
Testing the Portability of Desktop Applications
to a Networked Embedded System

Michael W. Bigrigg and Joseph G. Slember
Institute for Complex Engineered Systems

Carnegie Mellon University
Pittsburgh, PA 15213

bigrigg@ices.cmu.edu, jslember@ece.cmu.edu

Abstract

Applications that were engineered for desktop envi-
ronments are often ported to networked embedded sys-
tems and mobile environments which have a higher rate
of errors due to variable and intermittent connectivity.
In embedded systems there is a lack of additional hard-
ware resources, which then requires the software to
handle far more and to be increasingly robust. This
paper examines the ability of common desktop applica-
tions to gracefully handle error conditions when ported
to an unreliable networked embedded system. The focus
of the testing is the ability of the GNU binutils and tex-
tutils to catch and properly handle error return values
from the Standard C I/O library.

1. Introduction

In reducing time to market and in an effort to not re-
invent the wheel, software reusability plays an important
role. Much effort has been placed on the reuse of soft-
ware components as well as porting entire applications
to new architectures. We are addressing the porting of
desktop applications to an unreliable networked embed-
ded system.

In a desktop environment, while unreliability is pos-
sible, it is not often accounted for. The loss of network
connectivity, for example, is an exception rather than
the rule. The disruption of service due to an unplugged
cable or an overloaded network are all possibilities, yet
remain in the realm of unlikely. In addition, a desktop
environment has enough resources to make allowances
for transient failures, such as caching file system data.
An embedded system does not have those abundant re-
sources to throw at the problem and the transient failures
are much more commonplace.

The PARIS project is an effort at Carnegie Mellon
University to harden embedded applications by provid-

ing a way to manage its availability, performance, and
security.

We will show the problem of directly porting an ap-
plication from a desktop environment to a networked
embedded environment by testing the effectiveness of
an application to handle the propagation of error condi-
tions from called routines.

Our initial focus is the ability of the GNU binutils
and textutils to catch and properly handle error return
values from the Standard C I/O library.

2. Test Harness

We first developed a testing harness to allow us to
selectively manipulate the behavior of the function calls
in the application source code. The test harness modi-
fies the application at the source code level. It consists
of a source-level translator, a run-time library, and a
control driver.

Figure 1. Test harness phases

Application
Source Code

Run-time
LibraryModified

Source Code

C Preprocessor

Compiler

Source-level
Translator

Control
Driver

Executable

Behavior
Control

Execution
Log

Workshop on Reliable Embedded Systems, in conjunction with the 20th IEEE Symposium on Reliable Distributed Systems
 October 28, 2001, New Orleans, LA.

The source-level translator is the front end of a C
compiler. The C preprocessor is first run on all source
code before being passed to the translator as shown in
Figure 1. The translator builds a parse tree to be used to
modify the source code and add in conditional state-
ments to give control over specific function calls [1].
For example a normal fread function call in the sort text
utility looks like:

cc = fread (buf ->buf +buf ->used, 1,
buf->alloc-1-buf->used, fp));

At the point of the function call a conditional is inserted
around the function call to give control to the driver
over the execution of the fread function. This is shown
below:

cc =(control_fread (14262)
?paris_fread ()
:fread (buf->buf+buf->used, 1,

buf->alloc-1-buf->used, fp));

The control_<function>(<line number>) implements
a call to the driver to determine whether to execute or
fail the function. It takes in the line number where the
function is found in the code to help in analysis of the
results when several function calls are being made. The
control driver can fail functions on a specific instance of
a call or for all call instances. For example, fread can be
failed at a given point in a program by returning the
error code rather than executing the function. A behav-
ior control input file allows for functions to be specified
when to fail: always fail, fail consecutively, or fail on a
certain line number.

A log is generated that tracks the progress of the ap-
plication and tracks the calling pattern of the applica-
tion.

The paris_<function> returns the appropriate error
value based on the specified function. For example, the
C standard I/O library fread call will return up to but no
more than the number of bytes that have been requested.
A return value of 0 does not signify an error condition,
just that no data is currently available [2]. A return value
of -1 signifies an error and is what will be returned by
paris_fread.

The use of program analysis to identify potential
sources of problems has been previously presented in
such systems as lint [3] that uses the approach to check
for common portability errors. All problems are reported
to the application programmer to take appropriate ac-
tion. The errors are those typical when an assumption is
made about the processor architecture. LcLint[4] ex-
tends the lint system to allow for specifications allowing
a more customizable portability check.

There are also tools that attempt to classify the ro-
bustness of an application and present mechanisms for
the automatic generation of run-time test coverage. For
example, the Ballista project [5] stresses the API of a
module by making calls to a module using a series of
extreme values. The behavior of the module is examined
and reported to the application programmer.

Our system focuses on the proper handling of error
conditions using a combination of program analysis and
run-time testing.

3. Test Cases

We applied the testing harness to a specific class of
applications that are I/O based and use the C standard
I/O library. In the case of networked embedded sys-
tems, especially that of a mobile environment, the situa-
tion is not always that the data cannot be obtained, but
may be that a timeout has occurred in the request for
data. This timeout is placed by the network communica-
tion protocol in the operating system so that the system
returns to the calling application within a reasonable
amount of time, but also results in the generation of an
error.

Our error handling testing was performed on the
GNU binutils and textutils. There are 26 text utility and
15 bin utility applications written by several authors.
They are all written in C and rely heavily on the C stan-
dard I/O library. They have been ported to numerous
platforms and are a widely accepted and used set of
utilities. Our experiments were performed using the
Linux platform.

The test harness was applied as described in section
2. The source files for the utilities as well as supple-
mental libraries were run through the C preprocessor,
test harness source translator, and then compiled. We
first ran the applications in their normal operating mode
and then in our test mode. As displayed in the chart,
several of the applications were unable to be success-
fully modified by the test harness. These utilities were
not built due to incompatibilities between cpp and our
translator. The majority of utilities were built success-
fully and are a significant representation of the package
source code.

4. Results

After analyzing all of the utilities for how they han-
dle different error situations, four different failure cate-
gories became apparent. These four are: handles cor-
rectly (HC), handles incorrectly (HI), silent failure (S),
and silent failure (S2) when failed in conjunction with
another function.

Handles correctly (HC) is when an application rec-
ognizes that an error has occurred, an error return value

has been acknowledged by the calling function and an
appropriate error display is given. This is correct behav-
ior.

Handles incorrectly (HI) is similar to handles cor-
rectly in as much as the application acknowledges that
an error has occurred and an error return value has been
received, but an accurate error display is not given.

Silent failure (S) occurs when an application does not
crash or acknowledge any error, even though an error
value was returned by the function. The application con-
tinues its execution as if no error occurred.

The final error category is also a silent failure (S2),
but the function in question was used to produce an er-
ror message because another function has failed. The
primary error is being acknowledged, but the function
used to produce the error message itself is not checked
for errors.

The test results are summarized in Figures 2 and 3.
The primary observations are that the most common
case is silent failures. The silent failures do not always
produce no output, but very often corrupted data. Addi-
tionally, output is less likely to be checked for an error
condition than input.

In a silent failure, a function call would fail to read to
or write from a file and either report nothing at all or
report false data. For example when failing fread in the
cksum utility, the output is 0 for the number of bytes in
the file and an incorrect checksum is produced as well.

No error was reported even though the correct error
condition was returned.

Csplit is a utility that splits a file into two separate
files. When fwrite is failed in csplit, two files are created
and the csplit even displays what the correct sizes
should be, but the files themselves are empty. No error
is given and the application exits normally.

If an fclose fails, an error is almost always given.
However, the program does not always exit gracefully
nor does it give clear information about what error oc-
curred or where it occurred. For example, in the join
utility when fclose() fails the error given is:
"./join_paris: k: ,ðÿ¿,ðÿ¿ ".

5. Conclusion and Future Work

Common desktop applications, even those that have
been ported to multiple platforms, do not appear to be
easily ported to an unreliable networked embedded envi-
ronment. Our results show that the majority of prob-
lems resulted in silent failures that lead applications to
produce results that are incorrect and inconsistent with
no indication of any problem. Output was assumed to
work correctly, especially as outputting an error mes-
sage was the common way of acknowledging an error.
We focused on the Standard C I/O library for its wide
use, but the testing harness can be applied to other func-
tions as well.

Text Utilities fread() fopen() fclose() fwrite() read() close() putchar() ungetc() printf() fprintf() vfprintf()
cksum S HC HI S S2 S2
comm HC HC S S2 S2
csplit HC HC S HC HC S

cut HC HI S S S2 S2
expand HC HC S S2 S2

fmt HC HI S S2
fold HC HC S S2
head HC HC HC HI HI S2 S2
join HC HI S S S2

md5sum S HC HC S S S2 S2
nl HC HC S S S2 S2

paste HC HC S S2 S2
pr HC HI S S/S2 S2

split HC HI HI S2 S2
sum HC HC S S/S2 S2

tr HC HC HC S2 S2
tsort HC HC S S2 S2

unexpand HC HC S S2 S2
uniq HC HC S S2 S2

Figure 2. GNU Text Utilities

We are extending this work to allow for an auto-
mated way to harden the application by inserting an
adaptation layer to isolate the application from the un-
derlying unreliable system. The applications that were
written for a desktop environment do not have to be
structurally changed, and instead the adaptation layer
can make the necessary modifications. This decouples
the reliability need from the functional need of the pro-
gram.

6. References

[1] Steven S. Muchnick. Advanced Compiler Design
and Implementation. Morgan Kaufmann Publishers,
1997.

[2] P. J. Plauger. The Standard C Library. Prentice Hall,
1992.

[3] S. C. Johnson, lint, a C Program Checker, Computer
Science Technical Report Number 65, 1978.

[4] David Evans, John Guttag, Jim Horning, and Yang
Meng Tan. LCLint: A tool for using specifications
to check code. SIGSOFT Symposium on the Foun-
dations of Software Engineering, December 1994.

[5] Philip Koopman. Toward a Scalable Method for
Quantifying Aspects of Fault Tolerance, Software
Assurance, and Computer Security. Computer Se-
curity, Dependability, and Assurance: From Needs
to Solutions (CSDA’98), November 1998.

Bin Utilities fwrite() fclose() fopen() putchar() rename() fprintf() vfprintf() fputs() fgets() fflush()
ar S HI S/HI

nm S S
objdump S S

ranlib HC S S
size S S

strings S S
strip HC S S

addr2line S S S
Figure 3. GNU Bin Utilities

