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Abstract

Modern automotive electronic control systems are distributed, networked embedded systems. Diagnostic routines implemented
on individual components cannot adequately identify the true cause of anomalous behavior because their view is restricted to
component-local information. A growing trend in diagnostics research for these systems is to use system-level approaches to
diagnose anomalous behavior and provide a consistent, global view of the system’s health. Current approaches are typically
motivated by a desire to improve either off-line maintenance or run-time safety.
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1 Introduction

Automotive systems are safety-critical and are required to be highly fault-tolerant in operation. Automotive
systems consist of mechanical, hydraulic, software and hardware components. There is a staggering amount
of embedded computing within automotive systems. For instance, current GM vehicles contain dozens of
microprocessors and dozens of megabytes of software.

Software-intensive distributed electronic control systems are increasingly being used in the automobile
industry to provide convenience and safety features to vehicle drivers and passengers, with increasing levels
of automation and control authority. A growing trend is to assist the driver in maintaining safe control over
the motion of the vehicle under a variety of conditions that include congested traffic conditions, adverse
weather and road conditions, varying states of health of vehicle equipment, and varying skill levels of
drivers. Previously such driver assistance has been provided in the form of information or warnings to
the driver, but increasingly such assistance will be provided by actively manipulating actuators that control
vehicle longitudinal acceleration and deceleration, lateral position, and vertical displacement. The long term
trend is towards partial or even fully autonomous operation of a single vehicle, or even of fleets of vehicles.
One example of autonomous vehicle operation is the BOSS vehicle developed for the recent DARPA Urban
Challenge [57].

These advanced convenience and safety features must be designed to tolerate faults to ensure the safety
of the driver, passengers, and surrounding people and objects such as pedestrians and other vehicles. Typ-
ically a systematic safety analysis is conducted offline during the design phase, with the vehicle not being
operational, to evaluate both the severity and likelihood of the consequences of possible faults. Faults lead-
ing to potentially undesirable consequences must be detected, and the appropriate mitigating action must
be taken to ensure safety. Frequently the mitigating actions are categorized as either being either fail-safe
(meaning that the system is shut down into a safe state) or fail-operational (meaning that the system must
maintain at least some level of continued functionality to ensure safety, possibly with degraded perfor-
mance). In either case, before the mitigating action can be taken, the system must be capable of detecting
that the fault is present in the first place. Furthermore, this detection of faults must take place within a spec-
ified amount of time (referred to as the detection latency), to allow enough time for the mitigating action
to maintain safe dynamic behavior of the vehicle motion, and with specified coverage (referred to as the
detection coverage), for a fault that is not detected can generally not be mitigated!

Failure diagnosis goes beyond fault detection by providing extended information on the underlying
cause of a system failure. Failure diagnosis is distinguished from fault detection in that detection aims
mainly to determine that some fault occurred, while failure diagnosis might reveal what kind of fault oc-
curred, what component(s) is/are responsible, and what caused the fault. Depending on the goals of the
specific failure diagnosis strategy, this extended information could be useful to engineers during design, in-
tegration and testing; technicians during service; and at runtime to allow for more robust failure mitigation
mechanisms.

Most of the work in the area of failure diagnosis for automotive systems has focused on offline diag-
nostics performed by service technicians or mechanics in the field, often to discover which parts ought to
be replaced and/or sent back for repair or warranty claims. Even Diagnostic Trouble Codes (DTCs), though
detected online during vehicle operation, are intended for use by a service technician after being read out
using a scan tool for the purpose of offline maintenance. Warranty Week reports that warranty costs for
automotive manufacturers can be prohibitively high, and can arise from multiple issues: faulty parts, invalid
claims, customer dissatisfaction, part replacements, etc. For just the three passenger-car companies, Gen-
eral Motors, Ford and DaimlerChrysler, the total warranty claims topped $15.34 billion, on sales of some
20.8 million units in 2006 [61]. Given these fairly high costs, it seems reasonable that most of the effort on
failure diagnosis has been spent thus far on offline troubleshooting techniques to reduce the number/cost of
warranty claims and part replacements.
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However, autonomous driving vehicles challenge this perspective. These vehicles must continue to
operate, keeping the occupants of the vehicle safe under all circumstances, while being able to adapt to
adverse and unforeseen condition. A study of BOSS, the DARPA Urban Grand Challenge winner, reveals
that some failure modes of operation were seen at runtime that could not be tested for or anticipated at
design time [8], simply because of emergent road conditions, environmental factors, etc. Autonomous
driving systems can simply not afford offline diagnostics; they must support online diagnostic capabilities
to quickly get to the root-cause of any anomalous situation, to understand whether the anomaly represents
a failure or an emergent (but safe) condition, and to adapt the system accordingly, all the while preserving
safety, fault-tolerance and continuous operation. There is another challenging aspect to online diagnosis for
automotive systems — today’s offline diagnosis is performed by expert service technicians who have hours
of experience to enable them to diagnose the root-cause in the field, albeit on a non-operational vehicle.
Autonomous driving systems must be able to perform such diagnostic procedures, completely unassisted
by technicians, without access to years’ worth of field data or prior diagnostic experience. Building such
self-diagnosing, self-repairing autonomous driving systems is a challenge indeed.

1.1 Outline and Scope

This paper surveys the technical literature for failure diagnosis approaches suitable for the emerging class of
distributed, embedded control-systems for convenience, safety, and autonomous operation of automobiles.
This survey will include the relevant fault models, failure effects or manifestations, fault injection techniques
used in developing and validating the safety system, requirements for failure diagnosis, and finally the actual
failure diagnosis methods themselves.

This survey addresses both the online failure diagnosis approaches necessary to maintain the safe op-
eration of the vehicle at operation time, as well as the offline failure diagnosis approaches suitable for
maintenance of the vehicle in a service facility. Also, this survey focuses on faults in the embedded “con-
trol system” itself (the computers, communication links, memories, software, sensors, and actuators that
implement the convenience, safety, and autonomous driving features), rather than faults in the mechanical
objects being controlled (often referred to as the “plant”). More importantly, this survey provides a candid
and critical look at the current state-of-the-art, highlighting where the literature or field practices fall short of
accomplishing the goals of safety-critical autonomous driving systems, and where the research challenges
remain.

2 Background

In this section, we will explain some of the terms that are central to our discussion of failure diagnosis. Our
purpose here is not to develop a new or comprehensive taxonomy, but to provide clarity for the remainder
of this survey.

2.1 Automotive architectures

Automotive systems consist of mechanical, hydraulic, software and hardware components that implement
specific vehicle functions. This paper focuses exclusively on the embedded computing architectures that
provide the foundation for vehicle control systems. Such architectures encompass distributed control and
information systems implemented on multiple Electronic Control Units (ECUs) interconnected by serial com-
munication busses, together with sensors and actuators locally connected to the I/O ports of the ECUs or to
sensor/actuator busses. These architectures are typically highly distributed, for two primary reasons: (1) the
failure of one component allows functions implemented on other components to continue operating, and (2)
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proximity to the sensors providing input information, and actuators being controlled, minimizes wire length
and wire-harness complexity.

Frequently automotive control systems are categorized as either event-based or time-based. Infre-
quently occurring or sporadic functions, such as locking or unlocking of doors or turning headlamps or
turn-signals on or off, are event-based and accordingly communicate information over serial busses only
when variables change state, while continuously operating functions such as steering control or fuel injector
control are time-based and accordingly communicate continuously varying information at periodic intervals.

The various functions in an automobile are often categorized into domains such as the powertrain do-
main (control of engine and transmission), the chassis domain (control of steering, braking, and suspension),
the safety domain (collision warning and mitigation systems), the body domain (control of door locking and
unlocking, interior and exterior lighting, windshield washing and wiping, and heating, ventilating, and air
conditioning), and infotainment and telematics. Infotainment is the combination of information and en-
tertainment, and includes radios and video entertainment systems, while telematics refers to the combina-
tion of telecommunications and computing, such as GMs OnStar system that provides various navigation,
concierge, and emergency services.

Because the primary purpose of a vehicle is to provide transportation from one location to another, the
most critical systems from a safety and dependability perspective are the control-oriented domains (power-
train, chassis, active safety, and to a lesser extent, body), hence they will be the focus of this survey. The
control-oriented domains provide a diagnostic connector used for downloading DTCs and for uploading of
software and calibration updates. Due to the criticality of the control-oriented domains, a gateway with a
firewall is usually used to isolate them from the infotainment and telematics domains to prevent unauthorized
access from public sources.

As mentioned earlier, automotive control systems are highly distributed. Multiple ECUs, typically 20–60
of them in mid-level or premium vehicles, communicate with each other over automotive serial communi-
cation protocols such as LIN, CAN, and FlexRay. Local Interconnection Network (LIN) is a slow speed (10
Kbps) master-slave bus used to connect multiple smart sensors or actuators, such as switches and motors
(the slave nodes), to a host ECU that initiates and controls the communication schedule (the host node).
Controller Area Network (CAN) is a medium-speed (30 Kbps–1 Mbps) peer-to-peer asynchronous bus in
which any node may attempt to transmit at any time, and collisions are resolved by a bit-level Carrier Sense
Multiple Access / Collision Detection (CSMA/CD) priority scheme. FlexRay is a fast (10 Mbps) synchronous
peer-to-peer bus with a time-triggered Time Division Multiple Access (TDMA) access scheme. FlexRay has
some similarities, and also some differences, with Time-Triggered Protocol/Class-C (TTP/C). A FlexRay
communication cycle may contain both a static segment consisting of statically scheduled time slots, and
a dynamic segment consisting of dynamically arbitrated minislots, while a TTP/C TDMA round contains
only statically scheduled TDMA slots. Both FlexRay and TTP/C have the option of using either one or two
communication channels. If present, the second communication channel may be used either for additional
bandwidth or for redundancy. TTP/C includes a membership service as part of the protocol, while FlexRay
leaves any membership service to the application layer. Another difference between FlexRay and TTP/C is
that FlexRay allows a given node to transmit in more than one slot, while TTP/C restricts a given node to
transmitting in only one slot. The static slots in FlexRay must all be configured to have the same duration,
while the TDMA slots in TTP/C are allowed to be configured to have different durations. Table 1 provides a
high level comparison of the characteristics of LIN, CAN, FlexRay and TTP/C.

A typical automotive architecture may contain multiple LIN,CAN, and FlexRay networks with gate-
ways between them. LIN and CAN always use linear bus topologies, while FlexRay may use either a linear
bus or a star topology, or even combinations of the two. A typical generic overall vehicle computing and
communication topology is depicted in Figure 1.
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Figure 1: A generic automotive computing and communication topology.

Characteristic LIN CAN FlexRay &
TTP/C

Network master-slave peer-to-peer
(broadcast)

peer-to-peer
(broadcast)

Topology linear bus linear bus star or linear bus
Synchronization synchronous

(master-slave)
asyncronous
(CSMA/CD)

synchronous
(TDMA)

Scheduling static (design-
time)

dynamic (run-
time)

static (design-
time)

Max Bit Rate 20 Kbps 1Mbps 10 Mbps
Max Msg Payload Size 8 bytes 8 bytes 254 bytes
Redundancy 1 channel 1 channel 1 or 2 channels

Table 1: A high level comparison of the characteristics of LIN, CAN, and FlexRay/TTP.

2.2 Diagnosis & Fault Tolerance

A failure is an event that occurs when a system does not behave according its specification. Failures result
from faults and errors. A fault is simply a latent defect or abnormal condition; a faulty component contains
such a defect or is subject to such a condition. Faults can cause errors, which are anomalies in the internal
state of a system. Errors lead to failures when the erroneous state becomes exposed externally as erroneous
output. Error propagation is the process by which errors are transformed into failures, which can then
manifest as faults elsewhere in the system. Containment regions can be used to limit error propagation [33].
Components in a Fault Containment Region (FCR) are assumed to be protected from faults external to
the region (i.e., a single fault will not directly cause simultaneous errors in two FCRs). However, erroneous
data can be propagated from one FCR to another, which results in further faults and errors [33]. An Error
Containment Region (ECR) prevents this by masking erroneous data. The relationship between faults,
errors and failures is captured by the Fault-Error-Failure chain [6].

Common-cause and common-mode failures are those that can affect multiple units of a fault-tolerant
architecture at once. Common-cause failures result from a single fault, such as mechanical destruction of
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multiple computers, thermal problems, Electromagnetic Interference (EMI), or other types of interference.
Common-mode failures are caused by multiple, correlated faults that can occur even though the architec-
tural units were designed with diverse design teams and use diverse component types and technologies. This
is because design engineers are educated in a similar way even across different universities, and they use
similar development processes and tools.

Consider a vehicle that includes a brake-by-wire feature. One perspective might view the ECU and
sensors that calculate the position of the brake pedal as a system. In this system, a faulty sensor causes
erroneous position values to be calculated by the ECU; the ECU fails when it outputs those erroneous values.
Now assume a perspective that views the entire brake-by-wire feature as a system, with each ECU as a
discrete component. The failed brake-sensor ECU provides erroneous position values to the brake-controller
ECU. The brake-controller ECU uses faulty input to calculate erroneous brake pressure values, and a failure
occurs when the brakes apply an incorrect pressure.

As a technique for fault tolerance, diagnosis determines the type and location of a fault that led to
an error [6]. This implies an investigation with two thrusts. Localization identifies the faulty component.
Discrimination identifies the type of fault(s) present, with respect to a given fault model (e.g., transient
vs. intermittent faults, internal vs. external faults, hardware vs. software faults, etc). Each thrust can
be associated with a different aspect of fault tolerance. Localization supports the isolation of the faulty
component so that its effect(s) on the system can be contained. Discrimination can inform the selection
of an appropriate recovery action based on the fault type. Of course, these associations are not orthogonal
and are, in fact, often mutually supportive. For example, after localizing a faulty component, it could be
selectively isolated based on whether the identified fault is transient or permanent.

Another related concept is root-cause analysis, which identifies the specific defect(s) or condition(s)
ultimately responsible for a failure. Root-cause analysis can be distinguished from diagnosis in that root-
cause analysis reaches for the ultimate origin of the Fault-Error-Failure chain, while diagnosis typically has
a more limited scope (e.g., localization to a specific FCR). This makes root-cause analysis valuable for fault
prevention and removal, which takes place during the development and maintenance phases of the system’s
life-cycle. However, because our work is mostly concerned with run-time fault-tolerance techniques, the
remainder of this paper will focus on diagnosis.

2.3 Characterizing Faults

Any approach to safety or fault tolerance must begin with a categorization of the faults to be detected and
handled. Such a classification is generally referred to as the fault model, fault taxonomy or fault hypothesis.
These terms are often used interchangeably, which can result in confusion among researchers with different
backgrounds. The purpose of this section is to distinguish and clarify these terms.

A fault taxonomy provides a basis for classifying fault types, usually with a hierarchical structure. A
comprehensive fault taxonomy that emerged from decades of research in dependable computing [5, 35, 36]
is summarized in [6]. Faults are classified according to their phase of creation (development vs. oper-
ational), system boundary (internal vs. external), cause (natural vs. human-made), dimension (hardware
vs. software), objective (malicious vs. non-malicious), intent (deliberate vs. non-deliberate), capability
(accidental vs. incompetence), and persistence (permanent vs. transient).

Starting with this application-independent taxonomy, a more specific classification must be derived for
a particular domain or industry that enumerates the faults particular to their class of systems. For example, a
description of fault types for integrated safety systems within the automobile industry was recently created
by the Electronic Architecture and System Engineering for Integrated Safety Systems (EASIS) Consortium
[19]. The broad categories of faults in the EASIS taxonomy are CPU faults, sensor faults, actuator faults,
power supply faults and communication system faults. Within each broad category, detailed lists of specific
faults are enumerated. For example, the CPU faults category includes calculation errors, value errors,
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program flow errors, interrupt errors, timing errors, RAM/ROM cell errors, RAM/ROM addressing errors,
I/O interface circuit errors, and scheduling errors.

The preceding taxonomies facilitate discussion of which faults should be avoided in a particular system
through prevention and/or removal. However, developing specific mechanisms to tolerate faults through
detection and recovery requires knowing how the faults affect the system in question. Classification based
on the behavior that faulty components exhibit upon failure (i.e., the failure semantics [16]) provides such
information. Weak semantics place fewer restrictions on the possible behaviors than strong semantics, so
more robust – and expensive – mechanisms are required to tolerate them. The strongest class includes
components that halt permanently and no longer produce any output (crash failures). Omission failures
occur when a component fails to perform a task, but otherwise continues operating. A component that
exhibits timing failures produces correct results, but delivers them outside of a specified time window. On
the other hand, a component that exhibits value failures produces incorrect results. Byzantine components
may exhibit arbitrary behavior, representing the weakest failure semantics.

A related way to classify faults is according to their detectability [38] and communication patterns [55,
59]. The former grouping [38] classifies faults as malicious or benign. Benign faults are locally detectable
by all non-faulty components, while malicious faults are not. Malicious faults can be either symmetric
or asymmetric, depending on whether all correct nodes receive the same faulty output [55]. In this case,
benign faults represent the strongest semantic class, while asymmetric-malicious faults are equivalent to the
weakest (i.e., Byzantine) fault class.

A fault model captures information that allows faults to be reasoned about in a systematic way. In
dependability and fault-tolerance literature, the fault model is generally given by a fault hypothesis that
specifies assumptions on the number and types of faults that a given system is expected to handle [32]. For
example, the EASIS Consortium makes two key assumptions [19]. First, it is assumed that the system is
fault-free at the time of initial delivery (i.e., most functional or design faults have already been removed
from the system). Second, it is assumed that only one independent fault occurs at a time. This is often called
the single-fault assumption, and is a common assumption used in the automobile industry. Fault models that
assume all faults belong to a strong (e.g., benign) fault class risk being overly optimistic. On the other hand,
pessimistically assuming strictly Byzantine faults can lead to unnecessary expense. Hybrid fault-models,
such as the Customizable Fault/Error Model (CFEM) [59], aim to be more flexible by enabling assumptions
to be made based on combinations of fault types.

In the field of automotive diagnostics and health management, the fault model is given by a mapping
between the known failure modes in a system and the available tests / symptoms. This mapping is often
represented in a Dependency Matrix (D-MATRIX) (see Figure 2). Such a fault model can be used to identify
the fault source, as well as aid in the study of the diagnostic coverage of various vehicle subsystems. Using
the fault model, ambiguity groups and test point placements can be optimally identified for expanding fault
coverage.

This type of fault model is the heart of an Integrated Vehicle Health Management (IVHM) system. Fault
reasoners that operate on the fault model can be used for rapid fault detection onboard as well as for the
generation of diagnostic strategies for helping technicians off board. The fault model is also conceived as
a valuable tool for studying existing diagnostic strategies in terms of coverage. Further improving of the
diagnosis strategy may be required by reducing ambiguity groups during the design stage. This can be
achieved by the addition of supplemental tests as needed to improve fault coverage. For a more detailed
discussion of fault models as they relate to reasoners, see [49, 50, 51].

A maintenance-oriented fault model proposed by [41] consists of a taxonomy based on hardware com-
ponent and software job boundaries, along with assumptions that specify a maintenance action for each
class. Internal faults originate within a boundary, while external faults originate outside of a boundary.
A third class, borderline, is introduced to capture faults that arise on the boundary itself (e.g., connectors
that interface components with the communication network). Faults are first classified according to compo-
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Symptoms
T1 T2 T3 T4 T5 T6 T7 T8 T9

Fa
ilu

re
m

od
es

C1 • • •
C2 • •
C3 •
C4 • •
C5 •
C6 • •
C7 • •
C8 • •
C9 • •
C10 •

Table 2: An example Dependency Matrix mapping symptoms to failure modes.

nent boundary (i.e., component-internal, component-external, and component-borderline). Given that jobs
run within the component boundary, component-internal faults can be further classified according to the
job boundary. These sub-categories are job-inherent, job-external and job-borderline. Component-internal
faults are assumed to be permanent, so replacement of either software or hardware is necessary. Job-inherent
and job-borderline faults require software updates, while job-external faults require replacement of the hard-
ware component. Component-borderline faults are also assumed to be permanent, and require inspection
or replacement of connectors. Component-external faults are assumed to be transient, so no maintenance
action is required.

3 Perspectives on Failure Diagnosis

The need for failure diagnosis can be seen from two perspectives: a maintenance-oriented perspective and
a safety-oriented perspective. The maintenance-oriented perspective is concerned with improving diagnosis
to aid service personnel and reduce warranty costs (see Section 3.1), in the field, often with the vehicle in
an offline mode. The safety-oriented perspective is concerned with supporting the overall dependability of
safety-critical systems (see Section 3.2), typically for the vehicle in an online mode.

3.1 Supporting Maintenance and Reducing the “No Fault Found” Phenomenon

Warranty Week reports that warranty costs for automotive manufacturers can be prohibitively high and can
arise from multiple issues, such as faulty parts, invalid claims, customer dissatisfaction, part replacements,
etc. For just the “big three” automakers (General Motors, Ford and DaimlerChrysler), the total warranty
claims topped $15.34 billion, on sales of some 20.8 million units in 2006 [61]. The most pernicious warranty
costs arise when parts are replaced to keep a vehicle operational, even though the root cause of the problem
has not actually been found and the replaced parts might not actually be to blame.

The term No Fault Found (NFF) refers to cases where a component is replaced, but upon subsequent
testing, the faulty condition leading to its replacement cannot be reproduced1. NFF incidents are very real in
industry. For example, studies report that for a single automotive component (an electronic ignition module),

1This phenomenon might also be referred to in the literature as Trouble Not Identified (TNI), No Trouble Found (NTF), Cannot
Duplicate (CND), etc.
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the number of replaced parts labeled as NFF varied from 25-80% over 4 model years [56]. This phenomenon
is not confined to the automotive industry, with statistics showing that NFF rates are fairly significant in the
aerospace industry as well [39]. About 50% of units replaced during the utilization and support stages in the
aerospace industry were classified as NFF [11, 28, 54]. The Air Transport Association identified more than
120 units with NFF rates in excess of 40% [11].

Automotive control systems are instrumented to produce DTCs that indicate errors and identify the
faulty subsystem, component or circuit. DTCs are set when internal error checking routines on individual
ECUs detect a faulty condition. DTCs can then be read out of the vehicle by service technicians using spe-
cial diagnostic tools. However, as the complexity of automotive systems has increased, DTCs and available
diagnostic tools have become less able to pinpoint the exact component responsible for a failure [20, 64].
Lacking accurate diagnostic information and under time pressure to resolve problems quickly, service tech-
nicians often resort to a “shotgun” troubleshooting approach, where multiple parts are replaced with the
hope that one of them will fix the problem [53]. At times, they may even eschew existing diagnostic tools
altogether, instead relying on instinct and trial-and-error [56]. In the worst case, faulty parts can remain in
the vehicle undiagnosed. In the best case, functional components will be replaced needlessly.

The wasteful replacement of functional components is one cause of high NFF rates and their associated
warranty costs. Another cause is laboratory testing that does not accurately reflect real-world operating
conditions [56, 62]. In such cases, returned components might actually be faulty, yet appear to operate
correctly when removed from the field to undergo laboratory testing. Manufacturers are often forced to
assume that field returns constitute real failures since there is no evidence to the contrary [56]. Because
brand loyalty and responsive customer service are important, car manufacturers pay the associated warranty
and part replacement costs, even in the NFF cases.

Failure diagnosis research could reduce the incidence of NFFs by discovering the true root-cause of
problems. This would lead to more accurate diagnostic tools, allowing more informed part replacements
and lowering warranty costs. Continual, online diagnosis could further reduce the incidence of NFFs by
identifying faults under actual operating conditions.

3.2 Supporting Run-Time Dependability in Safety Critical Systems

As mentioned earlier, automotive embedded control systems are being used to control increasingly critical
systems. Considering the increasing levels of control authority and automation, a failure of any component
in the system can have great impact on the stability of the motion of the vehicle.

For example, a brake-by-wire control system sends braking torque commands to an electromechanical
brake actuator in response to the driver pushing on the brake pedal. There is no mechanical or hydraulic
connection between the driver’s brake pedal and the brake calipers that squeeze the brake rotor to provide
braking torque. The path from the brake pedal to the brake calipers is entirely electrical and electronic,
consisting of a brake pedal position or force sensor connected to an ECU, which sends commands to the
electromechanical actuator. A fault in any element of this system must be detected and mitigated to avoid
loss of braking functionality. The mitigating action to be taken must provide some degree of braking perfor-
mance, whether full or degraded, and the specific action to be taken may depend on accurate diagnosis of
the fault that occurred.

Three important factors identified by [22] that are critical for achieving high dependability of vehicle
motion control systems are (1) high fault detection coverage, (2) rapid recovery from failures, or short failure
detection latency, and (3) and short time-to-repair periods. For the brake-by-wire example mentioned above,
any fault in the sensor, the computer, the actuator, or the wires or communication paths between them, must
be detected and diagnosed with high coverage so that the mitigating action can be taken with high reliability,
and the time available to perform this failure detection and diagnosis is very limited so that the braking
function can be restored as quickly as possible. Existing methods for diagnosing failures are often too broad
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to allow for quick, accurate diagnosis [64]. More accurate diagnosis could also help improve dependability
with respect to membership protocols [52].

Highly accurate and dependable diagnostic mechanisms with high detection coverage and low detection
latency will ensure the safety of the vehicle at run time, and could even slow the rise in complexity by
reducing the need for physically redundant components to maintain the safety of the vehicle [63]. It has
been proposed that a highly robust diagnosis framework could be used to ensure the safety of systems that
are composed of less robust subsystems [14].

Within the context of diagnosis, the violation of fail-silence assumptions can be seen as examples of
non-faulty nodes being misdiagnosed by a fault tolerance mechanism. Fault-injection experiments using
heavy-ion fault injection have shown fail-silence violations [52] and error propagation [1] in TTP/C. Fault-
injection experiments using hardware models have show that transient faults in the CAN Communication
Controller (CC) and Communication Network Interface (CNI) can result in masquerade failures, where a
faulty node “impersonates” a non-faulty node [47]. Experiments performed using modeled FlexRay con-
trollers have highlighted instances of error propagation in FlexRay bus and star topologies [17].

4 Existing Approaches to Failure Diagnosis

4.1 Model-based diagnosis

Control algorithm designers typically develop control algorithms that can tolerate faults in sensors, actuators,
and in the physical plant being controlled, but they normally assume that the computing hardware upon
which their control algorithms execute, and the serial communication links with which they communicate,
don’t fail. Furthermore, they normally assume that their control software itself is correct.

Classical automotive diagnosis, at least for continuous systems, is usually based on a control-theoretic
approach. In this approach, the control system to be diagnosed is modeled based on the physics of the
system, and this model of the system is executed at run-time along with the actual system. Control-theoretic
state observers are used to estimate state variables that cannot be measured directly. At run time, the actual
outputs of the control system are compared with the outputs predicted by the model. Residual values are
calculated as the differences between the actual and predicted outputs. Threshold values of the various
residuals, or of combinations of residuals, are correlated at design time with various anticipated faults from
the fault model. During run time, whenever such residual values are encountered that exceed predefined
thresholds, the corresponding fault is considered to have occurred.

The appeal of the analytical redundancy (model-based) approach lies in the fact that the existing redun-
dancy can simply be evaluated by information processing, without the need of additional instrumentation in
the physical system. However, there is a price to pay for this benefit, which arises from the need for a math-
ematical model for the system. . The weakness of this approach stems from the additional computational
expenditure that is required for on-line modeling and from the sensitivity of the diagnosis system to mod-
eling error that is not avoidable in practice. Several model-based diagnosis methods have been developed
[3, 24, 18, 46, 45]. The general approach of developing model-based diagnosis consists of the detection
of faults in the processes, actuators and sensors by using the relationship and the dependencies between
different measurable signals. These relationships are expressed by mathematical process models. Figure 2
shows the basic structure of model-based fault diagnosis process. Based on measured input signals U and
output signals Y , the diagnosis methods generate residuals r, parameter estimates Θ or state estimates x̂ ,
which are called features. By comparison with the normal features, changes of features are detected, lead-
ing to analytical symptoms s. Model-diagnosis use state and parameter estimation methods such as Kalman
Filter, Particle Filter, and Observers. Parameter estimation methods are also used as part of the model-based
equations. For a more detailed discussion of model-based diagnosis methods, see [27].
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Figure 2: The general process for model-based diagnosis [27].

The control-theoretic approach has been used in powertrain control systems [37] and in chassis systems
such as brake control systems [25]. The fault model typically associated with the control-theoretic approach
includes sensor faults, actuator faults, and faults in the mechanical, electromechanical, or hydraulic plant
being controlled. Conspicuously absent from the fault model are the computer hardware, software, mem-
ory devices, and communication links used in the control system itself – these are assumed to be always
operating in their fault-free modes.

4.2 Distributed embedded systems

Diagnosis can also be approached from the system level. The classic formulation of system diagnosis is the
Preperata-Metze-Chien (PMC) model [44]. Under the PMC model, components test each other according to
predetermined assignments. The set of test results (called the syndrome) can then be collected and analyzed
to determine the status (faulty or fault-free) of each component. This ultimately allows a consistent view
of the system state to be achieved in the presence of faults. Byzantine agreement [34] has a similar goal.
While the general problem – reaching consensus in distributed systems – is the same, the strategy used by
these two perspectives is different [9]. Byzantine agreement aims to mask faults without regard to which
node is actually faulty, while system diagnosis is concerned with identifying the faulty node so that it can
be isolated.

The original PMC model used assumptions that made it impractical for application in real fault-tolerant
systems [9]. Many of these assumptions have specific implications for the automotive domain.

Scheduling. Diagnostic task scheduling in the PMC model is agnostic toward non-diagnostic tasks. How-
ever, the primary function of a system is not typically to diagnose itself; it is to perform a service,
such as applying the brakes when the brake pedal is depressed. The resources needed to run diag-
nostic tasks, including testing and analysis, therefore have to be considered within the context of the
functional tasks.

Fault persistence. Only permanent faults are considered by the PMC model. However, intermittent faults
(which often portend permanent faults) and transient faults are common in automotive systems as
well. The action taken on the diagnostic output may differ depending on the persistence of the fault.
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Centralized analysis. Implicit in the PMC model is the idea that syndromes are collected and analyzed at a
centralized location [9], which represents a single point-of-failure. Such single points of failure must
be avoided in fault tolerant architectures.

Perfect tests. Another unrealistic assumption of the PMC model is that tests produce pass/fail answeres with
100% coverage and accuracy. In practice, perfect coverage is very difficult to achieve.

Subsequent work has extended the PMC model by addressing many of these limitations. An extensive
survey of such work has already been presented in [9]. Rather than duplicate their already broad treatment,
we will focus on automotive-specific examples in depth.

Online diagnosis algorithms were introduced by [58] that operate under the CFEM [59]. The goal of
these algorithms is to support runtime isolation and recovery. They assume deterministic, frame-based,
broadcast communication between nodes. Instead of scheduling explicit tests, these algorithms use the
correctness of existing messages as test stimuli. In a sense, each component performs an implicit test
on every component that it communicates with. Individual nodes collect local syndromes based on the
correctness of messages that they have received from other nodes. In order to diagnose locally undetectable
faults and reach a globally consistent diagnosis, these local syndromes are then exchanged between nodes
using an agreement algorithm. The severity of faults is addressed using penalty-counts that are weighted by
fault-detection method. Transient faults can be handled by updating the penalty count over time according
the decay rate, which is based on the time that the errors caused by a single fault are expected to remain in
the system.

The online algorithms developed by [58] were extended to discriminate healthy nodes from unhealthy
nodes in time-triggered automotive systems [48]. A healthy node is one that exhibits only external transient
faults, while an unhealthy node exhibits intermittent or permanent faults. The basic idea is that faulty mes-
sages that are locally detectable by at least one receiver (i.e., benign and asymmetric faulty messages) can
be analyzed over time to discriminate healthy nodes from unhealthy nodes. Diagnosis proceeds as follows.
Each node broadcasts its local syndrome using a diagnostic message. The local syndrome itself is created by
observing the validity bits of diagnostic messages sent by other nodes. Time is not explicitly included in the
diagnostic message. However, the periodic sending of diagnostic messages implicitly encodes the temporal
relationship between faults. Each node aggregates diagnostic messages into a diagnostic matrix that relates
a node’s opinion about its peers in rows (e.g., the node’s local syndrome) to the group’s opinion about a
node (e.g., the node’s validity bit in all other local syndromes) in columns. The columns are voted into
a single consistent health vector, which is then analyzed using a penalty / reward algorithm. The penalty
/ reward algorithm uses two pairs of counters and thresholds that determine when a node is faulty. The
penalty counter is increased when a node’s entry in the consistent health vector indicates a fault, otherwise
the reward counter is increased according to the criticality of the node. When the reward threshold for a
node is crossed, the penalty counter for that node is reset to zero. When the penalty threshold for a node is
crossed, the node is diagnosed as faulty. Reintegration is not addressed. The penalty and reward thresholds,
as well as the criticality values, are tunable in order to allow tradeoffs to be made between availability and
diagnostic latency. A prototype implementation of the protocol is built using TTP/C controllers and analyzed
via physical fault injection.

Online algorithms have also been proposed to diagnose faulty actuators in distributed control systems
[29]. The algorithms assume reliable, deterministic, broadcast communication between system components
(i.e., a time-triggered bus). The general idea is to leverage existing actuation commands as test stimuli,
avoiding the need to schedule dedicated tests. Sensors built into an actuator monitor its physical operation
after a command is received. Based on the sensed value, an estimate of the original command can be derived
from a model. If diverse sensors and/or models are available, a single estimate is arrived at using approxi-
mate agreement. The actual and derived commands are compared, and a failure is diagnosed if the difference
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exceeds some threshold. A key advantage of this approach is that it provides an opportunity to replace phys-
ical redundancy (i.e., using multiple actuators to mask a failed actuator) with analytical redundancy (i.e,
using diverse sensors / models to diagnose and isolate a failed actuator). Of course, this assumes that ap-
propriate sensors and models are available for a given actuator. Diagnostic tasks (reading sensors, deriving
estimates, etc) are distributed among multiple processors, and a global view of the diagnosis is reached
using agreement. Distributing the diagnostic tasks allows the algorithm to tolerate faults in processors and
sensors. Note, though, that the algorithm does not diagnose faults in processors or sensors. Task scheduling
algorithms take into account the control period required for acceptable application response-times as well
as the diagnostic latency required to keep the system from reaching an unsafe state following a failure.

Out-of-norm Assertions (ONAs) are introduced as a way to correlate fault effects in the three dimensions
of value, time and space [42]. The ONA mechanism is designed to operate under a maintenance-oriented fault
model (see Section 2.3). Faults are identified by monitoring selected variables of a component’s interface
state for deviations from normal operation. Specifically, the set of monitored variables and the conditions
under which they are said to deviate is a symptom of a fault. Fault-induced changes in the value, time and
space domain of the distributed state are described by fault patterns. The distributed state is the combined
interface state of all of the system components. ONAs operate on the distributed state by encoding symptoms
from multiple components. A fault is diagnosed when when all of the symptoms of a particular fault-pattern
are present. The ONA mechanism underlies a framework for diagnosing failures in time-triggered networks
[40]. A prototype implementation of the framework using TTP/C controllers instruments the frame status field
of the controller. When the frame status field indicates an error, the specific error is encoded as a symptom.
The symptom (value domain) is combined with a global synchronized timestamp (time domain) and the
unique identifier of the component (space domain) to form a diagnostic message. Diagnostic messages
are sent to a dedicated diagnostic subsystem for analysis using a simple threshold-based algorithm [13].
Although the diagnostic subsystem itself is centralized, its individual tasks can be distributed across multiple
processors using by the underlying architecture. In order for the processors to maintain a consistent view of
the diagnosis, it would need to be disseminated back to them from the diagnostic subsystem. The framework
is applied to connector faults in [43].

A platform- and application-agnostic approach demonstrates the extent to which diagnosis is possible
using only passive monitoring in FlexRay-based networks [4]. The approach is constrained by purposefully
restrictive goals. Specifically, a dedicated diagnostic node is given access only to the communication bus,
the diagnostic node cannot disrupt the normal operation of the system, and no modifications (system-level,
application-level or otherwise) can be made to existing nodes or architectures. The authors identify several
aspects of the FlexRay protocol that can be used to aid diagnosis under such restrictions, such as syntactic
failures in the value domain (e.g., Cyclic Redundancy Check (CRC) mismatches), semantic failures in the
value domain (e.g., application specific plausibility checks) and failures in the time domain (e.g., early, late
or missing messages). The authors suggest that this information is sufficient for concluding that a node
is able to transmit messages (i.e., diagnosing faults in the “transmit path” of a communication controller.
However, more information is needed to conclude that a node is able to receive messages (i.e., to diagnose
faults in the “receive path”). The authors introduce a method for obtaining this information by perturbing
the FlexRay clock-synchronization protocol. By sending specially crafted synchronization frames, the di-
agnostic node can cause other nodes to synchronize to a communication cycle that is slightly off from the
configured cycle length. Keeping the modified cycle length within a certain tolerance of the configured cycle
length allows the network provide normal services to the application. Nodes that do not synchronize to the
modified cycle are assumed to have not received the clock synchronization frames sent by the diagnostic
node, indicating a fault in their receive path. Furthermore, faulty synchronization messages can be injected
by the diagnostic node to probe the error checking facilities of the nodes under test. Nodes that do not reject
the faulty messages will remain synchronized to the modified cycle length, while nodes that do correctly
reject them will begin drifting back to the configured cycle length. This approach does not require active
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participation in the diagnostic process by the components being diagnosed. However, this implies a central-
ized diagnosis, which does not provide a globally consistent view of faulty components. This approach is
best suited to testing in a maintenance environment, as opposed to runtime diagnosis while the vehicle is on
the road.

A component-based diagnostic strategy breaks vehicle-level diagnostics down into a hierarchy of sys-
tems and subsystems [63]. Each level in the hierarchy is made up of modules. Modules at the bottom of
the hierarchy are individual system components. Modules in the middle are subsystems made up of multi-
ple components. The highest level represents whole-vehicle diagnosis. A supervisory strategy is employed
between modules on different levels, but no direct diagnostic interaction is allowed between modules on
the same level. Furthermore, a module can only be supervised by a single higher-level module (i.e., a com-
ponent can’t belong to more than a single diagnostic subsystem). Each diagnostic module can have seven
diagnostic outputs (normal, need maintenance (no danger), need maintenance (danger), intermittent fault,
no redundancy, fail-silent, failure) that are fed to supervisory modules for additional decision making.

4.3 Enterprise systems

While discussing failure-diagnosis issues for embedded automotive systems, it is important and relevant to
examine how enterprise systems handle these issues. Enterprise systems are typically not safety-critical;
however, they have fairly demanding requirements in terms of availability because they are required to be
operational 24×7, often with disastrous consequences (bad publicity, loss of revenue, etc.) when down-
time occurs [26]. Enterprise systems are also fairly large, covering multiple geographic regions, thousands
of computers and significant amounts of network traffic—their diagnostic procedures must often be au-
tonomous because it is often infeasible to require manual intervention for such large, complex systems.

Fault detection approaches in enterprise systems, such as e-Commerce systems, typically localize
anomalous system behavior through statistical analysis of time-series data, or through dependency anal-
ysis of request flows. The data sources used in time-series analysis range from resource usage metrics, to
sequences of events in system-call and error logs. [15] use machine learning to identify the resource usage
metrics that are most correlated with performance problems. They generate a database problem signatures
which they use to diagnose recurrent problems. [12, 23] profile resource usage across the multiple lay-
ers of the system, and develop rules-of-thumb to common system problems. [21, 60] detect problems by
identifying for anomalous sequences of system calls.

An alternative approach to fault-detection in enterprise systems analyzes dependencies in request flows
to detect either high-latency communication paths, or unexpected structural changes in paths due to excep-
tions or process crashes. [2] isolate performance problems by passively monitoring messages exchanges
across components, inferring causal message flows, and identifying high-latency paths. [31] monitor causal
flows in Java-based applications to detect changes in the shapes of the path. Sherlock models the probabil-
ity of error propagation on communication paths, and applies Bayesian analysis to infer the source of the
problem [7].

Hybrid approaches extract both resource usage and request flow information from a distributed system,
and attribute resource consumption to individual requests to construct concise workload models which can
be used for anomaly detection [10].

Gumshoe attempts to diagnose performance problems in replicated file systems [30]. Various Operating
System (OS) and protocol-level metrics are gathered and then analyzed using peer-comparison. Gumshoe
was able to effectively localize faulty nodes under two different replicated file systems.

Fault detection approaches developed for enterprise systems might not be directly applicable to auto-
motive systems because automotive systems have limited processing and storage capacity and might not
support the level of instrumentation and processing needed by the enterprise approach. Automotive sys-
tems also require a higher degree of accuracy due to the safety-critical nature of chassis and powertrain
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subsystems. More interestingly, though, there are fundamental differences between enterprise and embed-
ded systems that we must take into account when attempting to apply any enterprise diagnostic practices to
autonomous driving systems.

For one, enterprise systems are transactional and event-triggered in nature, which means that they usu-
ally focus on preserving data and tend to center around end-to-end request-response semantics. Embedded
systems are continuous-control and time-triggered. They tend to employ clock synchronization algorithms,
consist of operations with timing guarantees, and involve real-time data and processing. Enterprise systems
tend to be resource-intensive, involving high bandwidth non-real time Internet Protocol (IP)-based data net-
works, with more than adequate resources (in terms of disk, memory, Central Processing Unit (CPU), battery
power); enterprise desktop systems typically use full-featured non-real-time commercial off-the-shelf OSes,
with virtual memory and memory protection capabilities. Embedded systems often work with severe re-
source constraints (limited bandwidth non-IP-based real-time control network, limited memory / CPU, often
no disk, battery powered); furthermore, features such as memory protection and virtual memory are of-
ten disabled, and the OSes tend to be customized (rather than off-the-shelf) with a reduced feature-set and
real-time scheduling capabilities. All of these enterprise vs. embedded differences make it difficult, if not
impossible, to directly apply enterprise diagnostic techniques to autonomous driving systems.

Nevertheless, the general architectural aspects of instrumentation, data-analysis, and dependency-tracing
are equally applicable to both enterprise and embedded automotive systems.

5 Summary

Various fault taxonomies, fault hypotheses, and fault models have been proposed for use in the automobile
industry. One example is the fault taxonomy proposed by the EASIS consortium [19] that includes CPU faults,
sensor faults, actuator faults, power supply faults, and communication system faults. EASIS also proposes a
fault hypothesis that assumes at most one of the above faults exists at any given time. Maintenance-oriented
fault models focus on off-line support for service technicians, while safety-oriented fault models focus on
on-line support (run-time architecture) for maintaining safe operation of the vehicle while being driven.

The classic formulation of system-level diagnosis is the PMC model, named after the authors [44] In
this graph-theoretic approach, each node tests a subset of the other nodes, and the collection of all such pass-
fail test results, called the syndrome, is evaluated using graph algorithms to come up with a system-wide
consensus on which nodes are faulty so that they can be isolated. The theory provides proofs of conditions
under which the system is diagnosable for a given number of faults. Byzantine agreement protocols [34]
have the same goal as the PMC approach, namely, to reach consensus on the state of health of a distributed
system, but approach the problem in a different manner. Instead of attempting to identify the faulty nodes
so that they can be isolated, Byzantine agreement protocols aim to mask faults by agreeing on a set of good
outputs to propagate through the system.

Several diagnostic techniques exist that are unique to time-triggered communication networks such
as FlexRay and TTP/C. For example, a method by [48] involves the transmission of diagnostic message
consisting of local syndromes, and the aggregation, voting, and analysis of these diagnostic messages to
consense on a single system-wide health vector. A method by [4] diagnoses the receive path in FlexRay
controllers by perturbing the FlexRay clock synchronization protocol during runtime in a way that does not
interfere with the normal operation of the system.

A key trade-off identified by this survey is the distinction between two different approaches for system-
level diagnosis of failures in run-time safety architectures. One approach aims to identify and isolate faulty
components and to leverage this information to enable more focused and efficient mitigation actions, while
the other approach aims to mask failures by consensing on non-faulty outputs to propagate through the
system. Future work will further explore this fundamental trade-off.
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Appendix: List of Acronyms

CAN Controller Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CC Communication Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CFEM Customizable Fault/Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CND Cannot Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CNI Communication Network Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CPU Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CRC Cyclic Redundancy Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CSMA/CD Carrier Sense Multiple Access / Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

DTC Diagnostic Trouble Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

D-MATRIX Dependency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

EASIS Electronic Architecture and System Engineering for Integrated Safety Systems . . . . . . . . . . . . 5

ECR Error Containment Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ECU Electronic Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

EMI Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

FCR Fault Containment Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

IVHM Integrated Vehicle Health Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

LIN Local Interconnection Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

NFF No Fault Found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

NTF No Trouble Found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ONA Out-of-norm Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

OS Operating System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

PMC Preperata-Metze-Chien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

TDMA Time Division Multiple Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

TNI Trouble Not Identified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

TTP/C Time-Triggered Protocol/Class-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
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