
 

In recent years, researchers have introduced a multitude of
redundant disk array architectures. Unfortunately, using the tradi-
tional manual firmware-design approach employed by storage sys-
tem designers, implementing control software for these redundant
disk array architectures has led to long product-development
times, yielded uncertain product reliability, and inhibited designers
from exploring the benefits of new architectures. What is needed is
array prototyping technology that makes it easier to experiment
with design changes while also making it easier to ensure correct
functioning of these changes.

We introduce RAIDframe, a framework for rapid prototyping
and evaluation of redundant disk arrays. Using a graphical pro-
gramming abstraction and a mechanized execution strategy, we are
able to quickly construct working prototypes which can immedi-
ately be evaluated each of three environments: a device driver run-
ning against real disks, a user process running against real disks, or
an event-driven simulator. This paper describes the basic structure
of RAIDframe as well as our experiences with it.

 

1. Graphical Programming Abstraction

 

Composing multi-step storage operations as a list of primitive
operations is a well established approach to storage control
[Brown72]. While concurrency can be introduced into this abstrac-
tion by splitting the array controller into multiple processors each
executing a linear sequence of primitives [Cao94], we advocate
sequencing primitives with directed acyclic graphs (DAGs). We
believe DAGs are a better representation because only the archi-
tectural dependencies between primitives are specified. In our
experience, graphs like those of Figure 1 are precisely the tools
needed to explain a new array architecture to a colleague. Further-
more, a structured representation enables mechanized execution,
which we exploit to automate the effect of a device error on in-
progress storage operations (graphs) [Courtright94]. 

Figure 1 illustrates a pair of DAGs used in our RAID level 5
implementation. The nodes represent primitive operations and the
arcs represent dependences (control or data) which constrain exe-
cution. The primitives in this illustration are: 

 

H

 

 (header), 

 

T

 

 (termi-
nator), 

 

R

 

 (disk read), 

 

W

 

 (disk write), and 

 

XOR

 

 (bit-wise exclusive
or). The subscripts 

 

d

 

 and 

 

p

 

 denote the type of information, data or
parity, being operated on. The “header” and “terminator” nodes
have no function beyond enabling systematic initiation and termi-
nation of a graph.

 

2. Mechanized Execution

 

With a graph-based approach to representing array operation
control, RAIDframe’s automatic-error-handling strategy, imple-

mented in its architecture-independent DAG interpreter, either
completes (as coded) graphs that are in-flight when an error
occurs, 

 

rolling forward,

 

 or backs up through an in-progress graph
to an earlier point, 

 

rolling back,

 

 where an alternative graph is more
appropriate given the new state of the array. Similar to abort han-
dling in transactional databases, this 

 

roll-away

 

 error handling
works by identifying those nodes in a DAG which commit data to
disk and by specifying the direction of recovery based on when
errors occur in relation to this commit point. If an error occurs
before any data has been committed, then the system rolls back,
releasing resources, and retries the operation with a more appropri-
ate graph. If an error occurs after data has been committed to disk,
the system rolls forward through the remainder of the graph giving
later requests the impression that this graph completed instanta-
neously before the error. It has been our experience that graph
commit points can be specified so that roll-back is inexpensive
(does not induce additional device work in the preparation for or
the execution of roll-back) and roll-forward does not need to exe-
cute any device operation not already coded in the in-flight graph.
It is our goal to demonstrate that an array’s peak throughput and
average operation response time are not penalized by roll-away
error handling.

 

3. Implementing an Array

 

The basic characteristics which differentiate redundant disk
array architectures are mapping, encoding, and caching. These
characteristics have been isolated (modularized) in RAIDframe,
allowing them to be modified orthogonally. This modular
approach, in conjunction with the use of DAGs and automated
error recovery, greatly simplifies the process of implementing a
new array architecture. RAIDframe provides libraries of mapping
and encoding routines, nodes, graphs, and disk queueing policies
which architects may either draw upon or enhance when creating
new arrays.

At the time of this writing, we have completed implementa-
tion of RAID levels 0, 1, 4, 5, 6, as well as parity declustering
[Holland94], distributed sparing [Holland94], interleaved declus-
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Figure 1 - RAID Level 5 Operations Represented as DAGs
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tering [Teradata85], and chained declustering [Hsiao90]. We have
consistently observed code reuse of more than 91% with an aver-
age reuse of 95%. 

 

4. Accuracy and Performance Measurements

 

Using 10 HP-2247 drives connected to a 150 MHz DEC
Alpha running OSF/1, we evaluated the performance of array
architectures implemented in RAIDframe. First, comparing the
performance of RAIDframe’s RAID level 0, instantiated as a
device driver, to a hand-crafted UNIX disk-striping driver, we
found disk access throughput and response time distributions to be
statistically identical. Of course RAIDframe’s decomposition into
operation graphs and a graph interpretation engine leads to a
higher CPU utilization as Figure 2 illustrates for disk-saturating
workloads composed of random 4 KB accesses.

With confidence that RAIDframe’s basic engine can match
the I/O performance of a hand-crafted disk-striping driver, we
compared the I/O performance of different array architectures
implemented in RAIDframe. Figure 3 presents average response
time as a function of achieved throughput for a range of these
architectures in a 10-disk array with a workload of random 4 KB
writes. This figure displays the performance differences docu-
mented in the literature on RAID systems [Chen90, Holland94].

 

5. Conclusions and Future Work

 

RAIDframe represents redundant disk array architectures as
simple programs in a graphical language that can be interpreted
without sacrificing I/O performance. With this representation for
an architecture, the effect of a device error on in-progress graphs is
automated in RAIDframe.

Although functional as a simulator, user-level disk controller
and kernel device driver, RAIDframe’s extensibility and correct-
ness during extension are under evaluation. We are developing an
extensible disk cache to supports user-specified triggering mecha-
nisms. Further information is available in a technical report
[Gibson95] or on-line via our web page http://www.cs.cmu.edu/
Web/Groups/PDL/.
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Figure 2 - RAIDframe CPU Utilization
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Figure 3 - Random 4K Writes, 10-Disk Array


