
Visualizing request-flow comparison
to aid performance diagnosis in distributed systems

Raja R. Sambasivan, Ilari Shafer, Michelle L. Mazurek, Gregory R. Ganger

CMU-PDL-13-104 (Supersedes CMU-PDL-12-102)

April 2013

Parallel Data Laboratory
Carnegie Mellon University

Pittsburgh, PA 15213-3890

Abstract
Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When
performance degrades, the problem might be in any of the system’s many components or could be a result of poor interactions among
them. Recent research e�orts have created tools that automatically localize the problem to a small number of potential culprits, but
e�ective visualizations are needed to help developers understand and explore their results. �is paper compares side-by-side, di�, and
animation-based approaches for visualizing the results of one proven automated localization technique called request-�ow comparison.
Via a 26-person user study, which included real distributed systems developers, we identify the unique bene�ts that each approach provides
for di�erent usage modes and problem types.

Acknowledgements:We thank themembers and companies of the PDLConsortium (including Acti�o, APC, EMC, Emulex, Facebook, Fusion-

io, Google, Hewlett-Packard Labs, Hitachi, Intel, Microso� Research, NEC Laboratories, NetApp, Oracle, Panasas, Riverbed, Samsung, Seagate,

STEC, Symantec, VMware, and Western Digital) for their interest, insights, feedback, and support. �is research was sponsored in part by a Google

research award, NSF grant #CNS-1117567, and by Intel via the Intel Science and Technology Center for Cloud Computing (ISTC-CC). Ilari Shafer

was supported in part by an NSF Graduate Research Fellowship and a National Defense Science and Engineering Graduate Fellowship. Michelle L.

Mazurek is supported in part by a Facebook Fellowship.



Keywords: distributed systems, performance diagnosis, request-�ow comparison, user study, visualization



Before Graph After Graph

Figure 1: Comparing request-�ow graphs:�is side-by-side visualization, one of three interfaces we evaluate, illustrates

the output of a diagnosis technique that compares graphs. It shows these two graphs juxtaposed horizontally, with dashed

lines between matching nodes in both. �e rightmost series of nodes in the screenshot do not exist in the graph on the

le�, causing the yellow nodes to shi� downward in the graph on the right.

1 Introduction

Adistributed system is a set of so�ware components running onmultiple networked computers that collectively

provide some service or result. Examples now pervade all walks of life, as society uses distributed services to

communicate (e.g., Google’s Gmail), shop (e.g., Amazon), provide entertainment (e.g., YouTube), and so forth.

�ough such distributed systems o�en have simple interfaces and usually respond quickly, great complexity is

involved in developing them and maintaining their performance levels over time. Unexpected performance

degradations arise frequently, and substantial human e�ort is involved in addressing them.

When a performance degradation arises, the crucial �rst step in addressing it is �guring out what is causing

it. �e root causemight be any of the system’s so�ware components, unexpected interactions between them,

or slowdowns in the network connecting them. Exploring the possibilities and identifying the most likely

root causes has traditionally been an ad-hoc manual process, informed primarily by raw performance data

collected from individual components. As distributed systems have grown in scale and complexity, such

ad-hoc processes have grown less and less tenable.

To help, recent research has proposed many tools for automatically localizing the many possible sources of

a new problem to just a few potential culprits (e.g., [19, 25, 30]). �ese tools do not identify the root cause

directly, but rather help developers build intuition about the problem and focus their diagnosis e�orts. �ough

complete automation would be ideal, the complexity of modern systems and the problems that arise in them

ensure this human-in-the-loop model will be dominant for the foreseeable future. As such, many researchers

recognize the need for localization tools to present their results as clearly as possible [22, 26]. But apart from a

few select instances [20, 22], far too little research has been conducted on what types of presentations are most

useful for distributed systems developers.

As a step toward addressing this need, this paper presents a 26-person user study that compares three promising

approaches for visualizing the results of one powerful, proven automated localization technique called request-
�ow comparison [30]. Our user study uses real problems observed in Ursa Minor [1], a real distributed system.

It includes 13 professionals (i.e., developers of UrsaMinor and so�ware engineers fromGoogle) and 13 graduate
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students taking distributed systems classes. As expected, no single approach is best for every diagnosis task,

and we make no attempt to identify a single best one in this paper. Rather, our goal is to identify which

approaches work best for di�erent usage modes and for diagnosing di�erent types of problems.

Data Location Data Location Data Location Data Location 
ServerServerServerServer

FrontendFrontendFrontendFrontend
File File File File SSSServererverervererver

Storage Storage Storage Storage ServersServersServersServers

Distributed SystemDistributed SystemDistributed SystemDistributed System
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5555
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1111
2222

Figure 2: Example distributed storage system. To

read a �le, clients connect to this distributed system.

A frontend �le server handles their requests, but may

need to access other components like the data location

server and storage servers. �is �gure shows two of

many possible paths through the system.

Request-�ow comparison contrasts how a distributed sys-

tem services requests (e.g., “read this e-mail message” or

“�nd books by this author”) during two periods of oper-

ation: one where performance was �ne (“before”) and

the new one in which performance has degraded (“af-

ter”). Each request serviced has a corresponding work-

�owwithin the system, representing the order and timing

of components involved; for example, a request to read

e-mail might start at a frontend web server that parses the

request, then be forwarded to the e-mail directory server

for the speci�c user, then be forwarded to the storage

server that holds the desired message, and then return to

the web server so it can respond to the requester. Figure 2

shows a similar example for a distributed storage system.

Each request �ow can be represented as a directed acyclic

graph, and comparing before and a�er graphs can pro-

vide signi�cant insight into performance degradations. Many organizations are interested in algorithms and

visualizations for comparing request �ows, including Google [33], Microso�, and Twitter [35].

�e initial version of request-�ow comparison used an inadequate Graphviz-based interface that required

graphs to be manually and painstakingly compared with each other. �e approaches we compare in this

paper were chosen based on the recommendations of developers who previously used this initial version to

diagnose real problems in Ursa Minor and certain Google services [30]. �ey occupy three corners in the

space of approaches to visualizing di�erences, as identi�ed by a taxonomy of comparison approaches [14]. �e

side-by-side approach is is nearly a “juxtaposition,” which presents independent layouts. Di� is an “explicit

encoding,” which highlights the di�erences between the two graphs. Animation is closest to a “superposition”

design that guides attention to changes that “blink.”

Despite the large body of work on comparing graphs [3,4,10], we found no existing implementations of side-by-

side, di�, and animation that are suitable for request-�ow comparison’s domain-speci�c needs. For example,

di�erences must be found in directed acyclic graph structure and edge weights. Also, correspondences between

nodes of before-and-a�er graphs are not known a priori and must be identi�ed algorithmically. �erefore, we

built our own interfaces.

Our user study results show that side-by-side is the best approach for helping developers obtain an overall

understanding of a problem. Animation is best for helping diagnose problems that are caused by a change

in the amount of concurrent activity (e.g., extra concurrent activity that is excessively slow) or by a slower

thread of activity replacing a faster thread. Di� is best for helping diagnose problems caused by non-structural

di�erences.

2 Request-flow comparison

Request-�ow comparison [30] is a technique for automatically localizing the root causes of performance

degradations in distributed systems, such as Ursa Minor (identical to the system shown in Figure 2) and
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Figure 3: Example request-�ow graph. �is graph shows the �ow of a read request through the distributed storage

system shown in Figure 2. Node names represent important events observed on the various components while completing

the required work. Edges show latencies between these events. Fan-outs represent the start of parallel activity, and

synchronization points are indicated by fan-ins. Due to space constraints, only the events observed on the frontend �le

server are shown.

Bigtable [7]. It uses the insight that such degradations o�en manifest as changes in the work�ow of individual

requests as they are serviced by the system. Exposing these changes and showing how they di�er from previous

behavior localizes the problem’s source and signi�cantly guides developer e�ort.

Request-�ow comparison works by contrasting request-�ow graphs observed during two periods: one of good

performance and one of poor performance. Nodes of these directed acyclic graphs show important events

or activities observed on di�erent components during request processing, and edges show latency between

these events (see Figure 3). Request-�ow comparison groups the �ows observed during both periods (o�en

numbered in the hundreds of thousands) into clusters of identically structured ones, then identi�es those from

the poor-performance period that most contribute to the performance degradation. As output, it presents

pairs of before-and-a�er graphs of these culprits, showing how they were processed before the performance

change versus a�er the change. Identifying di�erences between these pairs of graphs localizes the source of the

problem and provides developers with starting points for their diagnosis e�orts. To preserve context, entire

request-�ow graphs are presented.

�is technique identi�es two important types of di�erences. Edge latency changes are di�erences in the time

required to execute successive events and represent unforeseen slowdowns in request processing. Request-�ow

comparison attempts to identify these changes automatically, using hypothesis tests to identify edges with

latency distributions that have a statistically signi�cant di�erence in the before and a�er periods. Similar tests

are used in several automated diagnosis tools [19,25,30]. Since hypothesis tests will not identify all edges worth

investigating, developers must still examine the graphsmanually to �nd additional such divergences. Structural
changes are di�erences in the number and causal ordering of system events. �ey represent slowdowns due to

extra (or less) concurrent activity or additional (or di�erent) activity within a single sequential thread (i.e.,

intra-thread event changes). Developers must contrast the two graphs manually to identify such divergences.

Further details about request-�ow comparison can be found in Sambasivan et al. [30].
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3 Related work

Recent research has explored a number of approaches, including some akin to side-by-side, di�, and animation,

to help users identify di�erences in graphs, but no single one has emerged as the clear winner [3, 4, 29]. �e

choice depends on the domain, the types of graphs being compared, and the di�erences of interest, thus

motivating the need for the study presented in this paper.

Archambault et al. [4] suggest that animation may be more e�ective for helping users understand the evolution

of nodes and edges in a graph, whereas small multiples (akin to our side-by-side approach) may be more useful

for tasks that require reading node or edge labels. In contrast, Farrugia et al. [10] �nd that static approaches

outperform animation for identifying how connections evolve in social networks. Both evolution-related and

label-related comparisons are necessary to understand di�erences in request-�ow graphs. Robertson et al. [29]

compare animation’s e�ectiveness to that of small multiples and one other static approach for identifying

trends in the evolution of Gapminder Trendalyzer [12] plots (3-dimensional data plotted on 2-D axes). �ey

�nd that animation is more e�ective and engaging for presenting trends, while static approaches are more

e�ective for helping users identify them. For unweighted, undirected graphs, Archambault et al. [3] �nd that a

“di�erence map” (akin to our di� view) is signi�cantly preferred, but does not improve task completion time.

Melville et al. develop a set of general graph-comparison questions and �nd that for small graphs represented

as adjacency matrices, a superimposed (akin to di�) view is superior to a juxtaposed (side-by-side) view [23].

In addition to user studies comparing di�erent approaches, many tools have been built to identify graph

di�erences. Many use domain-speci�c algorithms or are built to analyze speci�c graph structures. For

example, TreeJuxtaposer [24] uses domain knowledge to identify node correspondences between trees that

show evolutionary relationships among di�erent species. TreeVersity [15] uses a di�-based technique to identify

di�erences in node attributes and structure for trees with unweighted edges and known correspondences.

G-PARE [32] presents overlays to compare predictions made by machine-learning algorithms on graph-based

data. Visual Pivot [28] helps identify relationships between two trees by using a layout that co-locates a selected

common node. Donatien [16] uses a layering model to allow interactive matching and comparison of graphs

of document collections (i.e., results from two search engines for the same query). Beck and Diehl [5] use a

matrix representation to compare so�ware architectures based on code dependencies.

In contrast, in this study, we attempt to identify good graph comparison techniques for helping developers

identify performance-a�ecting di�erences in distributed system activities. �ese are intuitively represented as

directed, acyclic, weighted graphs, o�en with fan-ins and fan-outs, and for which node correspondences are

not known. �ese graphs may di�er in structure (e.g., node names and their connections) and edge weight.

We also believe our intended audience—those familiar with distributed systems development—will exhibit

unique preferences distinct from the general population.

In the systems community, there has been relatively little research conducted on visual methods for diagnosis.

Indeed, a recent survey of important directions for log analysis concludes that because humans will remain

in the diagnosis loop for the foreseeable feature, visualization research is an important next step [26]. One

project in this vein is NetClinic, which considers root-cause diagnosis of network faults [20]. �e authors

�nd that visualization in conjunction with automated analysis [19] is helpful for diagnosis. As in this study,

the tool uses automated processes to direct users’ attention, and the authors observe that automation failures

inhibit users’ understanding. In another system targeted at network diagnosis, Mansmann et al. observe that

automated tools alone are limited in utility without e�ective presentation of results [22].
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4 Interface design

Figure 4 shows our implementations of side-by-side, di�, and animation. All of them were guided by an initial

pilot study, which is not described in this paper. �ese interfaces are implemented in JavaScript, and use

modi�ed libraries from the JavaScript InfoVis Toolkit [6]. �is section further describes them.

Side-by-side: Our side-by-side interface (illustrated with a

simpli�ed diagram at right and in Figure 4a,d) computes in-

dependent layered layouts for the before and a�er graphs and

displays thembeside each other. Nodes in the before graph are

linked to corresponding nodes in the a�er graph by dashed

lines. �is interface is analogous to a parallel coordinates

visualization [18], with coordinates given by the locations of

the nodes in the before and a�er graphs. Using this interface,

latency changes can be identi�ed by examining the relative

slope of adjacent dashed lines: parallel lines indicate no change in latency, while increasing skew is indicative

of longer response time. Structural changes can be identi�ed by the presence of nodes in the before or a�er

graph with no corresponding node in the other graph.

Di� : Our di� interface (at right and in Figure 4b,e) shows a single static image

in an explicit encoding of the di�erences between the before and a�er graphs,

which are associated with the colors orange and blue respectively. �e layout

contains all nodes from both the before and a�er graphs. Nodes that exist only

in the before graph are outlined in orange and annotated with a minus sign;

those that exist only in the a�er graph are outlined in blue and annotated with

a plus sign. �is structural approach is akin to the output of a contextual di�

tool [21] emphasizing insertions and deletions.

We use the same orange and blue scheme to show latency changes, with edges

that exist in only one graph shown in the appropriate color. Edges existing in

both graphs produce a per-edge latency di�: orange and blue lines are inset

together with di�erent lengths. �e ratio of the lengths is computed from the ratio of the edge latencies in

before and a�er graphs, and the next node is attached at the end of the longer line.

Animation: Our animation interface (at right and in Figure 4c,f)

switches automatically between the before and a�er graphs. To pro-

vide a smooth transition, it interpolates the positions of nodes between

the two graphs. Nodes that exist in only one graph appear only on the

appropriate terminal of the animation. �ey become steadily more trans-

parent as the animation advances, and vanish completely by the other

terminal. Independent layouts are calculated for each graph, but non-

corresponding nodes are not allowed to occupy the same position. Users

can start and stop the animation, as well as manually switch between

terminal or intermediate points, via the provided slider.

4.1 Correspondence determination

All of the interfaces described above require determining correspondences between the before and a�er graphs,

which are not known a priori. We must determine which nodes in the before graph map to which matching
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nodes in the a�er graph, and by extension which nodes in each graph have no match in the other. �is problem

is not feasible using graph structure and node names alone, because many di�erent nodes can be labeled with

the same name (e.g., due to so�ware loops). Fortunately, the converse is guaranteed to be true—if a node

in the before graph matches a node in the a�er graph, their node names will be the same. We exploit this

property to obtain approximate correspondences.

Our approximation technique runs in O(N2) time in the number of nodes. First, we use a lexically-ordered

depth-�rst traversal to transform both graphs into strings. Next, we keep track of the insertions, deletions,

and mutations made by a string-edit distance transformation of one string into another. Finally, we map these

edits back onto the appropriate interface. Items that were not inserted, deleted, or modi�ed are ones that

correspond in both graphs. Despite the limitations of this approach, we have found it to work well in practice.

Gao et al. survey a variety of related algorithms [11]; because the problem is hard (in the formal sense), these

algorithms are limited in applicability, approximate, or both.

4.2 Common features

All three of our interfaces incorporate some common features, tailored speci�cally for request-�ow graphs.

All graphs are drawn with a layered layout based on the technique by Sugiyama et al [34]; layouts that modify

this underlying approach enjoy widespread use [9].

To navigate the interface, users can pan the graph view by clicking and dragging or by using a vertical scroll

bar. In large graphs, this allows for movement in the neighborhood of the current view or rapid traversal

across the entire graph. By using the wheel on a mouse, users can zoom in and out, up to a limit. We employ

rubber-banding for both the traversal and zoom features to prevent the interface from moving o� the screen

or becoming smaller than the viewing window.

For all of the interfaces, edge lengths are drawn using a sigmoid-based scaling function that allows both large

and small edge latencies to be visible on the same graph. Statistically signi�cant edge latency changes are

highlighted with a bold red outline. When graphs contain join points, or locations where multiple parallel

paths converge at the same node, one path may have to wait for another to complete. Our interfaces illustrate

the the distinction between actual latency and waiting time by using thinner lines for the latter (see the “write

in cache” to “MDSCLIENT lookup call” edge in Figures 4a-c for an example).

Each interface also has an annotation mechanism that allows users to add marks and comments to a graph

comparison. �ese annotations are saved as an additional layer on the interface and can be restored for later

examination.

4.3 Interface Example

To better illustrate how these interfaces show di�erences, the example of di� shown in Figure 4b is annotated

with the three key di�erences it is meant to reveal. First, the a�er graph contains an extra thread of concurrent

activity (outlined in blue and marked with a plus sign). Second, there is a statistically signi�cant change

in metadata lookup latency (highlighted in red). �ird, there is a large latency change between the lookup

of metadata and the request’s reply. �ese observations localize the problem to those system components

involved in the changes and thus provide starting points for developers’ diagnosis e�orts.
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5 User study overview &methodology

We compared the three approaches via a between-subjects user study, in which we asked participants to

complete �ve assignments using our interfaces. Each assignment asked participants to �nd key performance-

a�ecting di�erences for a before/a�er request-�ow graph pair obtained from Ursa Minor [1]. Four of the �ve

assignments used graphs derived from real problems observed in the system. �ese problems are described in

more detail in Sambasivan et al. [30].

5.1 Participants

Our tool’s target users are the developers of the distributed system being diagnosed. As our example tasks

come from Ursa Minor, we recruited the seven Ursa Minor developers to whom we had access as expert

participants. In addition, we recruited six professional distributed-system developers from Google. We refer

to the Ursa Minor and Google developers collectively as professionals.

Many of our professional participants are intimately familiar with more traditional diagnosis techniques,

perhaps biasing their responses to our user-study questions somewhat. To obtain a wider perspective, we

also recruited additional participants by advertising in undergraduate and graduate classes on distributed

systems and posting �iers on and around our campus. Potential participants were required to demonstrate

(via a pre-screening questionnaire) knowledge of key undergraduate-level distributed systems concepts. Of

the 33 volunteers who completed the questionnaire, 29 were deemed eligible; we selected the �rst 13 to respond

as participants. Because all of the selected participants were graduate students in computer science, electrical

and computer engineering, or information networking, we refer to them as student participants.

During the user study, each participant was assigned, round-robin, to evaluate one of the three approaches.

Table 1 lists the participants, their demographic information, and the interface they were assigned. We paid

each participant $20 for the approximately 1.5-hour study.

5.2 Creating before/after graphs

Each assignment required participants to identify salient di�erences in a before/a�er graph pair. To limit

the length of the study, we modi�ed the real-problem graph pairs slightly to remove a few di�erences that

were repeated many times. �e only synthetic before/a�er pair was modi�ed from a real request-�ow graph

observed in the system. Table 2 describes the various assignments and their properties.

To make the before/a�er graphs easier for participants to understand, we changed node labels, which describe

events observed during request processing, to more human-readable versions. For example, we changed

the label “e10__t3__NFS_CACHE_READ_HIT” to “Read that hit in the NFS server’s cache.” �e original

labels were written by Ursa Minor developers and only have meaning to them. Finally, we omitted numbers

indicating edge lengths from the graphs to ensure participants used visual properties of our interfaces to �nd

important di�erences.

5.3 User study procedure

�e study consisted of four parts: training, guided questions, emulation of real diagnoses, and interface

comparison. Participants were encouraged to think aloud throughout the study.
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ID G
en
de
r

A
ge

In
te
rf
ac
e

PS01 M 26 S

PS02 M 33 S

PS03 M 38 S

PS04 M 44 S

PS05 M 30 S

PD06 M 37 D

PD07 M 44 D

PD08 M 37 D

PD09 M 28 D

PA10 M 33 A

PA11 M 26 A

PA12 M 40 A

PA13 M 34 A

(a) Professionals

ID G
en
de
r

A
ge

In
te
rf
ac
e

SS01 F 23 S

SS02 M 21 S

SS03 M 28 S

SS04 M 29 S

SD05 M 35 D

SD06 M 22 D

SD07 M 23 D

SD08 M 23 D

SD09 M 25 D

SA10 F 26 A

SA11 M 23 A

SA12 M 22 A

SA13 M 23 A

(b) Students

Table 1: Participant demographics. Our 26 participants included 13 professional distributed systems developers and 13

graduate students familiar with distributed systems. �e ID encodes the participant group (P=professional, S=student)

and the assigned interface (S=side-by-side, D=di�, A=animation). Average ages were 35 (professionals) and 25 (students).

5.3.1 Training

In the training phase, participants were shown an Ursa Minor diagram similar to the one in Figure 2. �ey

were only required to understand that the system consists of four components that can communicate over

the network. We also provided a sample request-�ow graph and described the meaning of nodes and edges.

Finally, we trained each participant on her assigned interface by showing her a sample/before a�er graph

(identical to those shown in Figures 4(a-c)) and guiding her through tasks she would have to complete in latter

parts of the study. Participants were given ample time to ask questions and were told we would be unable to

answer further questions a�er the training portion.

5.3.2 Finding differences via guided questions

In this phase of the study, we guided participants through the process of identifying di�erences, asking them

to complete �ve focused tasks for each of three assignments. Rows 1–3 of Table 2 describe the graphs used for

this part of the study.

Task 1: Find any edges with statistically signi�cant latency changes. �is task required participants to �nd all of

the graph edges highlighted in red (i.e., those automatically identi�ed by the request-�ow-comparison tool as

having statistically signi�cant changes in latency distribution).

Task 2: Find any other edges with latency changes worth investigating. �e request-�ow-comparison tool will

not identify all edges worth investigating. For example, edges with large changes in average latency that also

exhibit high variance will not be identi�ed. �is task required participants to �nd edges with notable latency

changes not highlighted in red.
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Phase Assignment Di�erences Before/a�er
and type graph sizes (nodes)

G 1/Real 4 statistically sig. 122/122

5 other edge latency

2/Real 1 structural 3/16

3/Synth. 4 statistically sig. 94/128

2 other edge latency

3 structural

E 4/Real 4 structural 52/77

5/Real 2 structural 82/226

Table 2: Before/a�er graph-pair assignments. Assignments 1–3 were used in the guided questions phase (G); 4 and 5

were used to emulate real diagnoses (E). Four of the �ve assignments were the output of request-�ow comparison for

real problems seen in Ursa Minor.

Task 3: Find any groups of structural changes. Participants were asked to identify added or deleted nodes. To

reduce e�ort, we asked them to identify these changes in contiguous groups, rather than noting each changed

node individually.

Task 4: Describe in a sentence or two what the changes you identi�ed in the previous tasks represent. �is task

examines whether the interface enables participants to quickly develop an intuition about the problem in

question. For example, many of the edge latency changes presented in assignment 1 indicate a slowdown in

network communication between machines. Identifying these themes is a crucial step toward understanding

the root cause of the problem.

Task 5: Of the changes you identi�ed in the previous tasks, identify which one most impacts request response
time. �e di�erence that most a�ects response time is likely the one that should be investigated �rst when

attempting to �nd the root cause. �is task evaluates whether the interface allows participants to quickly

identify this key change.

5.3.3 Emulating real diagnoses

In the next phase, participants completed two additional assignments. �ese assignments were intended to

emulate how the interfaces might be used in the wild, when diagnosing a new problem for the �rst time. For

each assignment, the participant was asked to complete tasks 4 and 5 only (as described above). We selected

these two tasks because they most closely align with the questions a developer would ask when diagnosing an

unknown problem.

A�er this part of the study, participants were asked to agree or disagree with two statements using a �ve-point

Likert scale: “I am con�dent my answers are correct” and “�is interface was useful for solving these problems.”

We also asked them to comment on which features of the interface they liked or disliked, and to suggest

improvements.

5.3.4 Interface comparison

Finally, to get a more direct sense of what aspects of each approach were useful, we showed participants an

alternate interface. To avoid fatiguing participants and training e�ects, we did not ask them to complete the
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assignments and tasks again; instead we asked them to brie�y consider (using assignments 1 and 3 as examples)

whether the tasks would be easier or harder to complete with the second interface, and to explain which

features of both approaches they liked or disliked. Because our pilot study suggested animation was most

di�cult to use, we focused this part of the study on comparing side-by-side and di�.

5.4 Scoring criteria

Weevaluated participants’ responses by comparing them to an “answer key” created by anUrsaMinor developer

who had previously used the request-�ow-comparison tool to diagnose the real problems used in this study.

Tasks 1–3, which asked for multiple answers, were scored using precision/recall. Precisionmeasures the fraction

of a participant’s answers that were also in the key. Recall measures the fraction of all answers in the key

identi�ed by the participant. Note that it is possible to have high precision and low recall—for example, by

identifying only one change out of ten possible ones. For task 3, participants who marked any part of a correct

group were given credit.

Tasks 4 and 5 were graded as correct or incorrect. For both, we accepted multiple possible answers. For

example, for task 4 (“identify what changes represent”), we accepted an answer as correct if it was close to one

of several possibilities, corresponding to di�erent levels of background knowledge. In one assignment, several

students identi�ed the changes as representing extra cache misses in the a�er graph, which we accepted. Some

participants with more experience explicitly identi�ed that the a�er graph showed a read-modify write, a

well-known bane of distributed storage system performance.

We also captured completion times for the �ve quantitative tasks. For completion times as well as preci-

sion/recall, we use the Kruskal-Wallis test to establish di�erences among all three interfaces, then pairwise

Wilcoxon Rank Sum tests (chosen a priori) to separately compare the animation interface to each of side-

by-side and di�. We recorded and analyzed participants’ comments from each phase as a means to better

understand the strengths and weaknesses of each approach.

5.5 Limitations

Our methodology has several limitations. Most importantly, it is di�cult to fully evaluate visualization

approaches for helping developers diagnose problems without asking them to go through the entire process of

debugging a real, complex problem. However, such problems are o�en unwieldy and can take hours or days

to diagnose. As a compromise, we designed our tasks to test whether our interfaces enable participants to

understand the gist of the problem and identify starting points for diagnosis.

De�ciencies in our interface implementations may skew participants’ notions of which approaches work best

for various scenarios. We explicitly identify such cases in our evaluation and suggest ways for improving our

interfaces so as to avoid them in the future.

We stopped recruiting participants for our study when their qualitative comments converged, leading us to

believe we had enough information to identify the useful aspects of each interface. However, our small sample

size may limit the generalizability of our quantitative results.

Many of our participants were not familiar with statistical signi�cance and, as such, were confused by the

wording of some of our tasks (especially tasks 1 and 2). We discuss this in more detail in the Future Work

section.
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Our participants skewed young and male. To some extent this re�ects the population of distributed-systems

developers and students, but it may limit the generalizability of our results somewhat.

6 User study results

No single approach was best for all users and types of graph di�erences. For example, side-by-side was

preferred by novices, and di� was preferred by advanced users and experts. Similarly, where side-by-side and

di� proved most useful for most types of graph di�erences, animation proved better than side-by-side and di�

for two very common types. When one of our participants (PD06) was asked to pick his preferred interface,

he said, “If I had to choose between one and the other without being able to �ip, I would be sad.” When asked

to contrast side-by-side with di�, SS01 said, “�is is more clear, but also more confusing.” Section 6.1 compares

the approaches based on participants’ quantitative performance on the user study tasks. Sections 6.2 to 6.4

describe our observations and participants’ comments about the various interfaces and, based on this data,

distill the approaches best suited for speci�c graph di�erence types and usage modes.

6.1 Quantitative results

Figure 5: Completion times for all participants.�e box-

plots show completion times for individual tasks, aggregated

across all assignments.

Figure 5 shows completion times for each of the three

interfaces. Results for individual tasks, aggregated

over all assignments, are shown (note that assign-

ments, as shown in Table 2, may contain one or mul-

tiple types of di�erences). Participants who used ani-

mation took longer to complete all tasks compared to

those who used side-by-side or di�, corroborating the

results of several previous studies [4, 10, 29]. Median

completion times for side-by-side and di� are simi-

lar for most tasks. �e observed di�erences between

animation and the other interfaces are statistically sig-

ni�cant for task 1 (“identify statistically signi�cant

changes”)1 and task 4 (“what changes represent”).2

�e observed trends are similar when students and

professionals are considered separately, except that

the di�erences between animation and the other in-

terfaces are less pronounced for the latter.

Figure 6a shows the precision, recall, and accuracy results for each of the three interfaces. Our results are not

statistically signi�cant, but do contain artifacts worth describing. Overall, both side-by-side and di� fared

well, and their median scores for most tasks are similar for precision, recall, and accuracy. Notable exceptions

include recall for task 2 (“�nd other latency changes”) and recall for task 3 (“identify structural changes”), for

which di� performed better. Overall, both di� and animation exhibit much higher variation in scores than

side-by-side. �ough animation’s median scores are better than or comparable to the other interfaces for tasks

3, 4, and 5, its scores are worse for precision for task 1 and recall for task 2.

1
p-value=0.03 (side-by-side vs. anim), p-value=0.02 (di� vs. anim)

2
p-value=0.003 (side-by-side vs. anim), p-value=0.03 (di� vs. anim)

12



(a) Precision, recall, and accuracy scores for all participants

(b) Precision, recall, and accuracy scores for professionals (c) Precision, recall, and accuracy scores for students

Figure 6: Precision/recall scores.�e boxplots show precision, recall, and accuracy scores for individual tasks, aggre-

gated across all assignments.

Figures 6b and 6c show the results broken down by participant type. No single interface yielded consistently

higher median scores for either group. �ough professionals performed equally well with di� and side-by-side

for many tasks, their scores with di� are higher for tasks 2 and 3 and higher with side-by-side for task 4.

Students’ median scores were higher with side-by-side for task 2 and task 5 and higher for recall with di� for

task 1 and task 3. Also, students’ di� scores exhibit signi�cantly more variation than side-by-side, perhaps

because not all of themwere familiar with text-based di� tools, which are o�en used by professionals for source

code-revision control. For professionals, animation’s median scores are almost never higher than side-by-side.

Students had an easier time with animation. For them, animation’s median scores are higher than di� and

side-by-side for task 2 (precision), task 4, and task 5. Animation’s median score is higher than side-by-side for

task 3 (recall).

Figure 7 shows likert-scale responses to the questions “I am con�dent my answers are correct” and “�is

interfacewas useful for answering these questions.” Di� and side-by-sidewere tied in the number of participants

that strongly agreed or agreed that they were con�dent in their answers (5 of 9, or 56%). However, where one

side-by-side user strongly agreed, no di� users did so. Only one animation user (of eight; 12.5%) was con�dent

in his answers, so it is curious that animation was selected as the most useful interface. We postulate this is

because participants found animation more engaging and interactive than the other interfaces, an e�ect also

noted by other studies [10, 29].
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Figure 7: Likert responses, by condition. Each participant was asked to respond to the statements “I am con�dent my

answers are correct” and “�e interface was useful for answering these questions.”

6.2 Side-by-side

Participants liked the side-by-side interface because it was the most straightforward of the three interfaces. It

showed the true response times (i.e., overall latencies) of both graphs, enabling participants to quickly get a

sense of how much performance had changed. Correspondence lines clearly showed matching nodes in each

graph. Also, this interface allowed independent analyses of both graphs, which our professional participants

said was important. Comparing di� to side-by-side, PD08 said “it’s [side-by-side] a lot easier to tell what the

overall latency is for each operation. . . . [the nodes are] all put together without any gaps in the middle.” SD09

said, “With [side-by-side], I can more easily see this is happening here before and a�er. Without the dashed

lines, you can’t see which event in the previous trace corresponds to the a�er trace.” �ese sentiments were

echoed by many other participants (e.g., SD06, SD07, PD07).

Our side-by-side interface su�ers from two key drawbacks. First, it is di�cult to identify di�erences when

before/a�er graphs di�er signi�cantly because corresponding ones become further apart. PS01 complained

that “the points that should be lining up are getting farther and farther away, so it’s getting more di�cult to

compare the two.” PD06 complained that it was more di�cult to match up large changes since the matching

counterpart could be o� the screen. Similar complaints were voiced by other participants (e.g., PS02, SS02,

PS04). Adding the ability to pin one graph relative to another to our side-by-side implementation would

limit vertical distance between di�erences. However, horizontal distance, which increases with the number of

concurrent threads in each request, would remain.

Second, when nodes are very close to another, correspondence lines became too cluttered and di�cult to use.

�is led to complaints from several participants (e.g., PS03, SS01, SS03, PA13). To cope, SS03 and PS05 gave up

trying to identify corresponding nodes between the graphs and instead identi�ed structural di�erences by

determining if the number of correspondence lines on the screen matched the number of nodes visible in

both the before and a�er graph. Modifying our side-by-side interface to draw correspondence lines only at

the start of a contiguous run of corresponding nodes would help reduce clutter, but would complicate edge

latency comparisons.

Based on participants’ comments above and our observations, Table 3 shows the use cases for which we believe

side-by-side is the best of the three approaches. As shown in Table 3, side-by-side’s simple approach works

best for aiding comprehension. However, due to potential for horizontal skew and clutter, it is not the best

approach for identifying any type of di�erence.

6.3 Diff

Participants’ comments about our di� interface were polarized. Professionals and more advanced students

preferred di� ’s compactness, whereas others were less decisive. For example, PS03 claimed di� ’s compact
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representation made it easier for him to draw deductions. Indeed, unlike side-by-side, di� always shows

di�erences right next to each other, making it easier to �nd di�erences when before and a�er graphs have

diverged signi�cantly. Also, by placing di�erences right next to each other, di� allows for easier identi�cation

of smaller structural and edge latency changes. In contrast, SS04 said, “[Side-by-side] may be more helpful

than [di�], because this is not so obvious, especially for structural changes.”

�ough participants rarely made explicit comments about �nding di� di�cult to use, we found that di�

encouraged incorrect mental models in student participants. For example, SD08 and SD09 confused structural

di�erences within a single thread of activity with a change in the amount of concurrency. It is easy to see why

participants might confuse the two, as both are represented by fan-outs in the graph.

We postulate that participants’ comments about di� vary greatly because its compact representation requires

more knowledge about so�ware development and distributed systems than that required by the more straight-

forward side-by-side interface. Additionally, many of our professionals are familiar with di� tools for text,

which would help them understand our graph-based di� technique more easily.

Since it places di�erences close together, Table 3 lists di� as the best approach for showing edge latency changes.

However, because it encourages poor mental models for many structural di�erences, it is not the best approach

for showing concurrency changes and intra-thread event changes.

6.4 Animation

Our participants o�en struggled when using our animation interface. With this interface, all di�erences

between the two graphs appear and disappear at the same time. �is combinedmovement confused participants

when multiple types of changes were present in the same thread of activity, an e�ect also noticed by Ghani et

al. [13]. In such cases, edge latency changes would cause existing nodes to move down and, as they were doing

so, trample over nodes that were fading in or out due to structural changes. PA11 complained, “Portions of

graphs where calls are not being made in the a�er trace are fading away while other nodes move on top of it

and then above it . . . it is confusing.” �ese sentiments were echoed by many other participants (e.g., SA11,

PA12, SA10, PA13).

�e combined movement of nodes and edges also prevented participants from establishing static reference

Comprehension Di�erence identi�cation

Shows overall

latency change

Supports independent

analyses

Concurrency

change

Intra-thread

event change

Edge latency

change

Intra-thread

mixed

Side 3 3

Di� 5 3

Anim 3 3 3 5

Table 3: Most useful approaches for aiding overall comprehension and helping identify the various types of graph
di�erences contained in the user study assignments. �ese results are based on our qualitative observations and

participants’ comments. A 3 indicates the best approach for a particular category, whereas a 5 indicates an approach

poorly suited to a particular category. Side-by-side is best for aiding overall comprehension because of its straightforward

presentation. Di� is best for showing edge latency changes because it places such changes right next to one another.

Animation is best for showing structural di�erences due to extra concurrency and event changes within a single thread

due to the blinking e�ect it creates. Due to their various drawbacks, no single approach is best for showing mixed

di�erences within a single thread of activity.
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points for gauging the impact of a given di�erence. SA10 told us: “I want to. . .pick one node and switch it

between before and a�er. [But the same node] in before/a�er is in a di�erent location completely.” SA12 said

he did not like our animation interface because of the lack of consistent reference points. “If I want to measure

the size of an edge, if it was in the same position as before. . . then it’d be easy to see change in position or length.”

Staged animation, in which individual di�erences are animated in one at a time, could reduce the trampling

e�ect mentioned above and allow users to establish reference points [17]. However, signi�cant research is

needed to understand how to e�ectively stage animations for graphs that exhibit both structural and edge

length changes. Many graph animation visualizations do not use staging and only recent work has begun to

explore where such basic approaches fail [13].

Another negative aspect of animation (staged or not) is that it suggests false intermediate states. As a result,

SA13 interpreted our interface’s animation sequence as a timeline of changes and listed this as a feature he

really liked. PA13 told us we should present a toggle instead of a slider so as to clarify that there are only two

states.

Despite the above drawbacks, animation excels at showing structural di�erences—i.e., a change in concurrency

or change in intra-thread activity—in graphs without nearby edge latency changes. Such changes do not create

the trampling e�ect stated above. Instead, when animated, distinct portions of the graph appear and disappear,

allowing users to identify changes easily. For one such assignment, both PA11 and PA12 told us the structural

di�erence was very clear with animation. Other studies have also noted that animation’s e�ectiveness increases

with separation of changed items and simultaneous appearance/disappearance (e.g., [4, 13]).

Due to the blinking e�ect it creates, Table 3 lists animation as the best approach for showing di�erences due to

concurrency changes and intra-thread event changes. �e potential for trampling means it is the worst of the

three for showing both latency and structural di�erences within a single thread of activity.

7 FutureWork

Comparing these three interfaces has yielded insights about which approaches are useful for di�erent circum-

stances. Performing this study also produced a number of directions for improving each of our interfaces.

Here we highlight a few that participants found important and that are complex enough to warrant further

research.

Addressing skew, horizontal layout, and trampling: Many users struggled with the increasing skew in the

side-by-side layout, as well as the inability to quickly trace a correspondence from one graph to another

(e.g., PS02, SA10, and PS05). �e animation interface, which produces a trampling e�ect as all changes are

animated together, also made it di�cult to focus on individual di�erences. A future interface might anchor

the comparison in multiple or user-selectable locations to mitigate this problem. However, there are subtleties

involved in choosing and using anchor points.

One option, as requested by most of our participants (e.g., PA12 and PD08), is to anchor the comparison

at a user-selectable location. Another is to re-center the graph as users scroll through it. However, both

techniques distort the notion that time �ows downward, and neither would reduce horizontal distance or clutter.

Approaches that restructure the comparison to minimize the horizontal distance between corresponding

nodes are an interesting opportunity.

For the animation technique, anchoring in multiple locations could be achieved by staging changes. Questions

of ordering immediately arise: structural changes might be presented before, a�er, or between latency changes.

�e choice is non-obvious. For example, it is not clear whether to animate structural and latency changes
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together when the structural change causes the latency change or even how to algorithmically determine such

cases (see Figure 1 for an example).

Semantic zooming and context: Even when they were navigable, graphs with hundreds of nodes posed an

obstacle to understanding the output at a high level. While the straightforward approach to zooming we

implemented for this study allows the entire graph to be seen, it does not provide intuition into the meaning of

the graph when zoomed out. �erefore, users needed to scroll through graphs while zoomed in, a complaint

for multiple users (e.g., SD05, SA10).

Further work is needed to investigate options for a higher-level view of the graph that could be shown instead.

Some options for semantic zooming based on such a view include coalescing portions of the comparison that

are the same in both graphs, or grouping sequences of similar operations (mentioned by several participants,

including SD09, PS02, and PD09). Determining which portions to coalesce and de�ning “similar” operations

are nontrivial problems, and solutions may require user guidance or automated techniques to learn meaningful

groupings.

Exploiting annotation: Annotation was used in this study to record answers, but has the potential to be

a valuable tool for collaborative debugging. Developing and debugging a large system involves multiple

components built and maintained by di�erent parties, many without knowledge of the internal workings

of components that might contain a problem. Users could make annotations for other developers or for

documentation. In fact, several professional participants from Google listed our annotation mechanism as

a strength of the interfaces (e.g., PA13, PS04, and PD08). PS04 said “[I] really like the way you added the

annotation. . . .So other people who are later looking at it can get the bene�t of your analysis.” Supporting

cooperative diagnosis work with an annotation interface, such as that used in Rietveld [27] for code reviews, is

an interesting avenue of future work.

Matching automation to users’ expectations: Like several other diagnosis techniques, request-�ow compari-

son uses statistical signi�cance as the bar for automatically identifying di�erences, because it bounds wasted

developer e�ort by limiting the expected number of false positives. However, many of our participants did

not have a strong background in statistics and so mistook “statistically signi�cant” to mean “large changes

in latency.” �ey did not know that variance a�ects whether an edge latency change is deemed statistically

signi�cant. �is generated confusion and accounted for lower than expected scores for some tasks. For

example, some participants (usually students) failed to di�erentiate between task 1 and task 2, and a few

students and professionals refused to mark a change as having the most impact unless it was highlighted

in red (as statistically signi�cant). Trying to account for why one particularly large latency change was not

highlighted, SA10 said, “I don’t know what you mean by statistically signi�cant. Maybe it’s signi�cant to me.”

�ese concerns were echoed by almost all of our participants, and demonstrate that automation must match

users’ mental models. Statistics and machine learning techniques can provide powerful automation tools, but

to take full advantage of this power—which becomes increasingly important as distributed systems become

more complex—developers must have the right expectations about how they work. Both better techniques

and more advanced training may be needed to achieve this goal.

Extending to other domains: While we applied the three interfaces to request-�ow graphs, similar graphs

are also compared in other areas of systems diagnosis (e.g., call graph comparison [8]). We believe the

design guidelines we identi�ed for future diagnosis visualizations can help guide approaches to understanding

the output of these diagnosis tools. Beyond diagnosis, the need to compare directed acyclic graphs to �nd

di�erences is common across many domains. Examples include comparing business-process graphs [2]

and comparing general work�ows [31]. We expect that many of the insights about the relative strengths of

side-by-side, di�, and animation could inform work in these areas.
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8 Summary

For tools that automate aspects of problem diagnosis to be useful, they must present their results in a manner

developers �nd clear and intuitive. �is paper investigates improved visualizations for request-�ow comparison,

one particular automated problem localization technique. We contrast three approaches for presenting its

results through a 26-participant user study, and �nd that each approach has unique strengths for di�erent

usage modes, graph di�erence types, and users. Moving forward, we expect that these strengths, and the

research directions inspired by their weaknesses, will inform the presentation of request �ows and related

graphs.
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