonce, as well as to prove
that enough correct servers stored consistent fragments.

If this timestamp is more recent than the most recently com-
mitted timestamp (line 502), the nonce_hash, a preimage-resistant
hash of the nonce, is computed (line 503), and the fragment
and nonce_hash are stored for future reads (line 504). If
s_prepare_common was called by s_rpc_prepare_block, the cor-
rect cross-checksum of all n fragments is also stored. (The
NULL value on line 504 is a placeholder that will be filled in



c_write(B): /∗Wrapper function for c_dowrite ∗/
100: d1, . . . ,dm+ f ← encode1,...,m+ f (B)
101: for (i ∈ {1, . . . ,m+ f}) do fpcc.cc[i]← hash(di)
102: for (i ∈ {1, . . . ,m}) do fpcc.fp[i]← fingerprint(hash(fpcc.cc),di)
103: c_dowrite(B, NULL, fpcc)

c_dowrite(B,ts, fpcc): /∗ Do a write ∗/
200: Prepare[∗]← NULL

201: cobegin
202: ||i∈{1,...,n} /* Start worker threads */
203: /∗ Send fragment and fpcc to server, get MAC of fpcc and latest ts ∗/
204: di← encodei(B)
205: if (fpcc.cc[i] = hash(di)) then
206: Prepare[i]← Si.s_rpc_prepare_frag(di,ts, fpcc)
207: else Prepare[i]← Si.s_rpc_prepare_block(B,ts, fpcc) /∗ Bad fpcc.cc[i] ∗/
208:
209: /∗ Choose latest ts, if needed ∗/
210: if (ts = NULL ∧ |{ j : Prepare[ j] 6= NULL}|= 2 f +1) then
211: ts←max{ts′ : 〈ts′,∗〉 ∈ Prepare}
212: SIGNAL(found_largest_ts)
213: if (ts = NULL) then WAIT(found_largest_ts) /∗Wait for chosen ts ∗/
214: if (Prepare[i].ts 6= ts) then /∗ Need new prepare for chosen ts ∗/
215: if (fpcc.cc[i] = hash(di)) then
216: Prepare[i]← Si.s_rpc_prepare_frag(di,ts, fpcc)
217: else Prepare[i]← Si.s_rpc_prepare_block(B,ts, fpcc)
218:
219: /∗ Attempt commit ∗/
220: if (|{ j : Prepare[ j].ts = ts}| ≥ m+ f ) then SIGNAL(prepare_ready)
221: end cobegin
222:
223: UnwrittenSet←{1, . . . ,n}
224: while (TRUE) do
225: WAIT(prepare_ready)
226: cobegin
227: ||i∈UnwrittenSet /* Start worker threads */
228: if (SUCCESS = Si.s_rpc_commit(ts, fpcc,Prepare)) then
229: UnwrittenSet← UnwrittenSet \{i}
230: if (|UnwrittenSet| ≤ f ) then return SUCCESS

231: end cobegin

Si.s_rpc_prepare_frag(d,ts, fpcc): /∗ Grant permission to write fpcc at ts ∗/
300: fp← fingerprint(hash(fpcc.cc),d); h← hash(d)
301: fp′← encodei(fpcc.fp[1], . . . , fpcc.fp[m])
302: if (fp = fp′ ∧h = fpcc.cc[i]) then /∗ Fragment is consistent with fpcc ∗/
303: return Si.s_prepare_common(ts, fpcc,d, NULL)
304: else return FAILURE /∗ Faulty client ∗/

Si.s_rpc_prepare_block(B,ts, fpcc): /∗ Grant permission to write fpcc at ts ∗/
400: /∗ Called when partial encoding fails or when writing back fragments ∗/
401: cnt← 0
402: for ( j ∈ {1, . . . ,m+ f}) do /∗ Validate block ∗/
403: d j ← encode j(B)
404: fp← fingerprint(hash(fpcc.cc),d j); cc[ j]← hash(d j)
405: fp′← encode j(fpcc.fp[1], . . . , fpcc.fp[m])
406: if (fp = fp′ ∧cc[ j] = fpcc.cc[ j]) then cnt← cnt+1
407: if (cnt≥ m) then /∗ Found m fragments consistent with fpcc ∗/
408: for ( j ∈ {m+ f +1, . . . ,n}) do cc[ j]← hash(encode j(B))
409: return Si.s_prepare_common(ts, fpcc,encodei(B),cc)
410: else return FAILURE /∗ Faulty client ∗/

Si.s_prepare_common(ts, fpcc,d,cc): /∗ Create the prepare response ∗/
500: if (ts = NULL) then ts← latest_commit.ts+1
501: nonce←MACi,i(〈ts, fpcc〉)
502: if (〈ts, fpcc〉> latest_commit) then
503: nonce_hash← hash(nonce)
504: store[〈ts, fpcc〉]← 〈d,cc,nonce_hash, NULL〉
505: return 〈ts,nonce,〈MACi, j(〈ts, fpcc,nonce〉)〉1≤ j≤n〉

Si.s_rpc_commit(ts, fpcc,Prepare): /∗ Commit write of fpcc at ts ∗/
600: if (〈ts, fpcc〉 ≤ latest_commit) then return SUCCESS /∗ Overwritten ∗/
601: Nonces←{〈 j,nonce〉 : Prepare[ j] = 〈ts,nonce,〈tagk〉1≤k≤n〉 ∧
602: tagi = MAC j,i(〈ts, fpcc,nonce〉)}
603: if (|Nonces| ≥ m+ f ) then
604: 〈d,cc,nonce_hash,∗〉 ← store[〈ts, fpcc〉]
605: store[〈ts, fpcc〉]← 〈d,cc,nonce_hash,Nonces〉
606: for (〈ts′, fpcc′〉< 〈ts, fpcc〉) do store[〈ts′, fpcc′〉]← NULL

607: latest_commit← 〈ts, fpcc〉
608: return SUCCESS

609: else return FAILURE

Figure 2: Detailed write pseudo-code.

s_rpc_commit.) The nonces and nonce_hashes are used to prove
that a client invoked a write at this timestamp. Other protocols
ensure this property in ways that would require more communica-
tion [8], public-key signatures [26], or 4 f + 1 servers [18]; we use
nonces to avoid these mechanisms.

The client must wait for 2 f + 1 responses before assigning a
timestamp to this write. (The first 2 f threads wait on line 213 un-
til a timestamp is assigned.) The timestamp is the pair 〈ts, fpcc〉,
where ts is the greatest ts value from the 2 f + 1 responses. If a
server provides a response with a different timestamp, the client
must retry that request (lines 214–217).

Commit, lines 223–231: After m + f servers have provided
MACs in responses with matching timestamps, commit may be at-
tempted (line 220). The commit may fail if a faulty server pro-
vided one of these MACs or rejects a MAC from a correct server.
But, eventually, at least m+ f correct servers will return responses
with MACs that will be accepted by at least m+ f servers in com-
mit. As prepare responses arrive, they are forwarded to all servers
(line 228). Thus, the threads from the prepare phase do not stop
until all servers return responses or the commit phase completes.
The commit phase completes and the client can return once m + f
servers (all but f ) return SUCCESS (line 230).

If a write has a lower timestamp than a previously committed
write, a server can ignore it (line 600). A correct server aggregates
nonces from valid prepare responses (lines 601–602). A prepare
response is valid if the MAC included for this server is a MAC
of the timestamp and nonce computed with the proper pairwise
key. If there are at least m+ f nonces from valid prepare requests,
then at least m correct servers stored a fragment, so commit will
succeed. The NULL value from line 504 is filled in with these

nonces (lines 604–605). This will become the new most recent
write (line 607). If a client tries to read a fragment with a lower
timestamp, it can be redirected to this write, so earlier fragments
can be garbage collected (line 606). Hence, a server must stage
fragments for concurrent writes but store only the most recently
committed fragments.

3.3.3 Read
Pseudo-code for a read operation is provided in Figure 3. A read

operation is invoked with no arguments and returns a block as its
response. A read operation is divided into two phases, “find times-
tamps” and “read timestamp.” The client searches for the times-
tamps of the most recently committed write at each server. As
timestamps arrive, the client tries reading at any timestamp greater
than or equal to 2 f +1 other timestamps.

Find timestamps, lines 700–715: The client queries each of the
first 3 f +1 servers for the timestamp of its most recently committed
write (lines 702–707). As timestamps arrive, the client tries reading
at any timestamp that it has yet to try already and that is greater than
or equal to 2 f + 1 other timestamps (lines 710–714). If no writes
have been committed, the value latest_commit (line 800) defaults
to 〈0, NULL〉; if 2 f +1 or more servers return 〈0, NULL〉, no writes
have returned yet so a NULL block is returned (line 715).

Read timestamp, lines 717–732: To read a fragment, the client
invokes s_rpc_read at each server (line 720). A correct server re-
turns the fragment along with the other data stored during write
(line 1002). The client processes each response from s_rpc_read
with the helper function c_find_block (line 721). This function
verifies that the fragment is valid (lines 900–906), determines
whether a client invoked this write (lines 910–913), and decodes a



c_read(): /∗ Read a block ∗/
700: Timestamp[∗]← NULL; State[∗]← /0
701:
702: /∗ Search for write timestamps ∗/
703: cobegin
704: ||i∈{1,...,3 f +1} /* Start worker threads */
705: Timestamp[i]← Si.s_rpc_find_timestamp()
706: SIGNAL(found_timestamp)
707: end cobegin
708:
709: while (TRUE) do
710: WAIT(found_timestamp)
711: /∗ Try any timestamp greater or equal to m+ f timestamps ∗/
712: for (〈ts, fpcc〉 : 〈ts, fpcc〉= Timestamp[i] ∧ 〈ts, fpcc〉 /∈ Tried ∧
713: |{ j : 〈ts, fpcc〉 ≥ Timestamp[ j]}| ≥ 2 f +1) do
714: Tried← Tried ∪ {〈ts, fpcc〉}
715: if (ts = 0) then return NULL /∗ No writes yet ∗/
716:
717: cobegin
718: ||i∈{1,...,n} /* Start worker threads */

719: 〈ts, fpcc〉 ← 〈ts, fpcc〉 /∗ Thread local copy of variables ∗/
720: 〈data,gc_redirect〉 ← Si.s_rpc_read(ts, fpcc)

721: B← c_find_block(i,State,ts, fpcc,data)
722:
723: /∗Write back fragments as needed and return the block ∗/
724: if (B 6= NULL) then
725: c_dowrite(B,ts, fpcc)
726: return B
727:
728: /∗ Follow garbage collection redirection ∗/
729: if (gc_redirect 6= NULL ∧ gc_redirect > 〈ts, fpcc〉) then
730: Timestamp[i]← gc_redirect
731: SIGNAL(found_timestamp)
732: end cobegin

Si.s_rpc_find_timestamp(): /∗ Return the latest commit ∗/
800: return latest_commit

c_find_block(i,State,ts, fpcc,〈d,cc,nonce_hash,Nonces〉): /∗ Classify read ∗/
900: if (d 6= NULL ∧ cc = NULL) then /∗ Verify fragment-encoded arguments ∗/
901: fp← fingerprint(hash(fpcc.cc),d)
902: fp′← encodei(fpcc.fp[1], . . . , fpcc.fp[m])
903: if (fp 6= fp′ ∨hash(d) 6= fpcc.cc[i]) then return NULL

904:
905: if (d 6= NULL ∧ cc 6= NULL) then /∗ Verify block-encoded arguments ∗/
906: if (hash(d) 6= cc[i]) then return NULL

907:
908: /∗ Update state and count preimages ∗/
909: State[〈ts, fpcc〉]← State[〈ts, fpcc〉] ∪ {〈i,d,cc,nonce_hash,Nonces〉}
910: npreimages← |{ j : 〈 j,∗,∗,nonce_hash′,∗〉 ∈ State[〈ts, fpcc〉] ∧
911: 〈∗,∗,∗,∗,{∗,〈 j,nonce′〉,∗}〉 ∈ State[〈ts, fpcc〉] ∧
912: nonce_hash′ = hash(nonce′)}|
913: if (npreimages < f +1) then return NULL

914:
915: /∗ Try to decode ∗/
916: Frags←{d′ 6= NULL : 〈∗,d′, NULL,∗,∗〉 ∈ State[〈ts, fpcc〉]}
917: if (|Frags| ≥ m) then return decode(Frags)
918: else for (cc′ 6= NULL : 〈∗,∗,cc′,∗,∗〉 ∈ State[〈ts, fpcc〉]}) do
919: Frags′←{d′ 6= NULL : 〈∗,d′,cc′,∗,∗〉 ∈ State[〈ts, fpcc〉]}
920: if (|Frags ∪ Frags′| ≥ m) then
921: cnt← 0; B← decode(Frags ∪ Frags′)
922: for ( j ∈ {1, . . . ,m+ f}) do /∗ Validate block ∗/
923: d j ← encode j(B)
924: fp← fingerprint(hash(fpcc.cc),d j); h← hash(d j)
925: fp′← encode j(fpcc.fp[1], . . . , fpcc.fp[m])
926: if (fp = fp′ ∧h = fpcc.cc[ j]) then cnt← cnt+1
927: if (cnt≥ m) then /∗ Found m fragments consistent with fpcc ∗/
928: return B
929:
930: return NULL /∗ No block found ∗/

Si.s_rpc_read(ts, fpcc): /∗ Read the fragment at 〈ts, fpcc〉 ∗/
1000: if (store[〈ts, fpcc〉] = NULL∧ latest_commit > 〈ts, fpcc〉) then
1001: return 〈〈NULL, NULL, NULL, NULL〉, latest_commit〉
1002: else return 〈store[〈ts, fpcc〉], NULL〉

Figure 3: Detailed read pseudo-code.

block if possible (lines 915–928). If a correct server has no record
of this fragment but knows of a more recent write, it returns the
timestamp of the more recent write (line 1001). The client fol-
lows such garbage collection redirections if a block is not found
(lines 728–731).

If a correct server received a fragment in a successful call to
s_rpc_prepare_frag, the value cc will be set to NULL and the
client will verify that the fragment is consistent with the finger-
printed cross-checksum (lines 901–903). If a correct server re-
ceived a fragment in a successful call to s_rpc_prepare_block,
the value cc will be the cross-checksum of all n fragments. The
client verifies that the cross-checksum cc matches at least this frag-
ment (line 906). If either verification fails, the response is ignored
(lines 903 and 906). Otherwise, the client records this fragment
in the state for this timestamp (line 909) and tries to determine
whether a client invoked this write (lines 910–913). If there are
at least f + 1 nonces that are the preimages of nonce_hashes, one
was generated by a correct server, which implies that a client in-
voked a write with this timestamp (i.e., the write was not fabricated
by faulty servers) and so it is eligible to be examined further. Oth-
erwise, the client waits for more nonces before trying to decode a
block.

If enough nonces are found, the client tries to reconstruct the
block. A block can always be decoded given m fragments consis-
tent with the fingerprinted cross-checksum (line 917). If any frag-
ments were provided with an additional cross-checksum value cc,
the client can reconstruct a block and check if the erasure-coding
of that block includes m fragments consistent with the fingerprinted
cross-checksum. Since all correct servers will produce the same
cross-checksum in s_rpc_prepare_block, it suffices to check each
value of cc in turn (line 918). If m fragments were returned with

the same value cc or are consistent with the fingerprinted cross-
checksum, the client decodes a block (line 921). If at least m frag-
ments in the erasure-coding of this block are consistent with the
fingerprinted cross-checksum (lines 922-927), this block will be
returned. Note that the check in c_find_block (lines 922-927) is
identical to that in s_rpc_prepare_block (lines 402–407).

If a block is found, it is returned as the response of the read
(line 726). To ensure that this block is seen by subsequent reads,
the client writes back fragments as needed (line 725). In practice,
the client can skip write back if any 2 f +1 of the first 3 f +1 servers
claim to have committed this timestamp or a more recent one.

3.4 Correctness
This section provides arguments for the safety and liveness prop-

erties of the protocol.

3.4.1 Liveness
In this section, we argue the liveness properties of write and read

operations. We consider two notions of liveness, namely wait free-
dom [21] and obstruction freedom [22]. Informally, an operation
is wait-free if the invoking client can drive the operation to com-
pletion in a finite number of steps, irrespective of the behavior of
other clients. An operation is obstruction-free if the invoking client
can drive the operation to completion in a finite number of steps
once all other clients are inactive for sufficiently long. That is, an
obstruction-free operation may not complete, but only due to con-
tinual interference by other clients.

THEOREM 1. Write operations are wait-free.

PROOF. c_dowrite invokes s_rpc_prepare_frag (line 206) or
s_rpc_prepare_block (line 207) at each server. Each such call at
a correct server returns successfully (line 303 or 409), implying



that the client receives at least n− f ≥ 2 f + 1 responses. Con-
sequently, if ts as input to c_dowrite is NULL then the largest
ts returned by servers is chosen (line 211) and found_largest_ts
is signalled (line 212). An s_rpc_prepare_frag (line 216) or
s_rpc_prepare_block (line 217) call is then placed at each server
that did not return this ts. If ts as input to c_dowrite is not NULL,
all correct servers will return this ts. By the time the last of the
threads that will reach line 220 does so (if not sooner), all cor-
rect servers have contributed a response for the same timestamp
to Prepare from s_rpc_prepare_frag or s_rpc_prepare_block,
causing prepare_ready to be signalled. The collected set of prepare
responses in Prepare is then sent to all servers in an s_rpc_commit
(line 228). Because at least m + f of the prepare responses
in Prepare are from correct servers, at least m + f of the pre-
pare responses contain correct MAC values (line 601) and so
Nonces will include at least m + f tuples (line 603). Hence, these
s_rpc_commit calls to correct servers return SUCCESS (line 608),
and so the write operation completes (line 230).

DEFINITION 2. If Si.s_rpc_commit(ts, fpcc,Prepare) returns
SUCCESS, then this commit at Si is said to rely on S j if Prepare[ j] =
〈ts,nonce,〈tagk〉1≤k≤n〉 and tagi = MAC j,i(〈ts, fpcc,nonce〉).

LEMMA 3. In a correct client’s c_read, suppose that for a fixed
〈ts, fpcc〉 the following occurs: From some correct Si that previ-
ously returned SUCCESS to s_rpc_commit(ts, fpcc, ∗), and from
each of m correct servers S j on which the first such commit at Si re-
lies, the client receives 〈data, ∗〉 in response to an s_rpc_read(ts,
fpcc) call on that server (line 720) where data 6= 〈NULL, NULL,
NULL, NULL〉. Then, the call to c_find_block (line 721) including
the last such response returns a block B 6= NULL.

PROOF. Consider such a data = 〈d,cc,nonce_hash,Nonces〉
received from a correct server S j . d either is consistent with fpcc as
verified by S j in s_rpc_prepare_frag (lines 300–302) and verified
by the client in c_find_block (lines 900–903), or cc matches this
fragment, as generated by S j in s_rpc_prepare_block (lines 404
and 408) and verified by the client in c_find_block (line 906). In
the latter case, the fact that S j reached line 504 (where it saved
〈d,cc,nonce_hash,∗〉) implies that previously cnt≥m in line 407,
and so by the properties of fingerprinted cross-checksums [20, The-
orem 3.4], all such servers received the same input block B in calls
s_rpc_prepare_block(B, ts, fpcc) and so constructed the same cc

in s_rpc_prepare_block.
Now consider the response data = 〈d,cc,nonce_hash,Nonces〉

from the correct server Si. Recall that Si previously returned
SUCCESS to s_rpc_commit(ts, fpcc, ∗), and that the first such
commit relied on the m correct servers S j . Since we focus on the
first such commit at Si, and since data 6= 〈NULL, NULL, NULL,
NULL〉, the SUCCESS response was generated in line 608, not 600.
In this case, Nonces 6= NULL by lines 603 and 605, and in fact in-
cludes 〈 j,nonce〉 pairs for the m correct servers S j on which this
commit relies. When the last data from Si and these m servers S j
is passed to c_find_block (line 721), each nonce_hash present in
each S j’s data will have a matching nonce in Si’s Nonces, i.e., such
that nonce_hash = hash(nonce). Hence, npreimages≥m≥ f +1
(lines 910–913), and so the client will try to decode a block in
lines 915–928.

If the responses from the m servers S j on which the commit at Si
relies have cc = NULL, a block is decoded and returned (line 917).
Otherwise, the client eventually tries to decode these fragments ac-
companied by cc = NULL (the set Frags) together with those ac-
companied by cc 6= NULL provided by these correct servers S j (the
set Frags′); see line 921. Each S j contributing a fragment of the

latter type verified that fpcc was consistent with m fragments de-
rived from the block B input to s_rpc_prepare_block (lines 402–
407), and generated its fragment to be a valid fragment of B. Each
fragment of the former type was verified by S j to be consistent
with fpcc (lines 300–302), and so is a valid fragment of B (with
overwhelming probability [20, Corollary 2.12]). Consequently,
upon decoding any m of these fragments, the client obtains B, will
find m fragments of the resulting block to be consistent with fpcc

(lines 922–927), and so will return B (line 928).

THEOREM 4. The read protocol is obstruction-free.

PROOF. In c_read, a call to s_rpc_find_timestamp is made to
servers 1, . . . ,3 f +1 (line 705), to which each of at least 2 f +1 cor-
rect servers responds with its value of latest_commit (line 800).
Consider the greatest timestamp 〈ts, fpcc〉 returned by a correct
server, say Si. This timestamp is greater than or equal to the
timestamp from at least the 2 f + 1 correct servers that responded
(checked in lines 712–713), so the client tries to read fragments via
s_rpc_read at this timestamp (line 720). This timestamp was pre-
viously committed by Si, as a correct server updates latest_commit

only in s_rpc_commit at line 607. Moreover, this commit relies on
at least m correct servers S j; see line 603. Now consider the follow-
ing two possibilities for each of these correct servers S j on which
the commit relies:

• S j assigned to store[〈ts, fpcc〉] in line 504 because the con-
dition in line 502 evaluated to true, and has not subse-
quently deleted store[〈ts, fpcc〉] in line 606. In this case,
S j returns the contents of store[〈ts, fpcc〉] in response to the
s_rpc_read call (line 1002).

• S j either did not assign to store[〈ts, fpcc〉] in line 504 be-
cause the condition in line 502 evaluated to false, or deleted
store[〈ts, fpcc〉] in line 606. In this case, store[〈ts, fpcc〉] =
NULL and latest_commit > 〈ts, fpcc〉 in line 1000 (due to
lines 502 and 607), and so S j returns latest_commit in re-
sponse to the s_rpc_read call (line 1001).

If all m correct servers S j fall into the first case above, then one
of the client’s calls to c_find_block (line 721) returns a non-NULL

block (Lemma 3). The client writes this with a c_dowrite call
(line 725), which is wait-free (Theorem 1), and then completes the
c_read. If some S j falls into the second case above, then the time-
stamp it returns (or a higher one returned by another correct server)
satisfies the condition in lines 712–713 and so the client will sub-
sequently read at this timestamp (line 720) if a non-NULL block is
not first returned from c_find_block (line 721).

Consequently, for the client to never return a block in a c_read,
correct servers must continuously return increasing timestamps in
response to s_rpc_read calls. If there are no concurrent commits,
then the client must reach a timestamp at which it returns a block.
Hence, the read protocol is obstruction-free.

3.4.2 Linearizability
Informally, linearizability [23] requires that the responses to read

operations are consistent with an execution of all reads and writes
in which each operation is performed at a distinct moment in real
time between when it is invoked and when it completes. We need
only be concerned with reads by correct clients, because we provide
no guarantees to faulty clients. Since writes by faulty clients can
be read by correct clients, however, we cannot ignore such writes.
Consequently, we define the execution of s_rpc_prepare_frag or
s_rpc_prepare_block by a faulty client at a correct server that re-
turns 〈ts,nonce,∗〉 (i.e., returns a value on line 505 rather than re-



turning FAILURE on line 304 or 410) to instantiate a write invoca-
tion at the beginning of time. The timestamp of the invocation is
the pair 〈ts, fpcc〉 used to generate a nonce (line 501). Each opera-
tion by a correct client also gets an associated timestamp 〈ts, fpcc〉.
For a write operation, the timestamp is that sent to s_rpc_commit.
For a read operation, the timestamp is that of the write operation
from which it read.

Proving that faulty write operations and correct write and read
operations are linearizable shows that the protocol guarantees a nat-
ural extension to linearizability, limiting faulty clients to invoking
writes that they could have invoked anyway at similar expense had
they followed the protocol. The following five lemmas are used to
prove that such a history is linearizable.

LEMMA 5. A read will share a timestamp with a write that has
been invoked by some client.

PROOF. Per line 913, a call to c_find_block(∗, State, ts, fpcc,
∗) returns a non-NULL value only if State[〈ts, fpcc〉], possibly
modified per line 909, includes a nonce_hash from some correct
S j such that some Si.s_rpc_read(ts, fpcc) returned data = 〈∗, ∗,
∗, Nonces〉, Nonces 3 〈 j, nonce〉 and hash(nonce) = nonce_hash

(data was passed to this or a previous c_find_block(∗, State, ts,
fpcc, ∗) call, see lines 720–721, and then added to State[〈ts, fpcc〉]
in line 909). This nonce was created by S j on line 501 with 〈ts,
fpcc〉. Since a correct writer keeps each nonce secret unless it is
returned from s_rpc_prepare_frag or s_rpc_prepare_block for
the timestamp on which it settles for its write timestamp, this nonce

shows that the writer, if correct, adopted 〈ts, fpcc〉 as its timestamp;
consequently, the write with this timestamp was invoked, satisfying
the lemma. If no correct writer performed a write with timestamp
〈ts, fpcc〉, then the creation of nonce by S j in line 501 with 〈ts,
fpcc〉 implies that the write with timestamp 〈ts, fpcc〉 was invoked
by a faulty client.

LEMMA 6. Consider two invocations

B ← c_find_block(∗,∗, ts, fpcc,∗)

B′ ← c_find_block(∗,∗, ts, fpcc,∗)

at correct clients for the same timestamp 〈ts, fpcc〉. If B 6= NULL

and B′ 6= NULL, then B = B′ with all but negligible probability.

PROOF. A block B 6= NULL is returned by c_find_block(∗, ∗,
ts, fpcc, ∗) at either line 917 or line 928. B is returned at line 928
only if at least m erasure-coded fragments produced from B are
consistent with fpcc, as checked in lines 922–927. Similarly, B

is returned at line 917 only after it is reconstructed from at least
m fragments d′ such that 〈∗, d′, cc, ∗, ∗〉 ∈ State[〈ts, fpcc〉] and
cc = NULL; each such d′ was confirmed to be consistent with fpcc

in lines 900–903, in either this or an earlier invocation of the form
c_find_block(∗, ∗, ts, fpcc, ∗). In either case, B has at least m
erasure-coded fragments consistent with fpcc. If blocks B and B′

each have at least m erasure-coded fragments that are consistent
with the same fpcc, they are the same with all but negligible prob-
ability [20, Theorem 3.4].

Lemma 6 states that two correct clients who read blocks at the
same timestamp read the same block, since the block returned from
c_read is that produced by c_find_block (lines 721–726).

Lemmas 7–9 show that timestamp order for operations is consis-
tent with real-time precedence.

LEMMA 7. Consider two write operations performed by correct
clients. If the response to one precedes the invocation of the other,
then the timestamp of the former is less than the timestamp of the
latter.

PROOF. Before the earlier write returns a response in line 230,
at least n− f servers returned SUCCESS from s_rpc_commit(ts,
fpcc, Prepare), where 〈ts, fpcc〉 is the timestamp of this
write. In doing so, at least m = n− 2 f correct servers record
latest_commit ← 〈ts, fpcc〉 (line 607) if not greater (line 600).
Consequently, the ts value returned in the prepare phase for the
later write by these servers will be greater than the ts value for the
earlier write (line 500). Because there are n = m+2 f total servers,
any 2 f + 1 servers will include one of these m correct servers, so
the ts chosen (line 211) will be greater than the ts value in the time-
stamp for the earlier write.

LEMMA 8. Consider a write operation and a read operation, both
performed by correct clients. If the response to the write precedes
the invocation of the read, then the timestamp of the write is at most
the timestamp of the read.

PROOF. Before the write returns a response in line 230, at least
n− 2 f correct servers returned SUCCESS from s_rpc_commit(ts,
fpcc, Prepare), where 〈ts, fpcc〉 is the timestamp of this write. In
doing so, at least n− 2 f correct servers record latest_commit←
〈ts, fpcc〉 (line 607) if not greater (line 600). These n− 2 f = m
correct servers include at least f +1 of the servers 1, . . . ,3 f +1, and
so in the read operation at most 2 f of servers 1, . . . ,3 f +1 respond
to s_rpc_find_timestamp at line 800 with a lower timestamp than
〈ts, fpcc〉. Because a read considers only timestamps that are at
least as large as those returned by 2 f +1 of the first 3 f +1 servers
(line 713), the read will be assigned a timestamp at least as large as
〈ts, fpcc〉.

LEMMA 9. If the response of a read operation by a correct client
precedes the invocation of another (write or read) operation by a
correct client, then the timestamp of the former operation is at most
the timestamp of the latter.

PROOF. A read calls c_dowrite at its timestamp before return-
ing a response (line 725). This will have the same affect as com-
pleting a write at that timestamp. Consequently, the later operation
will have a higher timestamp if it is a write (Lemma 7) and a time-
stamp at least as high if it is a read (Lemma 8).

THEOREM 10. Write and read operations are linearizable.

PROOF. To show linearizability, we construct a linearization (to-
tal order) of all read operations by correct clients and all write op-
erations that is consistent with the real-time precedence between
operations such that each read operation returns the block written
by the preceding write operation. We first order all writes in in-
creasing order of their timestamps. By Lemma 7, this ordering
does not violate real-time precedence. We then place all read op-
erations with the same timestamp immediately following a write
operation with that timestamp, ordered consistently with real-time
precedence (i.e., each read is placed somewhere after all other op-
erations with the same timestamp that completed before it was in-
voked). By Lemma 5, each read is placed after some write oper-
ation. This placement does not violate real-time precedence with
the next (or any) write operation in the linearization, since if the
next write had completed before this read began, then by Lemma 8
this read operation could not have the timestamp it does. Real-time
precedence between reads with different timestamps cannot be vio-
lated by this placement, by Lemma 9. Since all reads with the same
timestamp read the same block (Lemma 6)—which is the block
written in the write with that timestamp if the writer was correct—
write and read operations are linearizable.



3.5 Protocol enhancements
This section briefly discusses how to extend the protocol to en-

sure non-skipping timestamps [5] and to allow read-only clients.
Non-skipping timestamps: A faulty client or server could sug-

gest an arbitrarily large value for the ts portion of the timestamp. To
prevent this, the protocol can ensure that timestamps do not skip.
When a client calls prepare at a server with a NULL ts value, the
server returns a ts value (as before) but also a tsprepare value. The
tsprepare is the ts value of the greatest successful prepare at this
server. The server also returns n MACs of the tsprepare value (one
for each server). A server will accept a call to prepare with a non-
NULL ts only if that ts is accompanied by valid MACs for f + 1
tsprepare values that are greater than or equal to the requested ts

value. Hence, the ts value will advance only if at least some cor-
rect server successfully prepared at this timestamp.

A client can retry prepare with a non-NULL timestamp once it
has a ts value that is greater than or equal to 2 f + 1 ts values (as
before) but less than or equal to f + 1 tsprepare values. Because
the greatest ts value returned by a correct server must be less than
or equal to the tsprepare values returned by at least f + 1 correct
servers, a client will eventually get an array of f + 1 valid MACs
for tsprepare values that will allow it to successfully complete the
prepare phase. During a read operation, servers return tsprepare

values and MACs in s_rpc_read. If a correct server committed the
ts at which the client is trying to read, the client will eventually find
at least f + 1 greater or equal tsprepare values from correct servers
that can be used to write fragments back in c_dowrite as needed.

Read-only clients: Because readers must be able to write back
fragments as needed, the pseudo-code in Section 3.3 does not allow
clients with only read permissions. Read-only access control can
be enforced by preventing clients without write permission from
issuing a prepare request with a NULL ts value and enforcing non-
skipping timestamps as described above. A client without write
permission can still write back fragments because tsprepare values
and MACs are returned in s_rpc_read.

4. IMPLEMENTATION
We evaluate the protocol and compare it to competing ap-

proaches using a distributed storage prototype. The low-overhead
fault-tolerant prototype (named Loft) consists of a client library,
linked to directly by client applications, and a storage server appli-
cation. The prototype supports the protocol described in Section 3
as well as several competing protocols, as described in Section 5.1.

The client library interface consists of two functions, “read
block” and “write block.” In addition to the parameters described
in Section 3, read and write accept a block number as an additional
argument, which can be thought of as running an instance of the
protocol in parallel for every block in the system. Each server in
a pool of storage servers runs the storage server application, which
accepts incoming RPC requests and executes as described in Sec-
tion 3. Clients and servers communicate with remote procedure
calls over TCP sockets. Each server has a large NVRAM cache,
where non-volatility is provided by battery backup. This allows
most writes and many reads to return without disk I/O.

The prototype uses 16 byte fingerprints generated with the evalu-
ation homomorphic fingerprinting function [20, Section 5]. Finger-
printing is fast, and only the first m fragments are fingerprinted (the
other fingerprints can be computed from these fingerprints). Ho-
momorphic fingerprinting requires a small random value for each
distinct block that is fingerprinted. This random value is provided
by a hash of the cross-checksum in the protocol. After computing
this random value, our implementation precomputes a 64 kB table,

which takes about 20 microseconds. After computing this table,
fingerprinting each byte requires one table lookup and a 128-bit
XOR. This implementation can fingerprint about 410 megabytes per
second on a 3 GHz Pentium D processor.

The client library uses Rabin’s Information Dispersal Algo-
rithm [31] for erasure coding. The first m fragments consist of the
block divided into m equal fragments (that is, we use a systematic
encoding). Since m > f and only m+ f fragments must be encoded,
this cuts the amount of encoding by more than half.

We use the SHA-1 and HMAC implementations from the Nettle
toolkit [28], which can hash about 280 megabytes per second on a
3 GHz Pentium D processor. Each hash value is 20 bytes, and each
MAC is 8 bytes. Due to ongoing advances in the cryptanalysis of
SHA-1 [14], a storage system with a long expected lifetime may
benefit from a stronger hash function. The performance of SHA-
512 on modern 64-bit processors has been reported as comparable
to that of SHA-1 [16]. Hence, though we did not measure this, we
expect that the prototype would achieve similar performance if the
hash were upgraded on such systems.

The prototype implements a few simple optimizations for the
protocol. For example, during commit, only the appropriate pair-
wise MAC is sent to each server. The client tries writing at the first
m + f servers, considering other servers only if these servers are
faulty or unresponsive. Similarly, the client requests timestamps
from the first 2 f + 1 servers and reads fragments from the first m
servers, which allows most reads to return in a single round of com-
munication without requiring any decoding beyond concatenating
fragments. Furthermore, if f + 1 or more servers return matching
timestamps, the client does not request nonces because it can con-
clude that a correct server committed this write and hence some
client invoked a write at this timestamp, satisfying Lemma 5.

Also, the client limits the amount of state required for a read op-
eration by considering only the most recent timestamp proposed by
each server. It does not consider more timestamps until all but f
servers have returned a response for all timestamps currently under
consideration. Servers delay garbage collection by a few seconds,
thus obviating the need for fast clients to ever follow garbage col-
lection redirection.

5. EVALUATION
This section evaluates the protocol on our distributed storage

prototype. We also implemented and evaluated three competing
protocols that are described in Section 5.1. The experimental setup
is described in Section 5.2. Single client write throughput, read
throughput, and response time are evaluated in Sections 5.3, 5.4,
and 5.5, respectively. An analysis of the protocol presented in Sec-
tion 3 suggests that our protocol should perform similarly to a be-
nign erasure-coded protocol with the additional computational ex-
pense of hashing and the extra bandwidth required for the fpcc,
MACs, and nonces. The experimental results confirm that our pro-
tocol is competitive with the benign erasure-coded protocol and that
it significantly outperforms competing approaches.

5.1 Competing protocols
To enable fair comparison, our distributed storage prototype sup-

ports multiple protocols. We compare protocols within the same
framework to ensure that measurements reflect protocol variations
rather than implementation artifacts. We evaluate the following
three protocols in addition to our protocol.

Benign erasure-coded protocol: The prototype implements an
erasure-coded storage protocol that tolerates crashes but not Byzan-
tine faulty clients or servers. This protocol uses the same erasure
coding implementation used for our protocol. A write operation



encodes a block into m+ f fragments and sends these fragments to
servers. A read operation reads from the first m servers, avoiding
the need to decode. Both complete in a single round of communi-
cation. This protocol assumes concurrency is handled by some ex-
ternal locking protocol; a real implementation would require more
rounds of communication for some writes, but we ignore this over-
head. Hence, this protocol provides an upper bound for the perfor-
mance of any erasure-coded fault-tolerant storage protocol (Byzan-
tine or not).

Benign replication-based protocol: The prototype implements
a replication-based storage protocol that tolerates crashes but not
Byzantine faulty clients or servers. A write operation sends the
block to f + 1 servers, and a read operation reads from a sin-
gle server. As in the benign erasure-coded protocol, this protocol
assumes concurrency is handled by an external locking protocol.
Hence, though this protocol does not tolerate Byzantine faults, it
represents an upper bound for the performance of any replication-
based Byzantine (or not) fault-tolerant storage protocols. It is worth
noting, however, that this implementation is substantially faster
than most replication-based Byzantine fault-tolerant storage pro-
tocols found in the literature, which often require all-to-all broad-
casts [8, 10], public-key signatures [9, 26], or writing to 2 f + 1 or
more replicas [8, 10].

Replication-based protocols are excellent for reads, but write
performance is reduced due to bandwidth limitations. One method
to overcome the network bandwidth limitation between the client
and the switch for a single client is to use network-level multicast.
Our replication-based protocol does not use multicast for several
reasons. Multicast is unavailable, unsuitable, or unstable in many
network environments [18], and retransmissions due to congestion
cannot take advantage of multicast. Also, multicast does nothing to
reduce disk bandwidth and network bandwidth between the switch
and the servers. Though each server could encode its own block
to reduce disk bandwidth [8], a multicast-based protocol would not
scale when multiple clients are writing to the same storage servers.

m+3f Byzantine fault-tolerant erasure-coded protocol: An
alternative to Byzantine fault-tolerant replication-based storage is
Byzantine fault-tolerant erasure-coded storage. The prototype im-
plements a protocol similar to PASIS [18]. PASIS was engineered
to improve server throughput by offloading work to clients. This
protocol uses the same erasure coding implementation and SHA-
1 library used for our protocol. The protocol implemented by the
prototype, however, only emulates a PASIS-like protocol. It does
not implement the versioning storage required by PASIS, nor does
it run a garbage collection protocol, and, hence, it would not be
suitable for storing data in a Byzantine environment. This imple-
mentation does, however, provide a comparison point against the
approach most similar to our protocol.

To write a block, the client requests the most recent timestamp
from each server. It then encodes the block into m + 3 f fragments
and hashes each fragment to create a cross-checksum. (Because
we use a systematic encoding, “encoding” the first f fragments
does not require computation.) By comparison, our protocol en-
codes and hashes m + f fragments; f fewer because there are f
fewer servers and another f fewer due to the partial encoding op-
timization, described in Section 3.1.1. To complete the write, the
m + 3 f protocol sends fragments to the first m + 2 f servers, con-
sidering other servers only if some servers are unresponsive. By
comparison, our protocol and the benign erasure-coded protocol
send f fewer fragments because they need f fewer servers. To
read a block, the client requests fragments from the first m servers
along with timestamps from the first 3 f + 1 servers. Assuming all
timestamps match, the client must then verify the cross-checksum,

which is embedded in the timestamp. This requires repeating the
write computation: the client must encode and hash m + 3 f frag-
ments to recompute the cross-checksum.

5.2 Experimental setup
All experiments are measured using a single client and a collec-

tion of servers. Each machine has a dual-core 3 GHz Pentium D
processor, 2 GB of RAM, and an Intel PRO/1000 Gigabit Ethernet
controller, and machines run Linux kernel version 2.6.18. Measure-
ments are taken in the absence of concurrency and faults, which
is expected to be the normal mode of operation in such a stor-
age system. The client and the servers are connected to the same
HP ProCurve Switch 2848 with QoS passthrough mode set to one-
queue and flow control enabled for each port. Each experiment was
run 10 times for 60 seconds, with the average performance reported
in the figures. Standard deviations are all within 2% of the average,
and performance matches analytical expectations.

The working set of data for each experiment is chosen to fit
within the server caches, and the client does not cache data. The
data gets loaded before measurements, ensuring 100% read hits,
and the servers use write-back with synchronizing to disk disabled.
The systems are battery-backed, but the experimental reason for
this setup is to allow the measurement of protocol overhead rather
than disk latency. Avoiding disk accesses makes performance de-
pendent on the network and computational behavior of the proto-
cols. If the working set does not fit in server caches, or if durability
requirements prevent using NVRAM for write-back, the choice of
protocol matters less because system performance will be limited
by disk performance. In such a scenario, there is an even stronger
argument for using a Byzantine fault-tolerant protocol rather than a
protocol that tolerates only crash faults.

The client benchmark program is run on a single machine. It
generates a synthetic workload. For throughput measurements, the
client spawns several parallel threads, each of which issues a read
or write request for a randomly selected 64 kB block, waits for
the response, and then issues another request. For response time
measurements, a single thread issues a single write request, waits
for a response, and then repeats. For erasure-coded protocols (all
but replication), m = f + 1. Because the block size is fixed, the
fragment size for erasure-coded protocols decreases as m increases
(i.e., fragment size is 64/m kB).

5.3 Write throughput
Figure 4 shows the write throughput achieved by a single client

executing each of the four protocols as a function of the num-
ber of faults tolerated. Our protocol significantly outperforms the
Byzantine fault-tolerant m + 3 f erasure-coded protocol as well as
the crash fault-tolerant replication-based protocol, and it nearly
matches the performance of the benign erasure-coded protocol. For
example, at f = 4, our protocol achieves a factor of 2.6 higher
throughput than replication, a factor of 1.4 higher throughput than
the m + 3 f protocol, and is within 5% of the performance of
the erasure-coded protocol that does not tolerate Byzantine faulty
servers or clients.

Each protocol requires a different number of servers to tolerate
the same number of faults. The benign erasure-coded protocol and
our protocol require m+ f responsive servers, the replication-based
protocol requires f + 1 servers, and the m + 3 f protocol requires
m + 2 f responsive servers. (Both Byzantine fault-tolerant proto-
cols must be able to reach an additional f servers if some of these
servers are not responsive.) For example, for f = 4 and m = 5,
the benign erasure-coded protocol and our protocol write data to 9
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Figure 4: Write throughput for each protocol as a function of faults tol-
erated. The lines report the performance of each protocol when writing
64 kB blocks. The four circles report the performance of our protocol when
writing 16 kB fragments (rather than 64/m kB).

servers, the replication-based protocol writes to 5 servers, and the
m+3 f protocol writes to 13 servers.

Throughput is the amount of useful data written, which is less
than the amount of data sent over the network. Our protocol and

the benign erasure-coded protocol both send |B|m (m+ f ) bytes when
writing a block of |B| bytes. Replication must send |B|( f + 1)

bytes, and the m + 3 f protocol must send |B|m (m + 2 f ) bytes. The
erasure-coded protocols could increase throughput for constant f
by increasing m beyond f +1.

The benign erasure-coded protocol performs well, as expected,
achieving a write throughput close to m

m+ f of the total network
bandwidth available. Our protocol performs almost as well. When
tolerating up to 6 Byzantine faulty servers, it performs within 10%
of the benign protocol that only tolerates server crashes. As the
number of servers in the system grows, however, the additional
network overhead in our protocol becomes noticeable for two rea-
sons. First, because block size is constant, the size of the fragment
written at each server decreases as the number of servers increases.
Second, the sizes of the fpcc, MACs, and nonces increase as the
number of servers increases. For f = 6, fragment size is over 9 kB
and fpcc, MAC, and nonce overhead is under 700 bytes (overhead
is under 7% of data sent). For f = 10, fragment size is under 6 kB
and fpcc, MAC, and nonce overhead is over 1100 bytes (overhead
is over 15% of data sent).

One solution to this problem is to increase the block size. For ex-
ample, the four circles in Figure 4 show the throughput of our pro-
tocol when fragment size is 16 kB. Our protocol performs within
10% of the benign protocol when the fragment size is increased to
16 kB for both protocols, even when tolerating 10 faults. (The be-
nign protocol performs less than 3% better when the fragment size
is increased to 16 kB.)

The replication-based protocol performs poorly for all but the
smallest number of faults tolerated, as expected, because it writes
( f + 1)/( m+ f

m ) > ( f + 1)/2 times as much data as the benign
erasure-coded protocol. The m + 3 f Byzantine fault-tolerant
erasure-coded protocol writes m+2 f

m+ f ≈ 1.5 times as much data as
the benign erasure-coded protocol, and up until about f = 4 it is
only a factor of 1.5 times worse. The m + 3 f protocol, however,
must encode and hash m + 3 f fragments to generate the cross-
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Figure 5: Read throughput as a function of faults tolerated.

checksum even though it only writes to m + 2 f servers because
it does not include our partial encoding optimization. Hence, for
f > 4, the m+3 f protocol is computationally bound by the client.

5.4 Read throughput
Figure 5 shows the read throughput achieved by a single client

executing each of the four protocols as a function of the number
of faults tolerated. Our protocol achieves read throughput within
10% of the two benign protocols and significantly outperforms the
m + 3 f protocol. The slight drop for our protocol and the benign
erasure-coded protocol as the number of faults tolerated increases
is due to network congestion caused by the increasing number of
servers providing responses.

All four protocols read the same amount of data. The replication-
based protocol reads an entire 64 kB block from a single server, and
the other protocols read fragments from m servers. The erasure-
coded protocols read from the first m servers to avoid the need
to decode. In addition to fragments, the Byzantine fault-tolerant
protocols must read timestamps from more servers to check for
concurrency. Our protocol reads timestamps from 2 f + 1−m = f
more servers, while the m + 3 f protocol reads timestamps from
3 f + 1−m = 2 f more servers. Assuming all timestamps match,
read completes in a single round of communication.

Once fragments are read, the Byzantine fault-tolerant protocols
must verify data. Our protocol requires just a hash and a fingerprint
of the fragments. The m + 3 f protocol, however, must recompute
the cross-checksum, which requires encoding and hashing m + 3 f
fragments and is quite expensive for large values of f .

5.5 Response time
Figure 6 shows the response time of a single write for each of

the four protocols as a function of the number of faults tolerated.
Our protocol requires on average 1.04 ms more to complete a write
operation than the benign erasure-coded protocol, which is on aver-
age 1.65 times worse. This is, however, a substantial improvement
over the m+3 f protocol and the replication-based protocol, which
both scale worse than our protocol.

Table 1 provides a breakdown of the average latency of each op-
erational component of a write for f = 10 as seen by the client. The
table lists the time each protocol spent encoding, hashing, and fin-
gerprinting fragments (other computational contributions were neg-
ligible); it also lists the time spent waiting for the network, which



2 4 6 8 10
0

1

2

3

4

5

6

7

 

 
Our protocol
Erasure−coded
Replication−based
m+3f

PSfrag replacements

Number of faults tolerated (f)

W
ri

te
re

sp
on

se
tim

e
(m

s)

Figure 6: Write response time as a function of faults tolerated.

RPC Encode Hashing Fingerprinting
Erasure coded 1.46 ms 0.79 ms – –
Replication 6.65 ms – – –
Our protocol 2.17 ms 0.79 ms 0.45 ms 0.18 ms
m+3 f 2.80 ms 2.54 ms 0.88 ms –

Table 1: Write response time breakdown for f = 10.

includes time spent in the kernel. As seen in the table, about half of
the additional latency for a write by our protocol as compared to the
benign erasure-coded protocol is due to hashing and fingerprinting,
and the other half is due to the extra round of communication. The
additional latency for the replication-based protocol is, of course,
due to the extra bandwidth required to write f replicas. The addi-
tional latency for the m + 3 f protocol is due to the encoding of 2 f
more fragments, the extra round of communication, the sending of
1.5 times as many fragments, and the hashing of m+3 f fragments.

Read response time is as expected, so we do not provide a figure.
The benign erasure-coded protocol and the replication protocol re-
quire on average 0.84 ms and 0.80 ms respectively to read a single
block when tolerating between one and ten faults. Our protocol
requires on average 1.29 ms, the difference being the time needed
to hash and fingerprint fragments. Each of these protocols requires
about the same amount of time to read a block when tolerating one
fault as when tolerating ten faults. The m + 3 f protocol requires
3.05 ms on average, and it requires 1.58 ms to read a single block
when tolerating one fault but 4.54 ms when tolerating ten faults. It
scales worse than the other protocols because it must encode and
hash m+3 f fragments to recompute the cross-checksum.

6. CONCLUSION
Distributed block storage systems can tolerate Byzantine faults

in asynchronous environments with little overhead over systems
that tolerate only crashes. Replication-based block storage proto-
cols are effective for workloads that are mostly reads or when tol-
erating a single fault, but exhibit low throughput and high latency
for large writes. Erasure-coded protocols provide higher through-
put writes and can increase m for fixed f to realize even higher
throughput. Previous Byzantine fault-tolerant erasure-coded pro-
tocols, however, exhibit low client throughput for reads and high
computational overheads for both reads and writes. This paper
presents a Byzantine fault-tolerant erasure-coded protocol that per-

forms well for both reads and large writes. Measurements of a
prototype implementation demonstrate that this protocol exhibits
throughput within 10% of the ideal crash fault-tolerant erasure-
coded protocol for reads and sufficiently large writes. Furthermore,
this protocol has little computational overhead other than a crypto-
graphic hash and a homomorphic fingerprint of the data.
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