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Abstract
Automated management is critical to the success of cloud

computing, given its scale and complexity. But, most sys-

tems do not satisfy one of the key properties required for

automation: predictability, which in turn relies upon low

variance. Most automation tools are not e�ective when

variance is consistently high. Using automated perfor-

mance diagnosis as a concrete example, this position pa-

per argues that for automation to become a reality, system

builders must treat variance as an important metric and

make conscious decisions about where to reduce it. To

help with this task, we describe a framework for reason-

ing about sources of variance in distributed systems and

describe an example tool for helping identify them.

1 Introduction

Many in the distributed systems community [12, 20] rec-

ognize the need for automated management in cloud in-

frastructures, such as large distributed systems and data-

centers. �ey predict that the rapidly increasing scale and

complexity of these systems will soon exceed the limits of

human capability. Automation is the only recourse, lest

they become completely unmanageable. In response to

this call to arms, many research papers have been pub-

lished on tools for automating various tasks, especially

performance diagnosis [4,5,9, 17–19,23,24,27,28,31]. Most

focus on layering automation on top of existing systems,

without regard to whether they exhibit a key property

needed for automation—predictability. Most systems do

not, especially the most complex ones that need automa-

tion the most. �is limits the utility of automation tools

and the scope of tasks that can be automated.

Our experiences using an automated performance di-

agnosis tool, Spectroscope [27], to diagnose problems in

distributed storage systems, such as Ursa Minor [1] and

Bigtable [8], bear out the inadequacy of the predictabil-

ity assumption. �ough Spectroscope has proven useful,

it has been unable to reach its full potential due to high

variance in performance resulting from poorly structured

code, high resource contention, and hardware issues.

�e predictability of a distributed system is a�ected

by variance in the metrics used to make determinations

about it. As variance increases, predictability decreases

as it becomes harder for automation tools to make con�-

dent, or worse, correct determinations. �ough variance

cannot be eliminated completely due to fundamental non-

determinism (e.g., actions of a remote system and bit er-

rors), it can be reduced, improving predictability.

To aid automation, system builders could be encour-

aged to always minimize variance in key metrics. �is

policy dovetails nicely with areas in which predictability

is paramount. For example, in the early 1990s, the US

Postal Service slowed down mail delivery because they

decided consistency of delivery times was more impor-

tant than raw speed. When asked why this tradeo� was

made, the postmaster general responded: “I began to hear

complaints frommailers and customers about inconsistent

�rst-class mail delivery. . . .We learned how important

consistent, reliable delivery is to our customers” [7]. In sci-

enti�c computing, inter-node variance can drastically limit

performance due to frequent synchronization barriers. In

real-time systems, it is more important for programs to

meet each deadline than run faster on average. Google

has recently identi�ed low response-time variance as cru-

cial to achieving high performance in warehouse-scale

computing [6].

Of course, in many cases, variance is a side e�ect of de-

sirable performance enhancements. Caches, a mainstay of

most distributed systems, intentionally trade variance for

performance. Many scheduling algorithms do the same.

Also, reducing variance blindly may lead to synchronized

“bad states,” which may result in failures or drastic per-

formance problems. For example, Patil et al. describe an

emergent property in which load-balancing in GIGA+, a

distributed directory service, leads to a large performance

dropo� as compute-intensive hash bucket splits on various

nodes naturally become synchronized [25].

Some variance is intrinsic to distributed systems

and cannot be reduced without wholesale architectural

changes. For example, identical components, such as disks

from the same vendor, can di�er signi�cantly in perfor-

mance due to fault-masking techniques and manufactur-
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ing e�ects [3,21]. Also, itmay be di�cult to design complex

systems to exhibit low variance because it is hard to predict

their precise operating conditions [15, 22].

In practice, there is no easy answer in deciding how

to address variance to aid automation. �ere is, however,

a wrong answer—ignoring it, as is too o�en being done

today. Instead, for the highly touted goal of automation to

become a reality, system builders must treat variance as a

�rst-class metric. �ey should strive to localize the sources

of variance in their systems and make conscious decisions

about which ones should be reduced. Such explicit deci-

sions about variance properties will result in more robust

systems and will vastly improve the utility of automation

tools that rely on low variance to work.

�e rest of this paper is organized as follows. Section 2

discusses how automated performance diagnosis tools are

a�ected by high variance. Section 3 identi�es three types

of variance that can be found in distributed systems and

what should be done about them. Section 4 proposes a

mechanism system builders can use to identify the sources

of variance in their systems. Section 5 discusses open

questions and Section 6 concludes.

2 Diagnosis tools & variance

Tools that automate aspects of performance diagnosis each

assume a unique model of system behaviour and use devi-

ations from it to predict diagnoses. Most do not identify

the root cause directly, but rather automatically localize

the source of the problem from any of the the numerous

components in the system to just the speci�c components

or functions responsible. Di�erent tools exhibit di�erent

failure modes when variance is high, depending on the

underlying techniques they use.

Tools that rely on thresholds make predictions when im-

portant metrics chosen by experts exceed pre-determined

values. �eir failure mode is the most unpredictable, as

they will returnmore false positives (inaccurate diagnoses)

or false negatives (diagnoses not made when they should

have been), depending on the value of the threshold. A

low threshold will result in more false positives, whereas

increasing it to accommodate the high variance will mask

problems, resulting in more false negatives. False posi-

tives perhaps represent the worst failure mode, due to the

amount of developer e�ort wasted [2].

To avoid costly false positives, some tools use statistical

techniques to avoid predicting when the expected false

positive rate exceeds a pre-set one (e.g., 5%). �e cost of

high variance for them is an increase in false negatives.

Some statistical tools use adaptive techniques to increase

their con�dence before making predictions—e.g., by col-

lecting more data samples. �e cost of high variance for

them is increased storage/processing cost and an increase

in time required before predictions can be made.

Many tools use machine learning to automatically learn

the model (e.g., metrics and values) that best predicts per-

formance. �e false positive rate and false negative rate

are controlled by selecting the model that best trades gen-

erality (which usually results in more false negatives) with

speci�city (which results in more false positives)1.

2.1 How real tools are a�ected by variance
Real tools use a combination of the techniques described

above to make predictions. �is section lists four such

tools and how they are a�ected by variance. Table 1 pro-

vides a summary and lists additional tools.

Magpie [5]: �is tool uses an unsupervised machine

learning algorithm (clustering) to identify anomalous re-

quests in a distributed system. Requests are grouped to-

gether based on similarity in request structure, perfor-

mance metrics, and resource usage. It expects that most

requests will fall into one of several “main” clusters of be-

haviour, so it identi�es small ones as anomalies. A thresh-

old is used to decide whether to place a request in the

cluster deemed most similar to it, or whether to create a

new one. High variance in the values of the features used

and use of a low threshold will yield many small clusters,

resulting in an increase in false positives. Increasing the

threshold will result in more false negatives.

Spectroscope [27]: �is tool uses a combination of sta-

tistical techniques and thresholds to identify the changes

in request processingmost responsible for an observed per-

formance change. It relies on the expectation that requests

that take the same path through a distributed system’s com-

ponents should incur similar performance costs and that

the request topologies observed (e.g., components visited

and functions executed by individual requests) should be

similar across executions of the same workload. High vari-

ance in these metrics will increase the number of false pos-

itives and false negatives. Experiments run on Bigtable [8]

in three di�erent Google datacenters show that 47–69% of

all unique paths observed satisfy the similar paths expec-

tation, leaving much room for improvement [27]. �ose

paths that do not satisfy it su�er from a lack of enough

instrumentation to tease out truly unique paths and high

contention with co-located processes.

Peer comparison [18, 19]: �ese diagnosis tools are in-

tended to be used on tightly coupled distributed systems,

such as Hadoop and PVFS.�ey rely on the expectation

that every machine in a given cluster should exhibit the

same behaviour. As such, they indict a machine as exhibit-

ing a problem if its performancemetrics di�er signi�cantly

from others. �resholds are used to determine the degree

of di�erence tolerated. High variance in metric distribu-

tions between machines will result in more false positives,

or false negatives, depending on the threshold chosen. Re-

1�is is known as the bias-variance tradeo�.
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Tool FPs / FNs Tool FPs / FNs

Magpie [5] ⇑ / ⇑ DARC [31] - / ⇑

Spectroscope [27] ⇑ / ⇑ Distalyzer [23] - / ⇑

Peer comp. [19] ⇑ / ⇑ Pinpoint [9] - / ⇑

NetMedic [17] - / ⇑ Shen [28] - / ⇑

Oliner [24] - / ⇑ Sherlock [4] - / ⇑

Table 1: How the predictions made by automated perfor-
mance diagnosis tools are a�ected by high variance. As a re-
sult of high variance, diagnosis tools will yield more false pos-

itives (FPs), false negatives (FNs), or both, depending on the

techniques they use to make predictions. Note that the choice of

failure mode attributed to each tool was made conservatively.

cent trends that result in increased performance variance

from same-batch, same-model devices [21] negatively af-

fect this peer-comparison expectation.

Tool described by Oliner [24]: �is tool identi�es cor-

relations in anomalies across components of a distributed

system. To do so, it �rst calculates an anomaly score for
discrete time intervals by comparing the distribution of

some signal—e.g., average latency—during the interval to

the overall distribution. �e strength of this calculation

is dependent on low variance in the signal. High vari-

ance will yield lower scores, resulting in more false nega-

tives. �e author himself states this fact: “�e [anomaly]

signal should usually take values close to the mean of

its distribution—this is an obvious consequence of its in-

tended semantics” [24].

3 �e three I’s of variance

Variance in distributed systems is an important metric

that directly a�ects potential for automated diagnosis. To

reduce it, two complementary courses of action are nec-

essary. During the design phase, system builders should

make conscious decisions about which areas of the dis-

tributed system should be more predictable (exhibit low

variance w/regard to important metrics). Since the com-

plexity of distributed systems makes it unlikely they will

be able to identify all of the sources of variance during

design [3, 15, 22], they must also work to identify sources

of variance during development and testing. To help with

the latter, this section describes a nomenclature for vari-

ance sources that can help system builders reason about

them and understand for which ones variance should be

reduced.

Intentional variance sources: �ese are a result of a

conscious tradeo� made by system builders. For example,

such variance may emanate from a scheduling algorithm

that lowers mean response time at the expense of variance.

Alternatively, it may result from explicit anti-correlation

added to a component to prevent it from entering synchro-

nized, stuck states (e.g., Microreboots [26]). Labeling a

source as intentional indicates the system builder will not

try to reduce its variance.

Inadvertent variance sources: �ese are o�en the re-

sult of poorly designed or implemented code; as such, their

variance should be reduced or eliminated. For example,

such variance sources may include functions that exhibit

extraordinarily varied response times because they con-

tain many di�erent control paths (spaghetti code). In [18],

Kasick et al. describe how such high variance functions

were problematic for an automated diagnosis tool devel-

oped for PVFS. Such variance can also emanate from un-

foreseen interactions between components, or may be the

result of extreme contention for a resource (for example,

due to poor scheduling decisions made by the datacenter

scheduler). �e latter suggests that certain performance

problems can be diagnosed directly by localizing variance.

In fact, while developing Spectroscope [27], we found that

high variance was a good predictor of contention.

Intrinsic variance sources: �ese sources are o�en a

result of fundamental properties of the distributed system

or datacenter—for example, the hardware in use. Short of

architectural changes, their variance cannot be reduced.

Examples include non-�at topologies within a datacenter

or disks that exhibit high variance in bandwidth between

their inner and outer zones [3].

Variance from intentional and intrinsic sources may be

a given, so the quality of predictions made by automation

tools in these areas will su�er. However, it is important

to guarantee their variance does not impact predictions

made for other areas of the system. �is may be the case if

the data granularity used by an automation tool to make

predictions is not high enough to distinguish between a

high variance source and surrounding areas. For example,

problems in the so�ware stack of a component may go

unnoticed if an automation tool does not distinguish it

from a high-variance disk. To avoid such scenarios, system

builders should help automation tools account for high

variance sources directly—for example, by addingmarkers

around them that are used by automation tools to increase

their data granularity.

4 VarianceFinder

To illustrate a variance-oriented mindset, this section pro-

poses one potential mechanism, calledVarianceFinder, for
helping system builders identify the main sources of vari-

ance in their systems during development and testing. �e

relatively simple design outlined here focuses on reducing

variance in response times for distributed storage systems

such as Ursa Minor [1], Bigtable [8], and GFS [13]. How-

ever, we believe this basic approach could be extended to

include other performance metrics and systems.

VarianceFinder utilizes end-to-end traces (Section 4.1)

and follows a two-tiered approach. First, it shows the
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variance associated with aspects of the system’s overall

functionality that should exhibit similar performance (Sec-

tion 4.2). Second, it allows system builders to select func-

tionality with high variance and identi�es the components,

functions, or RPCs responsible, allowing them to take ap-

propriate action (Section 4.3). We believe this tiered ap-

proach will allow system builders to expend e�ort where

it is most needed.

4.1 End-to-end tracing
To identify sources of variance within a distributed sys-

tem, a �ne-grained instrumentation mechanism is needed.

End-to-end tracing satis�es this requirement, as it captures

the detailed control �ow of individual requests within and

across the components of a distributed systemwith as little

as 1% overhead. Many implementations exist, all of which

are relatively similar [5, 11, 29, 30]. Figure 1 shows an ex-

ample request-�ow graph generated from Stardust [30],

the tracing mechanism used in Ursa Minor [1]. Note

that nodes in this graph indicate instrumentation points

reached by the request, whereas edges are annotated with

performance metrics—in this case the latency between

executing successive instrumentation points.

4.2 Id’ing functionality & �rst-tier output
To identify functionality that should exhibit similar perfor-

mance, VarianceFinder utilizes an informal expectation,

common in distributed storage systems, that requests that

take the same path through the system should incur similar

performance costs. For example, system builders gener-

ally expect read requests whose metadata and data hit in

a NFS server’s cache to perform similarly, whereas they

do not expect this for requests that take di�erent paths

because some miss in cache and others hit in it. Vari-

anceFinder groups request-�ow graphs that exhibit the

same structure—i.e., those that represent identical activi-

ties and execute the same trace points—into categories and
calculates average response times, variances, and squared

coe�cients of variation (C2) for each. C2, which is de-

�ned as ( σµ )
2, is a normalized measure of variance and

captures the intuition that categories whose standard devi-

ation is much greater than the mean are worse o�enders

than those whose standard deviation is less than or close

to the mean. In practice, categories with C2
> 1 are said to

have high variance around the mean, whereas those with

C2
< 1 exhibit low variance around the mean.

�e �rst-tier output from VarianceFinder consists of

the list of categories ranked by C2 value. System builders

can click through highly-ranked categories to see a graph

view of the request structure, allowing them to determine

whether it is important. For example, a highly-ranked

category that contains read requests likely will be deemed

important, whereas one that contains rare requests for the

Figure 1: Example request-�ow graph. �e graph shows a

striped read in the Ursa Minor [1] distributed storage sys-

tem. Nodes represent instrumentation points and edges are

labeled with the time between successive events. Node labels

are constructed by concatenating the machine name (e.g., e10),
component name (e.g., NFS3), instrumentation-point name

(e.g., READ_CALL_TYPE), and an optional semantic label (e.g.,

NFSCACHE_READ_MISS). Due to space constraints, instrumenta-

tion points executed on other components as a result of the NFS

server’s RPC calls are not shown.

names of mounted volumes likely will not.

4.3 Second-tier output & resulting actions
Once the system builder has selected an important highly-

ranked category, he can use VarianceFinder to localize its

main sources of variance. �is is done by highlighting

the highest-variance edges along the critical path of the

category’s requests. Figure 2 illustrates the overall process.

In some cases, an edge may exhibit high variance because

of another edge—for example, an edge spanning a queue

might display high variance because the component to

which it sends data also does so. To help system builders

understand these dependencies, clicking on a highlighted

edge will reveal other edges that have non-zero covariance

with it.

Knowing the edges responsible for the high variance

allows the system builder to investigate the relevant areas

of the system. Variance from sources that he deems inad-

vertent should be reduced or eliminated. Alternatively, he

might decide that variance from certain sources should not

or cannot be reduced because they are intentional or in-

trinsic. In such cases, he should add tight instrumentation

points around the source to serve as markers. Automa-

tion tools that use these markers to increase their data

granularity—especially those that use end-to-end traces

directly [5, 27, 29]—will be able to make better predictions

about areas surrounding the high-variance source.
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Figure 2: Example of how a VarianceFinder implementation
might categorize requests to identify functionality with high
variance. VarianceFinder assumes that requests that take the

same path through a distributed system should incur similar

costs. It groups request-�ow graphs that exhibit the same struc-

ture into categories and calculates statistical metrics for them.

Categories are ranked by the squared coe�cient of variation (C2
)

and high-variance edges along their critical path are automati-

cally highlighted (as indicated by the magnifying glass).

Adding instrumentation can also help reveal previously

unknown interesting behaviour. �e system builder might

decide that an edge exhibits high variance because it en-

compasses too large of an area of the system, merging

many dissimilar behaviours (e.g., cache hits and cache

misses). In such cases, extra trace points should be added

to disambiguate them.

5 Discussion

�is paper argues that variance in key performancemetrics

needs to be addressed explicitly during design and imple-

mentation of distributed systems, if automated diagnosis

is to become a reality. But, much additional research is

needed to understand how much variance can and should

be reduced, the di�culty of doing so, and the resulting

reduction in management e�ort.

To answer the above questions, it is important that we

work to identify the breakdown of intentional, inadver-

tent, and intrinsic variance sources in distributed systems

and datacenters. To understand if the e�ort required to

reduce variance is worthwhile, the bene�ts of better au-

tomation must be quanti�ed by how real people utilize

and react to automation tools, not via simulated experi-

ments or fault injection. If this tradeo� falls strongly in

favour of automation and intrinsic variance sources are

the largest contributers, architectural changes to datacen-

ter and hardware design may be necessary. For example,

system builders may need to increase the rate at which

they adopt and develop strong performance isolation [16]

or insulation [32] techniques. Also, hardware manufactur-

ers, such as disk drive vendors, may need to incorporate

performance variance as a �rst-class metric and strive to

minimize it.

Similarly, if (currently) intentional sources are the

largest contributors, system builders may need to re-visit

key design tradeo�s. For example, they may need to

consider using datacenter schedulers that emphasize pre-

dictability and low variance in job completion times [10]

instead of ones that dynamically maximize resource uti-

lization at the cost of predictability and low variance [14].

Finally, automated performance diagnosis is just one of

many reasons why low variance is important in distributed

systems and datacenters. For example, strong service-level

agreements are di�cult to support without expectations

of low variance. As such, many of the arguments posed in

this paper are applicable in a much broader sense.

6 Conclusion

�ough automation in large distributed systems is a de-

sirable goal, it cannot be achieved when variance is high.

�is paper presents a framework for understanding and

reducing variance in performancemetrics so as to improve

the quality of automated performance diagnosis tools. We

imagine that there are many other tools and design pat-

terns for reducing variance and enhancing predictability.

In the interim, those building automation tools must con-

sider whether the underlying system is predictable enough

for their tools to be e�ective.
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