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Simultaneous Multi-Layer Access:
Improving 3D-Stacked Memory Bandwidth at Low Cost

DONGHYUK LEE, SAUGATA GHOSE, GENNADY PEKHIMENKO, SAMIRA KHAN,
and ONUR MUTLU, Carnegie Mellon University

3D-stacked DRAM alleviates the limited memory bandwidth bottleneck that exists in modern systems
by leveraging through silicon vias (TSVs) to deliver higher external memory channel bandwidth. Today’s
systems, however, cannot fully utilize the higher bandwidth offered by TSVs, due to the limited internal
bandwidth within each layer of the 3D-stacked DRAM. We identify that the bottleneck to enabling higher
bandwidth in 3D-stacked DRAM is now the global bitline interface, the connection between the DRAM row
buffer and the peripheral IO circuits. The global bitline interface consists of a limited and expensive set of
wires and structures, called global bitlines and global sense amplifiers, whose high cost makes it difficult to
simply scale up the bandwidth of the interface within a single DRAM layer in the 3D stack. We alleviate
this bandwidth bottleneck by exploiting the observation that several global bitline interfaces already exist
across the multiple DRAM layers in current 3D-stacked designs, but only a fraction of them are enabled at
the same time.

We propose a new 3D-stacked DRAM architecture, called Simultaneous Multi-Layer Access (SMLA), which
increases the internal DRAM bandwidth by accessing multiple DRAM layers concurrently, thus making
much greater use of the bandwidth that the TSVs offer. To avoid channel contention, the DRAM layers
must coordinate with each other when simultaneously transferring data. We propose two approaches to
coordination, both of which deliver four times the bandwidth for a four-layer DRAM, over a baseline that
accesses only one layer at a time. Our first approach, Dedicated-IO, statically partitions the TSVs by assigning
each layer to a dedicated set of TSVs that operate at a higher frequency. Unfortunately, Dedicated-IO requires
a nonuniform design for each layer (increasing manufacturing costs), and its DRAM energy consumption
scales linearly with the number of layers. Our second approach, Cascaded-IO, solves both issues by instead
time multiplexing all of the TSVs across layers. Cascaded-IO reduces DRAM energy consumption by lowering
the operating frequency of higher layers. Our evaluations show that SMLA provides significant performance
improvement and energy reduction across a variety of workloads (55%/18% on average for multiprogrammed
workloads, respectively) over a baseline 3D-stacked DRAM, with low overhead.
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1. INTRODUCTION

Main memory, predominantly built using DRAM, is a critical performance bottleneck
in modern systems due to its limited bandwidth [Burger et al. 1996; Rogers et al.
2009]. With increasing core counts and more pervasive memory-intensive applications,
memory bandwidth is expected to become a greater bottleneck in the future [Dean and
Barroso 2013; Mutlu 2013; Mutlu and Subramanian 2014]. For the last few decades,
DRAM vendors provided higher bandwidth by using higher IO frequencies, increasing
the bandwidth available per pin (improving by 17 times over the last decade, from
400Mbps in DDR2 to 7Gbps in GDDR5 [Smith et al. 2012]). However, further increases
in IO frequency are challenging due to higher energy consumption and hardware com-
plexity. Recent developments in 3D integration through through silicon vias (TSVs)
enable an alternative way of providing higher bandwidth. TSVs enable wider IO inter-
faces among vertically stacked layers in 3D-stacked DRAM architectures [Kim et al.
2011; JEDEC 2013a, 2014; Hybrid Memory Cube Consortium 2013, 2014; Kang et al.
2009; Lee et al. 2014].

Even though TSV technology enables higher data transfer capacity, existing 3D-
stacked DRAMs cannot fully utilize the additional bandwidth offered by TSVs. For
example, Wide I/O [Kim et al. 2011] offers a very high external bus width (512 bits,
which is 16–64 times wider than conventional DRAM chips), but can only operate at
much lower frequencies (200–266MHz) than conventional DRAMs (which operate at
as high as 2,133MHz for DDR3). As a result, the effective bandwidth increase can be
an order of magnitude lower than the bus width increase. Based on our analysis of
the DRAM hierarchy (provided in Section 2), 3D-stacked DRAMs cannot fully exploit
the wider external IO interface due to their limited internal bandwidth. On a row
activation, a DRAM chip reads a whole row simultaneously from the cell array to a row
buffer, but can transfer only a fraction of the data in the row buffer through a limited
set of internal wires (global bitlines) and associated global sense amplifiers. We refer to
both of these resources together as the global bitline interface. Figure 1(a) shows how
the global bitline interface connects the DRAM cell array to the TSVs.

The limited number of global bitlines and sense amplifiers (i.e., the global bitline in-
terface width) thus constrains the internal data transfer capacity of DRAM. One naive
way to enable higher bandwidth is to add more global bitlines and sense amplifiers to
3D-stacked DRAMs, as was previously done [JEDEC 2013a, 2014]. However, doing so
increases area cost and energy consumption, making this intuitive and simple solution
expensive.1

Our goal in this work is to enable higher internal bandwidth in 3D-stacked DRAM
without incurring the cost of widening the global bitline interface. In order to design
such a system, we observe that a large number of global bitlines and sense ampli-
fiers already exist across the multiple layers of a 3D-stacked DRAM, but that only a
fraction of them are enabled at any particular point in time. Figure 1(b) shows that
only a single layer of the DRAM stack can transfer data to the external IO inter-
face, while other layers stay idle. We exploit these otherwise idle global bitline inter-
faces to access multiple DRAM layers simultaneously, which can overcome the internal
bandwidth constraints of a single layer by delivering enough data to fully utilize the
available external bandwidth of the TSV-based IO interface. We call this architecture

1We estimate that global sense amplifiers (and their corresponding control logic) consume 5.18% of the total
area in a 55nm DDR3 chip [Vogelsang 2010; Rambus 2010]. Considering that 3D-stacked DRAM already
contains many more global sense amplifiers than conventional DRAM (see Section 2.4), adding even more
sense amplifiers may be quite costly. Each sense amplifier also consumes a large amount of energy, because
it is typically implemented as a differential amplifier, whose performance is strongly dependent on standby
current [Keeth et al. 2007; Razavi 2000].
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Fig. 1. Single-layer (baseline) versus multi-layer access in 3D-stacked DRAM.

Simultaneous Multi-Layer Access (SMLA). Using SMLA, multiple global bitline inter-
faces in multiple layers supply data to the external IO interface, providing the interface
(vertically connected across all stacked layers) with enough data to enable transfers at
a much higher frequency than existing 3D-stacked DRAMs (e.g., Wide I/O).

To implement SMLA, simultaneous data transfer from multiple layers through the
existing IO interface requires coordination across the layers to avoid channel con-
tention. One simple way to enable an SMLA architecture is to restrict the sharing of
channels and assign dedicated IOs to each layer. We refer to this simple solution as
Dedicated-IO, where a subset of TSVs form an IO group, with each IO group dedicated
only to a single layer (Figure 1(c)). Despite having access to only the smaller number of
TSVs in its IO group, each layer can still transfer the same amount of data by operating
its IOs at a higher frequency. As each layer transfers data simultaneously at a higher
frequency, Dedicated-IO enables bandwidth proportional to the number of layers (e.g.,
4 times for a four-layer stacked DRAM) as opposed to the baseline system, which can
transfer data from only a single layer (Figure 1(b)).2 While this architecture enables
higher bandwidth, it has two disadvantages. First, as each layer requires dedicated
connections to specific TSVs, the design of each layer is not uniform anymore, resulting
in higher manufacturing cost. Second, the IO clock frequency scales linearly with the
number of layers, resulting in greater dynamic energy consumption.

To solve these problems, we propose Cascaded-IO, which exploits the architectural
organization of a TSV-based interface, where an upper layer transfers its data through
lower layers. Cascaded-IO (Figure 1(d)) enables simultaneous access to each layer by
time-multiplexing the IOs in a pipelined fashion. In this design, all layers operate
concurrently, with each layer first sending its own data and then sending data trans-
ferred from the upper layers. By operating each layer at a frequency proportional to
the number of layers above it, Cascaded-IO provides a much higher bandwidth than
existing 3D-stacked DRAMs (e.g., 4 times for a four-layer stacked DRAM). While sev-
eral layers within Cascaded-IO operate at a higher frequency, we observe that only
the bottom layer theoretically needs to operate at the highest frequency, as this is the
only layer that transfers data from all of the DRAM layers. We propose to reduce the
frequency of other layers, optimizing the frequency individually for each layer based on
the layer’s bandwidth requirements. As a result, Cascaded-IO enables higher overall

2A new design from Hynix, High Bandwidth Memory [JEDEC 2013a], which we describe in detail in Section 9,
proposes to use exclusive IO interfaces for each layer of 3D-stacked DRAM, but enables higher bandwidth by
increasing the internal bandwidth with additional global bitlines. Dedicated-IO, in contrast, enables higher
bandwidth at a lower cost by leveraging the existing global bitline interfaces in DRAM.
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DRAM bandwidth at low energy consumption, without requiring nonuniform layers
that have different physical designs.

Our work makes the following contributions:

(1) We propose a new 3D-stacked DRAM organization, SMLA, which enables higher
bandwidth with low cost by leveraging the otherwise idle global bitline interfaces
in multiple layers of 3D-stacked memory. SMLA delivers the effective performance
of quadrupling the number of global bitlines and global sense amplifiers, without
physically requiring any additional global bitlines and global sense amplifiers (and
thus without a large area increase), by precisely sequencing how each layer shares
the TSVs.

(2) We introduce two low-cost mechanisms to transfer data from multiple layers with-
out conflicting in the shared IO interface of 3D-stacked DRAMs. Our first mecha-
nism, Dedicated-IO, statically partitions the TSVs across layers to avoid channel
contention, but increases manufacturing costs and energy consumption. Our sec-
ond mechanism, Cascaded-IO, time-multiplexes shared IOs so that each layer in
3D-stacked DRAM first transfers data from its own layer and then transfers data
from upper layers. Cascaded-IO avoids nonuniformity in the design of each layer,
reducing its manufacturing cost with respect to Dedicated-IO.

(3) We introduce a 3D-stacked DRAM architecture that can operate the different
DRAM layers at different clock frequencies. By doing so, our Cascaded-IO mecha-
nism enables higher bandwidth at low energy consumption, as it optimizes the IO
frequency of each layer based on the layer’s bandwidth delivery requirements.

(4) Our extensive evaluation of 3D-stacked DRAMs on 31 applications from the SPEC
CPU2006, TPC, and STREAM application suites shows that our proposed mecha-
nisms significantly improve performance and reduce DRAM energy consumption
(by 55%/18%, respectively, on average, for our 16-core multiprogrammed workloads)
over existing 3D-stacked DRAMs.

2. 3D-STACKED DRAM BANDWIDTH CONSTRAINTS

To understand the internal bandwidth bottleneck of 3D-stacked DRAM, we first de-
scribe the unique design of the IO interface in state-of-the-art 3D-stacked DRAM sys-
tems (Section 2.1). We then walk through the DRAM architectural components that
make up the datapath used for both read and write requests. We analyze the bandwidth
of each component along this datapath in Section 2.3 and study the tradeoff between
bandwidth and area in Section 2.4.

2.1. Using TSVs to Increase IO Bandwidth

We first explain the detailed organization of a 3D-stacked DRAM, which integrates a
much wider external IO bus than conventional DRAM. Figure 2(a) shows a 3D-stacked
DRAM consisting of four DRAM layers, which are connected using micro-bumps and
TSV interfaces. A TSV interface vertically connects all of the layers. The bottom of
the four stacked DRAM layers is either directly placed on top of a processor chip
or connected to a processor chip by metal wires (we discuss this in more detail in
Section 2.2). Figure 2(b) details the organization of the TSV and micro-bump connec-
tions within the DRAM stack. Two metal lines connect each layer to these interfaces. At
each layer, the top metal line is connected to the micro-bump of the DRAM layer above,
and the bottom metal line is connected to the TSV. At the bottom of the layer, this TSV
is exposed and connected to a micro-bump, which then connects to the top metal line
of the layer below. These two metal lines are eventually connected with a via or over
peripheral circuits. In this way, several such layers can be stacked one on top of another.
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Fig. 2. TSV interface in 3D-stacked DRAM.

TSVs provide two major benefits to increase memory bandwidth and energy effi-
ciency. First, due to the small feature size of modern TSV technologies (10–35μm pitch
for TSVs [Kim et al. 2011; West et al. 2012; Huyghebaert et al. 2010; Harvard and
Baker 2011] vs. 90μm pitch for conventional pads), 3D-stacked DRAM can integrate
hundreds of TSVs for its connections between layers. Second, the small capacitance of
a TSV reduces energy consumption. Compared to conventional DRAM, whose off-chip
IO is connected by long bonding wires and metal connections in the package, TSV
connections between layers are very short, leading to lower capacitance and energy
consumption during data transfer. As a result, 3D-stacked DRAM offers a promising
DRAM architecture that can enable both higher bandwidth and energy efficiency.

2.2. Connections Between 3D-Stacked DRAM and Processor

There are two major approaches used today to connect 3D-stacked DRAM with the
processor. The first approach is to directly attach the 3D-stacked DRAM onto the pro-
cessor die, referred to as 3D integration, as shown in Figure 3(a). This approach does
not require any additional components (e.g., PCB, interposer) and integrates both the
processor and the 3D-stacked DRAM within the minimal feature size (i.e., within a
small package). However, this approach reduces the thermal dissipation capacity. Dur-
ing its operation, a modern processor generates a large amount of heat, which requires
active thermal dissipation solutions (most commonly, by placing a heat sink plate on top
of the processor). If a stacked DRAM sits on top of the processor, it is difficult to attach
such heat sinks directly to the processor, which could lead to processor overheating.
Furthermore, the heat from the processor propagates to the stacked DRAMs, causing
the DRAM cells to leak more charge, which can require more frequent refreshing.

The second approach is to connect the processor and the 3D-stacked DRAM with a
silicon interposer, referred to as 2.5D integration. As Figure 3(b) shows, both the pro-
cessor and the 3D-stacked DRAM are located on the silicon interposer, which provides
fine-pitch metal wire connections between the two. The major benefits of this approach
are (1) not limiting the thermal dissipation capacity of the processor, and (2) decoupling
the 3D-stacked DRAM from the processor’s heat. The major drawbacks of this approach
are that (1) it requires additional cost for producing the interposer, and (2) it could lead
to a larger package.

2.3. DRAM Bandwidth Analysis

In this section, we show that the 3D-stacked DRAM bandwidth is bottlenecked by the
number of global bitlines and global sense amplifiers, which are costly to increase.

Internal Operation. DRAM has two kinds of accesses (read and write) that transfer
data through mostly the same path between DRAM cells and off-chip IO. Figure 4(a)
shows the read datapath from the cells to IO. When activating a row, all of the data
in the row is transferred to a row buffer (a row of local sense amplifiers) through
bitlines (➊ in Figure 4(a)). Then, when issuing a read command with a column address,
only a small fraction of data in the row buffer (corresponding to the issued column
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Fig. 3. Connecting 3D-stacked DRAM to a processor.

Fig. 4. Overview of DRAM organization.

address) is read by the global sense amplifiers through the global bitlines (➋). Peripheral
logic then transfers this data to the off-chip IO (➌ and ➍). To write data, commands
containing data are issued, and peripheral logic transfers this data to the global sense
amplifiers that write the data to the row buffer, which then writes the data to the cells
corresponding to the requested address.

Bandwidth Analysis. At each step, the individual structures along the datapath
have their own data transfer rate (bandwidth). For a read access, we explore the
bandwidth of each step in detail. When activating a row, all data within the row
(e.g., 8Kbits [Micron 2014]) is transferred to the row buffer (➊ in Figure 4(a)), which
takes about 13ns (based on the tRCD timing constraint [Micron 2014]). Therefore, the
bandwidth of the activation step is about 78.8GBps. After migrating data to a row
buffer, the global sense amplifiers read 64 to 128 bits of data from the row buffer within
3 to 5ns through the global bitlines (➋). Therefore, the bandwidth of the global bitline
interface is about 2 to 4GBps. The data read by global sense amplifiers is transferred
to the IO interface (➌), which can operate at frequencies as high as 2GHz. Considering
that the off-chip IO bus width can range from 4 to 128 bits (➍), the off-chip bandwidth
can be in the range of 1 to 32GBps.

As this analysis shows, there is a bandwidth mismatch in 3D-stacked DRAM, since
generally the global bitline interface (2–4GBps) cannot fully saturate (or match) the
ample off-chip IO bus bandwidth (1–32GBps). This is in contrast with conventional
DRAM, which has a limited off-chip IO bus width (e.g., a DDR3 DRAM chip with an
8-bit bus, and 2GBps bandwidth), and thus can use a much narrower global bitline
interface (64-bit width, 2GBps bandwidth) to match the off-chip bandwidth. For 3D-
stacked DRAM, where the off-chip bus bandwidth is significantly higher (e.g., the
128-bit TSV interface for Wide I/O), the limited global bitline interface bandwidth now
becomes the dominant bottleneck of the overall DRAM bandwidth. Currently, there are
two alternatives to dealing with this bottleneck: (1) widen the global bitline interface,
which incurs a high cost, as we will discuss in Section 2.4, or (2) reduce the operating
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frequency such that the off-chip bus bandwidth matches the lower bandwidth of the
global bitline interface, as is done in existing 3D-stacked DRAMs (e.g., Wide I/O).

To show the relationship between the operating frequency and the bus width of
the IO interface, we draw timing diagrams for the data bus during a read access
(Figure 4(b)). We divide the DRAM hierarchy into two domains: (1) an analog domain,
whose components consist of sensing structures and the data repository (the row buffer
and global bitline interface in Figure 4(a)), and (2) a digital domain, whose components
(the peripheral bus and off-chip IO in Figure 4(a)) transfer data with full swing of the
data value (0 or 1).

In the analog domain, a data repository (row buffer) is connected to a sensing struc-
ture (global sense amplifiers) with fixed metal wires. Accessing the row buffer from the
global sense amplifiers has a fixed latency corresponding to the global bitlines. Only
1 bit of data can be transferred over a single global bitline. Therefore, the bandwidth of
the global bitline interface is dictated by the number of global bitlines and global sense
amplifiers (128 bits in this example). Each global sense amplifier is directly connected
to a stored bit in the row buffer through a single wire and detects the intermediate
voltage value (between 0 and Vdd) of the stored bit before finishing the sense amplifi-
cation of the stored bit in the row buffer [Lee et al. 2013]. Therefore, it is difficult to
divide the global bitline interface into multiple stages to implement pipelining, which
would increase the frequency and thus the interface bandwidth.

On the other hand, the peripheral interface (from the global sense amplifiers to
off-chip IO) and the IO interface (toward off-chip) can be divided into multiple stages
and implemented in a pipelined manner, as they handle signals in the digital domain.
Therefore, as shown in Figure 4(b), the 128 bits of data from the global sense amplifiers
can be transferred through either a narrow IO bus with high frequency (e.g., DDR3
with a 16-bit bus) or a wide IO bus with low frequency (e.g., Wide I/O with four
channels, each of which has a 128-bit bus [Kim et al. 2011; JEDEC 2011]). In the
ideal case, assuming that the global bitline interface provides enough data to the
peripheral interface, the wide bus in the off-chip IO can transfer the data at higher
frequency (than global bitlines), enabling much higher external IO bandwidth (i.e.,
128bits × 2GHz = 32GBps).

Thus, our takeaway from our analysis is that (1) it is relatively easy to increase the
external IO bandwidth of DRAM, but (2) the internal bandwidth is bottlenecked by the
number of global bitlines and global sense amplifiers, whose bandwidth is much more
costly to increase. Based on this analysis, we observe that even though 3D-stacked
DRAM can potentially enable much greater external bandwidth, the limited internal
bandwidth on the global bitline interface significantly restricts the overall available
DRAM bandwidth.

2.4. Bandwidth Versus Global Sense Amplifiers

Figure 5 shows the relationship between the overall bandwidth of DRAM-based mem-
ory systems (one chip for conventional DRAM, four layers for 3D-stacked DRAM) and
the number of global sense amplifiers (and hence the global bitlines as well) in a
DRAM chip. We conservatively plot the minimum number of global sense amplifiers
that achieves the corresponding bandwidth in each design. For example, for DDR3
DRAM with an x16 IO bus and a burst length of 8, we assume that it contains only 128
global bitlines and sense amplifiers.

As Figure 5 shows, the bandwidth of DRAM has mostly been a linear function of
the number of global sense amplifiers across several generations. In early DRAMs,
the number of global sense amplifiers was small (e.g., 64 for a DDR2 chip). Therefore,
DRAM vendors scaled the global bitline interface to increase the bandwidth. However,
recently proposed 3D-stacked DRAMs [JEDEC 2011, 2013a, 2014] drastically increase
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Fig. 5. DRAM bandwidth versus global sense amplifiers (for DRAMs with internal frequency of 200MHz).

the number of global sense amplifiers. For example, HBM [JEDEC 2013a; Lee et al.
2014] offers the highest bandwidth but requires a large number of global sense ampli-
fiers (16 times more than DDR3). This drastic increase comes from introducing TSV
technologies that enable a wider, area-efficient bus. In the presence of the wider bus,
the dominant bottleneck in achieving higher bandwidth has now shifted to the efficient
implementation of global sense amplifiers.

We estimate the area of global sense amplifiers (and their corresponding control
logic) to be 5.18% of the total chip area in a 55nm DDR3 DRAM [Vogelsang 2010;
Rambus 2010]. Taking into account (1) the large area of global sense amplifiers in
DDR3 and (2) the recent increase in the number of sense amplifiers in 3D-stacked
DRAMs, we expect that adding more of the expensive global sense amplifiers will
become increasingly cost-inefficient. Unfortunately, 3D-stacked DRAM bandwidth is
bottlenecked by the number of global sense amplifiers (as we explained in Section 2.3).

Our goal in this work is to enable higher DRAM bandwidth without requiring more
global sense amplifiers. As we explain in Section 3, we enable much higher bandwidth
at low cost using the existing structures in 3D-stacked DRAM (instead of adding more
global sense amplifiers), with the goal of approaching the ideal case of high bandwidth
at low cost (the top left corner of Figure 5).

3. OPPORTUNITIES FOR INCREASING BANDWIDTH

Even though 3D-stacked DRAM integrates a much wider external IO bus through the
use of TSVs, the limited internal bandwidth within the DRAM chip prevents us from
extracting the full data transfer rate of this wider external IO interface, as we analyzed
in Section 2.3. While one solution may be to increase the number of global bitlines and
sense amplifiers, this can be a costly prospect (as we showed in Section 2.4). Instead,
we would like to investigate orthogonal approaches that exploit the existing DRAM
structures more efficiently to overcome the global bitline bottleneck.

We examine the architectural similarities and differences between 3D-stacked
DRAM and conventional DRAM modules and use this comparison to identify chal-
lenges and opportunities that are unique to the 3D-stacked DRAM design. We use
these observations to drive our low-cost approach. To aid with this comparison, we
provide a side-by-side logical view of these two architectures in Figure 6 and focus on
three major observations:

(1) Each layer in the 3D-stacked DRAM acts as a rank, operating independently of each
other but sharing the IO interface, which is similar to the rank organization of a
conventional DRAM module.
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Fig. 6. Off-chip bus connections for existing (a, b) and proposed (c, d) DRAMs.

Figure 6(a) shows a conventional DRAM module that has two ranks, each consisting
of four DRAM chips. All DRAM chips in a rank share the control logic and operate
in lockstep. The two ranks share IO interfaces, so data from different ranks must
be transferred serially to avoid contention. Figure 6(b) shows the organization of a
3D-stacked DRAM that has two stacked layers. Similar to the multi-rank DRAM
module, each layer in the 3D-stacked DRAM can operate independently but still
shares the IO interface (TSV connections). Therefore, the TSV interface transfers
data from different layers serially (i.e., only one layer can send data at a time).

(2) Only one stacked chip forms a rank in 3D-stacked DRAM, compared to multiple
chips in a conventional DRAM module.
Figure 6(a) shows four conventional x16 DRAM chips forming a rank by dividing
the 64-bit IO bus into four smaller 16-bit IO buses, with each smaller bus connected
to a different chip. In contrast, each 3D-stacked DRAM layer is made up of a single
chip, with the entire TSV bus connected to it (see Figure 6(b)).

(3) Each layer of 3D-stacked DRAM has two ports that can be easily decoupled by the
peripheral logic, whereas conventional DRAM has only a single port.
As shown in Figure 2(b), each stack layer in 3D-stacked DRAM is connected to its
neighboring upper stack layer through the topmost metal layer. Each stack layer is
also connected to its lower stack layer through one of its middle metal layers. These
two metal layers can be connected within the DRAM stack layer by either fixed
vias or peripheral logic. These two different metal layers form two independent IO
ports, whose connectivity can be controlled by peripheral logic. Therefore, the two
IO ports in each stack layer are connected but can be easily decoupled to support
independent data transfers on each port.

As we described in Section 2.3, the major bandwidth bottleneck in a 3D-stacked
DRAM-based memory system is the internal global bitline interface. Our approach to
solve this problem is inspired by the organization of the conventional DRAM module,
where multiple DRAM ranks operate simultaneously, thereby increasing the overall
bandwidth of the memory system (Figure 6(a)). From our observations, we conclude
that the ability to decouple input ports to each layer in the 3D-stacked DRAM can
allow us to treat multiple layers similar to the way we treat multiple ranks within a
DRAM module. Thus, we would like to make multiple layers operate simultaneously to
transfer more data within a given time. We will describe our mechanisms that enable
this in the next section.

4. SIMULTANEOUS MULTI-LAYER ACCESS

We propose Simultaneous Multi-Layer Access, a new mechanism that enables the con-
current use of multiple stack layers (chips) within 3D-stacked DRAM to fully utilize
the TSV-based IO bandwidth. SMLA exploits existing DRAM structures within the
chip by altering the IO logic to include multiplexing that supports these concurrent
operations. This allows the bandwidth gains obtained by SMLA to be complementary
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to the gains that could be otherwise obtained from scaling these DRAM structures (e.g.,
adding more global bitlines and sense amplifiers).

In this section, we describe two implementations for coordinating these multiplexed
IOs. The first, Dedicated-IO, statically partitions the TSV bus into several groups,
with each group dedicated to the IO of a single layer. The second, Cascaded-IO, time-
multiplexes the TSV bus instead of partitioning it across the layers, by exploiting our
observation that we can decouple the input ports to each layer (Section 3). As we will
discuss in Section 4.2, the Cascaded-IO implementation allows the circuit design of
each stack layer to be identical, reducing design effort (compared to Dedicated-IO), and
offers a more energy-efficient approach to implement SMLA.

4.1. Dedicated-IO

Dedicated-IO divides the wide TSV bus into several narrower groups, where each group
is statically assigned to a single layer in the 3D stack. In a modern 3D-stacked DRAM,
with a total IO width W = 128 bits, all layers share all W IO connections, as shown in
Figure 6(b). Each layer runs at frequency F, which allows it to transmit W bits per 1/F
time period. In comparison, a two-layer Dedicated-IO DRAM (Figure 6(c)) reserves W/2
IO connections for each layer, giving the layer exclusive access to those connections,
while driving the connections at 2F frequency. In general, for a 3D-stacked DRAM
with L layers and W IO connections, Dedicated-IO allows each layer to drive W bits
over W/L TSVs, at a frequency F × L (which the TSVs can already tolerate). Each layer
continues to send W bits per time period 1/F , so we can keep the number of global sense
amplifiers and bitlines the same as in the baseline 3D DRAM (W per layer). As each
layer has an exclusive set of TSVs, all L layers can now operate in parallel, allowing
our mechanism to send W × L bits (as opposed to only W bits) in aggregate over 1/F
time.

4.1.1. Implementation Details. Figure 7 compares the detailed organizations of an exist-
ing 3D-stacked DRAM (Figure 7(a)), where all layers share all TSVs, and a 3D-stacked
DRAM using Dedicated-IO (Figure 7(b)). To clearly explain the access scenarios for
both cases, we use a simplified organization of 3D-stacked DRAM consisting of two
layers, and we focus only on a 2-bit subset of each layer (i.e., the DRAM contains two
TSVs as IO for data transfer, and each layer has two bitlines that can deliver 2 bits ev-
ery clock period, which is 1/F for the baseline). In this example, the Dedicated-IO-based
3D-stacked DRAM dedicates TSV A to the lower layer (Layer 0) and dedicates TSV B
to the upper layer (Layer 1).

In the baseline 3D-stacked DRAM, only one selected layer (Layer 1 in this example)
can transfer data during a single clock period, but can use both TSV A and TSV B.
Therefore, Layer 1 transfers 1 bit per TSV (2 bits in total), while Layer 0 remains
inactive. On the other hand, for the Dedicated-IO-based 3D-stacked DRAM, Layers 0
and 1 can simultaneously transfer data through TSVs that have been dedicated to each
layer. As we discussed in Section 2, it is still possible to increase the IO frequency of
3D-stacked DRAM, as conventional DRAMs have a much higher IO frequency. There-
fore, by partitioning the TSVs across the two layers, the Dedicated-IO-based 3D-stacked
DRAM can transfer 2 bits of data from each layer during one baseline clock period (1/F)
by doubling the IO frequency. As a result, Dedicated-IO enables twice the bandwidth
of existing 3D-stacked DRAM by (1) simultaneously accessing both layers (doubling
the available data per TSV), and (2) transferring data at double frequency. Note that
this does not require any more or higher bandwidth global bitline interfaces within the
DRAM chip.

4.1.2. Implementation Overhead and Limitations. While Dedicated-IO enables much higher
bandwidth, there are several drawbacks in this implementation on a real memory
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Fig. 7. Enabling Simultaneous Multi-Layer Access with Dedicated-IO.

system. First, each layer of the 3D-stacked DRAM now requires physically different
connections. Therefore, the manufacturing cost of a Dedicated-IO-based 3D-stacked
DRAM may be higher than that of the baseline 3D-stacked DRAM. Second, with an
increasing number of layers, the IO clock frequency scales linearly, resulting in higher
dynamic energy consumption.

The scalability of Dedicated-IO can be limited by how fast the off-chip IO interface can
be clocked (we call this the maximum operating frequency Fmax), which is a physical
limitation of the TSVs. As we mentioned, for L layers and a baseline frequency F,
Dedicated-IO clocks the IO interface at frequency F × L. However, the Dedicated-IO
frequency can never exceed Fmax (i.e., F × L ≤ Fmax), which limits the value of L. We
discuss approaches to scale the number of layers beyond this limit, though at the cost
of bandwidth or additional area, in Section 4.3.

4.2. Cascaded-IO

While Dedicated-IO increases bandwidth by partitioning the TSV IO interface across
the layers (and running each DRAM layer at higher frequency), Cascaded-IO increases
bandwidth by time-slice multiplexing the TSVs across different layers (and having
different frequencies for different layers). Thus, Cascaded-IO keeps the structure of
each DRAM layer exactly the same, reducing manufacturing cost over Dedicated-IO.

As Figure 6(d) shows, we add a multiplexer to the IO interface at each layer, to take
advantage of the fact that each TSV can be broken into smaller segments. Each TSV
segment connects Layer n with Layer n + 1, which means that all middle layers are
connected to two segments (which we refer to as the upper and lower segments). This
multiplexer allows the layer to either transmit W bits of its own data or pass through
the W bits of data that are being transmitted by the upper TSV segment onto the lower
TSV segment. We can adjust the timing such that within a single clock period 1/F , a
layer first sends its own data down, and then sends all of the data from the upper
layers down in a pipelined fashion. The lowest layer therefore needs to send the data
for all L layers, which requires Cascaded-IO to also transfer data at F × L frequency
at that layer. However, layers further up the stack have to send less data overall, with
the uppermost layer responsible for sending only its own data. This mechanism is
only possible in a 3D-stacked DRAM that contains two independent ports connected
by peripheral circuits, as we discussed in Section 3.

4.2.1. Implementation Details. Figure 8(a) shows the vertical structure of Cascaded-IO
on a four-layer 3D-stacked DRAM. We again turn to a simplified example to illustrate
the operation sequence, this time focusing on a 1-bit subset of each layer, and with
all bits connected to the same TSV. In this setup, the clock frequency of the bottom
layer, with respect to the baseline DRAM clock frequency F, is 4F. For each TSV, the
data interface in each layer contains a multiplexer that selects from one of two paths:
(1) a connection to the upper TSV, which contains a bit being transmitted from one
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Fig. 8. Simultaneous Multi-Layer Access with Cascaded-IO.

of the upper stack layers, and (2) a data wire from the layer’s global sense amplifiers,
connected to its own cell.

In our example Cascaded-IO-based memory system, each layer transmits 4 bits in
the time period 1/F . A layer first fetches its own data from its cell. The multiplexer then
drives this data as the first data transfer, sending the data to the next layer below. The
layer then switches the multiplexer to receive data being transmitted from the layer
above, and over the next three cycles sends this data to the layer below. In essence,
this approach pipelines the data of all four layers over the four cycles, as shown in
Figure 8(b). Layer 1, for example, drives its own data in the first cycle, sending it to
Layer 0. In the second cycle, Layer 1 receives Layer 2’s data and sends that down to
Layer 0. At that same cycle, Layer 2 receives data from Layer 3 and sends that down
to Layer 1 so that in cycle three, Layer 1 can send the Layer 3 data down to Layer 0.

One side effect of this pipelined approach is that not all layers contain useful data
to send to the lower level every cycle. In our example, Layer 1 has nothing to send
in the fourth cycle, while Layer 3, with no layers above it, only sends useful data in
the first of the four cycles. As we show in Figure 8(b), when the IO is clocked at 4F
frequency (F × L), the layer-by-layer TSV bandwidth utilization shrinks from 100%
at Layer 0 down to 25% at Layer 3. Since the bandwidth in these upper layers goes
unused, it is wasteful to clock them at 4F frequency. We exploit this tiered utilization to
lower the energy consumed in the higher layers by simply running each layer at a lower
frequency that matches its actual bandwidth utilization. This frequency reduction at
upper layers decreases the energy consumption of a Cascaded-IO-based DRAM (we
show this in detail in Section 6).

Existing 3D-stacked DRAMs have a clock signal that typically originates from the
memory controller. This signal is then sent to the bottom layer of the 3D-stacked DRAM
and propagated to the upper layers via a TSV. In order to match the operating frequency
of each layer to its bandwidth utilization, we need to add an efficient way of performing
clock division at each layer (since an upper layer is never clocked faster than a lower
layer in Cascaded-IO). While phase-locked loops (PLLs [Novof et al. 1995]) are a con-
ventional way to generate clocks of arbitrary frequency, they consume large amounts
of energy, making them an infeasible option for our heterogeneous clock frequency do-
mains. Instead, Cascaded-IO adopts simple divide-by-two clock counters, which, when
enabled, can generate a half-frequency clock. Figure 8(a) shows the organization of the
clock path.

In our example, we increase the clock signal from the memory controller to 4F
frequency (instead of F), and then divide by two in some of the upper layers. One
drawback of only using divide-by-two clocks is that some layers do not receive the
optimal clock that matches their bandwidth utilization. For example, Layer 1 transmits
three bits of data, but since we can only generate clocks at frequencies 4F, 2F, F, etc.,
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we have no choice but to continue running Layer 1 at 4F frequency. However, we can
run Layer 2 at 2F frequency, and Layer 3 at F frequency. Generalized to L layers, the
lower half of the L layers run at frequency F × L, and then the next L/4 layers run at
frequency F×L

2 , the next L/8 layers at frequency F×L
4 , and so on. The uppermost layer

runs at frequency F. As not every layer performs clock division, we add a division
enable control to the clock counters to ensure that the design of each layer remains
identical.

Figure 8(c) illustrates how the timings and data transfer work with our reduced
clock mechanism. To avoid issues due to clock skew, the data multiplexer for a layer is
actually only responsible for synchronizing its own data. Afterward, when the multi-
plexer switches to “receive” data from the upper layer, it simply connects a bypass path
from the upper layer to the lower layer for the remaining cycles. This allows the upper
layer to directly send its data to the bottommost layer. Figure 8(c) depicts the timing
of this cut-through mechanism with skew. For example, in Layer 1, the data switches
from Layer 2’s bit to Layer 3’s bit in the middle of the Layer 1 clock cycle, since the
multiplexer in Layer 1 directly connects Layer 2 to Layer 0 without synchronization.

Figure 9(a) shows a detailed implementation of Cascaded-IO, focusing on the TSV
connections in a single DRAM layer. In each control signal TSV (i.e., clock, commands,
and addresses), Cascaded-IO requires a counter that passes these input signals
through three additional logic gates. To multiplex the data TSVs between the upper
and current layers, each data signal also passes through three additional logic gates
(two transistors for the latch, and one transistor for the multiplexer). In total, each
request incurs the delay of passing through six logic gates. Note that the DRAM cell
array and peripheral logic are still identical to the baseline 3D-stacked DRAM [Kim
et al. 2011]. Therefore, Cascaded-IO can be implemented with noninvasive logic
modifications. Considering that there is precedence for (1) using simple frequency
dividers such as counters to enable multiple high-speed frequency domains [Larsson
1996; Borkar 2007], and (2) using simple transmission gates for data multiplexing [Oh
et al. 2014], our additional TSV logic can be easily integrated into 3D-stacked DRAM
designs.

Figure 9(b) shows in detail how data is transferred through two layers in Cascaded-
IO. At the start of clock period T , the DRAM periphery in the lower layer transfers its
data to the data TSV. At T + α, the DRAM periphery in the upper layer transfers
its data to the data TSV. α represents the clock propagation delay for the clock path,
including delays due to the clock counter. Then, the data of the upper layer reaches the
lower layer data latch after an additional delay β. At the start of the subsequent clock
period (2T ), the upper layer data stored in the latch is transferred to the data TSV
at the lower layer. As Figure 9(b) demonstrates, Cascaded-IO first transfers the lower
layer’s own data, providing at least one complete clock period to wait for the upper
layer’s data to be latched. Therefore, as long as the additional delay (α + β) for passing
through the six logic gates introduced by Cascaded-IO is smaller than one clock period
(2.5ns in our evaluation), Cascaded-IO can ensure correct operation. Considering that
process technologies from 2007 enable gate delays as low as tens of picoseconds [ITRS
2007], a single clock period (e.g., 2.5ns for an 800MHz DDR interface) is more than
enough to hide the additional logic delay of Cascaded-IO.

4.2.2. Implementation Overhead and Limitations. To implement a Cascaded-IO-based TSV
interface, each DRAM chip needs to include two additional components:

(1) Clock control logic, which consists of a counter to halve the clock signal frequency,
and delay logic (for every command and address signal) to synchronize the corre-
sponding signals to match the clock propagation delay.
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Fig. 9. Detailed implementation and operation of Cascaded-IO.

(2) Data multiplexing logic, which consists of a data latch to temporarily preserve the
upper layer data, and a multiplexer and associated control logic to switch the TSV
connection between two data sources (the data latch with upper layer data, and
the data being driven from the current layer).

The counter and multiplexer have very simple designs and only require a small
number of transistors, resulting in negligible area overhead. Similar and more sophis-
ticated counters may be needed to implement dynamic frequency scaling in memory
chips [David et al. 2011; Deng et al. 2011]. The multiplexer control for each layer also
contains a counter and connects its IO drivers to the lower TSVs whenever the counter
value is 2’b00. For all other values, the control switches the multiplexer to connect
the input from the upper layer to the lower TSV. The overhead and complexity of the
control logic are also negligible.

Like Dedicated-IO, Cascaded-IO has some limitations on the number of layers that
can be implemented. For example, the number of layers is limited by the amount of
time required for a data signal to traverse over the multiple layers. We discuss how to
overcome these limits for larger layer counts in Section 4.3.

4.2.3. Power Consumption Overhead. Due to the different frequencies and data band-
width at each layer, the bottom layer in Cascaded-IO consumes more power than
the upper layers. As the power network is driven from the bottom, power delivery
is strongest in the lowest layer of 3D-stacked DRAM and weaker in the upper lay-
ers [Shevgoor et al. 2013]. As we discussed in Section 4.2.1, Cascaded-IO reduces
power consumption at these upper layers, which as a byproduct allows the layers of
Cascaded-IO to align well with the power network strength at each layer. While the
bottom layer operates at 4F frequency, the upper layers have lower clock frequencies
that match their much lower bandwidth requirements (e.g., the topmost layer is clocked
at frequency F). Therefore, while the physical design of each layer remains homoge-
neous, we can minimize power consumption by introducing heterogeneity in the layers’
operating frequencies. Such an approach has much lower power consumption than if
we were to run all of the layers at 4F frequency (as is done in Dedicated-IO).

4.3. Scaling to Large Numbers of Layers

So far, we have discussed a 3D-stacked DRAM organization that has four layers. How-
ever, both Dedicated-IO and Cascaded-IO can be applied to larger numbers of stacked
layers, with a tradeoff between bandwidth and area cost. To show this, we explain
next how our mechanism can be implemented on an eight-layer stack. Note that the
number of layers that can be stacked mostly depends on the TSV technology. Our
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mechanisms (both Dedicated-IO and Cascaded-IO) do not further limit 3D-stacked
DRAM scaling (i.e., integration of more layers), but they themselves do have some
scalability limitations.

For Dedicated-IO, the major limiter for scaling to larger numbers of layers is the
maximum operating frequency (Fmax), as described in Section 4.1.2. There are two pos-
sible approaches to implement eight-layer stacking that work around the maximum
frequency limitation. Approach 1, which is simpler, provides dedicated TSV IO inter-
faces for each layer. Compared to four-layer stacks, eight-layer stacks require twice the
number of TSVs, and thus provide twice the bandwidth. Approach 2 is to have pairs
of layers (i.e., two 4-layer groups for eight-layer stacking) share a single set of TSV IO
interfaces, as shown in Figure 10(a). Therefore, the TSV interface in the eight-layer
stack is the same as that in the four-layer stack, but this means that the bandwidth
also remains unchanged compared to the four-layer stack. In this case, only one of the
two-layer groups can be accessed at any given time.

For Cascaded-IO, there are two limiters to increasing the number of layers. The
first limiter is burst length. Each layer of Cascaded-IO must provide data to the TSV
IO interfaces for every access. Therefore, the maximum number of stacking layers can
never exceed the burst length. The second limiter is the amount of time available to hide
the multi-layer traversal latency. Approach 1 to avoid these limiters is to implement
independent TSV IO interfaces for two groups of four layers each, which essentially
combines Dedicated-IO and Cascaded-IO. Such an approach doubles bandwidth at the
cost of twice the TSV count. Approach 2 again splits the layers into two groups of four
layers each, but the groups now share their TSV interfaces as shown in Figure 10(b).
This approach enables eight-layer stacking within the same TSV cost of four-layer
stacking but lacks the additional bandwidth. As shown in Figure 10(b), layers operating
at the same clock frequency are located adjacently, in order to maintain the same clock
division path as the four-layer design.

These approaches can be applied to scale to even larger numbers of layers, but they
come with similar tradeoffs to the eight-layer case earlier.

5. RANK ORGANIZATIONS WITH MULTIPLE LAYERS

In DRAM, a rank is a collection of DRAM chips that operate in lockstep. A rank-
based organization allows pieces of a row to be split up and distributed across these
chips, since they logically operate as a single structure. For example, a read command
accesses all chips in the rank, retrieving a portion of the data from each chip. Existing
3D-stacked DRAMs treat each layer as a single rank, as only one of these layers can
be accessed at a time. SMLA opens up new possibilities for rank organization, since
it enables multiple DRAM layers to be accessed simultaneously. In this section, we
explore two such organizations: Multi-Layer Ranks (MLR) and Single-Layer Ranks
(SLR). Figure 11 compares these rank organizations in a two-layer 3D-stacked SMLA
DRAM. In MLR, all of the layers work together as a single rank, and the data for a
single memory request is distributed across all of the layers, as shown in Figure 11(a).
On the other hand, SLR treats each stack layer as an independent rank, as is done in
existing 3D-stacked DRAM, which means that for each memory request, all of the data
is contained within a single layer, as shown in Figure 11(b).

The two organizations represent a new tradeoff between data transfer latency and
rank-level parallelism. Figure 12 shows the timeline of serving requests using MLR
and SLR in a two-layer stacked DRAM, for both Dedicated-IO and Cascaded-IO. To
show the data flow of Dedicated-IO, the TSVs are divided into two IO groups, with
each group connected to only one of the two layers in Dedicated-IO. (To consistently
illustrate how data is transmitted in Cascaded-IO and Dedicated-IO, we also show IO
groups in the timeline of Cascaded-IO, but Cascaded-IO does not actually divide the
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Fig. 10. Eight-layer 3D-stacked DRAM with simultaneous access to four layers.

Fig. 11. Rank organization in SMLA.

Fig. 12. Request service timeline for SMLA with different rank organizations.

TSVs into groups.) MLR merges both layers into a single rank, while SLR has two
ranks.3 We illustrate the timeline for serving three requests, each of which requires
four data transfers through an IO group.

SMLA with Multi-Layer Ranks. MLR is similar to the current rank organization
of conventional DRAM, with multiple layers sharing a common command interface. In
our example MLR-based memory system (for either Dedicated-IO or Cascaded-IO), the
data is transferred through both IO groups, requiring two clock cycles to serve a request

3In our example, each DRAM layer consists of two banks (four banks in two layers). For MLR, two physical
banks in different layers work together, forming a single logical bank (two logical banks in total), while for
SLR, the four banks work independently. In the case of MLR, this results in logical banks with double the
capacity of the banks in SLR.
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(Request 1 in Figure 12(a)). Note that while both Dedicated-IO and Cascaded-IO have
the same timeline, the data being served resides in two different physical locations.
In Dedicated-IO, the data for IO Group 0 comes from one layer (i.e., the bottom layer)
and the IO Group 1 data comes from the other (top) layer. In Cascaded-IO, the first
piece of data for both IO groups comes from the bottom layer, while the second piece
comes from the top layer. The third request in our sequence has an access to the same
bank and rank as the first request. Therefore, there is a delay before serving the third
request due to a bank conflict [Kim et al. 2012].

SMLA with Single-Layer Ranks. In a Dedicated-IO-based memory system with
SLR (Figure 12(b)), each layer is a rank and has its own IO group. Therefore, a request
to a rank transfers data only over its assigned group, requiring four clock cycles to
serve a request. On the other hand, Cascaded-IO with SLR (Figure 12(c)) partitions its
data transfer cycles in a round-robin fashion, with each layer having an assigned time
slot (once every L cycles). In Figure 12(c), Rank 0 corresponds to the bottom layer, and
Rank 1 to the top layer. We assign the bottom layer (Rank 0) requests to the odd time
slots, and the top layer (Rank 1) requests to the even time slots. In this way, the first
and third data bursts represent the first complete request to Rank 0. When our third
request is serviced, since the Cascaded-IO time slot assignments are fixed, there is a
hole in between its data bursts, since Rank 1 does not have any requests to serve (as
our example has only three requests).

Tradeoff: MLR Versus SLR. For the two-layer stack in our example, MLR can fully
service an individual request within two cycles, through the use of both IO groups. In
contrast, SLR takes up to four cycles to service each request but can deliver two requests
in that time, since it can overlap latencies for accesses to different ranks. MLR therefore
better supports latency-bound applications that do not issue large numbers of memory
requests. SLR, on the other hand, is better tuned for memory-level parallelism, as
it exposes a greater number of ranks. As we can see in Figure 12, the third request
experiences less delay in SLR because the larger number of available ranks reduces
the probability of bank conflicts.

While we have considered two extremes of rank organization (one layer per rank vs.
using all layers to form a rank), it is possible to pick a design point in the middle (e.g.,
two ranks in a four-layer memory, with two layers per rank). We leave the evaluation
of such organizations as future work.

6. ENERGY CONSUMPTION ANALYSIS

In order to deliver greater memory bandwidth, SMLA increases the memory channel
frequency, which can change DRAM energy consumption significantly. In this section,
we analyze this energy consumption using energy data from other high-frequency
DRAMs. We first determine how each component of the current used within a conven-
tional DRAM (DDR3) scales with clock frequency, and then use these observations to
estimate the energy consumption of our proposed designs.4

Figure 13 plots the components of current for DDR3 at four different IO frequencies
(1066, 1333, 1600, 1866MHz), based on manufacturer specifications [Micron 2014].
Each component is tied to a particular action within DRAM. We group these compo-
nents into three categories and analyze whether current and IO frequency are coupled
for each category. For commands issued in active mode (component IDD1), including ac-
tivation, read, and precharge, we observe that cutting the IO frequency in half reduces
current (and therefore energy consumption) by 10% to 15%. During power-down (com-
ponents IDD2P and IDD3P), since the DRAM stops the internal clock to reduce current,

4Recent work [David et al. 2011] provides a detailed analysis of the relationship between DRAM energy and
frequency.
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Fig. 13. DDR3 current trend over channel frequency.

we find that the current remains constant despite any change to IO frequency. For
standby mode (components IDD2N and IDD3N), we find a stronger coupling, as cutting
IO frequency in half reduces the current flow by 20% to 30%.

We draw two observations from these results. First, increasing the IO frequency
leads to greater current flow (and thus larger energy consumption) within DRAM,
except during power-down. Second, the increase in current flow (energy consumption)
is approximately linear to the frequency across all of our observed IO frequencies.

We combine our observations with both DRAM energy estimation tools [Rambus
2010; Vogelsang 2010; Micron 2010] and prior measurements of 3D-stacked DRAM
energy consumption (operating at 200 and 266MHz) [Chandrasekar et al. 2013], to
estimate 3D-stacked DRAM energy consumption across a wide range of IO frequencies
(200–1600MHz). To do so, we extract two current sources: (1) current coupled with the
clock (standby energy consumption in both active and standby modes) and (2) current
decoupled from the clock (power-down current, and constant current consumed by
operations such as activation, read, and precharge). Table I lists our estimates of 3D-
stacked DRAM energy consumption for various operations, at four IO frequencies. As
we expect, a large fraction of energy consumed in standby mode is coupled with the IO
frequency. We use these estimates to evaluate overall DRAM energy consumption in
Section 8.

7. METHODOLOGY

We use a cycle-accurate DRAM simulator, Ramulator [Kim et al. 2015], which models
3D-stacked memory. The front end of our simulator is based on Pin [Luk et al. 2005;
Patil et al. 2004] and models processor cores, caches, and memory controllers.

We use an existing 3D-stacked DRAM, Wide I/O [JEDEC 2011], as our baseline. More
recent 3D-stacked DRAM proposals (Wide I/O 2 [JEDEC 2014], HMC [Hybrid Memory
Cube Consortium 2013, 2014], HBM [JEDEC 2013a; Lee et al. 2014]) can enable
more bandwidth at the expense of greater area and power consumption (as shown in
Section 2.4). As we discussed, the key advantage to our mechanisms (Dedicated-IO and
Cascaded-IO) is our ability to deliver competitive bandwidth to these high-bandwidth
proposals at a much lower cost than these recent proposals (due to the smaller
number of global bitlines and sense amplifiers). It is also important to note that
simply performing bandwidth scaling (as Wide I/O 2, HMC, and HBM have done) will
eventually be constrained by the area and power overhead of the extra global sense
amplifiers required. We show that our mechanisms overcome this challenge with a
large reduction in global sense amplifier count. SMLA can still be used on top of these
more recently proposed DRAM architectures to further increase off-chip bandwidth.

We evaluate our mechanisms for 3D-stacked DRAM with two/four/eight layers, with
a corresponding increase in IO frequency of 2/4/8 times, respectively, over conven-
tional 3D-stacked DRAM. We evaluate two rank organizations (Single-Layer Ranks
and Multi-Layer Ranks). Table II summarizes the parameters for the baseline 3D-
stacked memory system and our proposed memory systems, which, unless otherwise
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Table I. Estimated Energy Consumption at Different Frequencies

Data Frequency (MHz) 200 400 800 1,600
Power-Down Current (mA, IDD2P) 0.24 0.24 0.24 0.24
Precharge Standby Current (mA, IDD2N) 4.24 5.39 6.54 8.84
Active Standby Current (mA, IDD3N) 7.33 8.50 9.67 12.0
Active Precharge Energy w/o Standby (nJ, extracted from IDD1) 1.36 1.37 1.38 1.41
Read Energy w/o Standby (nJ, extracted from IDD4R) 1.93 1.93 1.93 1.93
Write Energy w/o Standby (nJ, extracted from IDD4W) 1.33 1.33 1.33 1.33

Table II. 3D-Stacked DRAM Configurations Evaluated

IO Interface Baseline Dedicated-IO Cascaded-IO
Rank Organization SLR MLR SLR MLR SLR
Number of Ranks 4 1 4 1 4
Clock Frequency (MHz) 200 800 800 800 800
Bandwidth (GBps) 3.2 12.8 12.8 12.8 12.8
Data Transfer Time (ns) 20.0 5.0 20.0 5.0 18.1†
No. of Simultaneously Accessible Layers 1 4 4 4 4
Global parameters: 4 layers, 2 banks/rank, 128 IOs/channel, 64 bytes/request.
†Average data transfer time of layers from bottom to top: 16.25ns/17.5ns/18.75ns/20ns.

noted, consist of four stacked layers and operate at 4 times the baseline system’s IO
frequency for our evaluation.

Table III shows the evaluated system configuration. We use a single-channel mem-
ory system for our single-core evaluations, and a four-channel system for multicore
evaluations (identical to the configuration used in Wide I/O [JEDEC 2011]). Virtual
memory pages are mapped to physical pages randomly across the layers.

We use 31 applications from the SPEC CPU2006 [SPEC 2006], TPC [TPC 2015], and
STREAM [McCalpin 2007] application suites. For single-core studies, we report results
that are averaged across all applications. For our multicore evaluation, we generate 16
multiprogrammed workloads for each case (four to 16 cores/two to eight stacked layers)
by randomly selecting from our workload pool.

We execute all applications for 100 million instructions, similar to many prior
works [Stuecheli et al. 2010; Mutlu and Moscibroda 2007; Chou et al. 2004; Kim et al.
2012; Mutlu and Moscibroda 2008; Kim et al. 2010a, 2010b; Lee et al. 2010; Muralid-
hara et al. 2011] that also studied memory systems. For multicore evaluations, we
ensure that even the slowest core executes 100 million instructions, while other cores
continue to exert pressure on the memory subsystem. To measure performance, we use
instruction throughput (IPC) for single-core systems and weighted speedup [Snavely
and Tullsen 2000; Eyerman and Eeckhout 2008] for multicore systems.

8. EVALUATION

In our experiments for both single-core and multicore systems, we compare three dif-
ferent 3D-stacked DRAM designs: (1) the baseline 3D-stacked DRAM (Baseline SLR
in Table II), (2) SMLA using Dedicated-IO (DIO), and (3) SMLA using Cascaded-IO
(CIO), in terms of both performance and DRAM energy consumption.

8.1. Single-Core Results

Figure 14 compares the SMLA-based designs (Dedicated-IO and Cascaded-IO) to the
baseline 3D-stacked DRAM. We present only 24 applications whose MPKIs (last-level
cache Misses-Per-Kilo-Instructions) are larger than 1. The other benchmarks (MPKI <
1) show performance changes of less than 1%. We present both the geometric mean of
these 24 memory-intensive workloads (gmean-intensive) and the geometric mean of all
31 workloads (gmean-all).
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Table III. Configuration of Simulated System

Processor 1–16 cores, 3.2GHz, 3-wide issue,
8 MSHRs, 128-entry instruction window

Last-Level 64B cache line, 16-way associative,
Cache 512KB private cache slice per core
Memory 64/64-entry read/write queues/controller,
Controller FR-FCFS scheduler [Rixner et al. 2000]
Memory System 2–8 layer 3D-stacked DRAM, 1–4 channels

Fig. 14. Single-core system performance (top) and DRAM energy reduction (bottom) of SMLA, normalized
to the baseline 3D-stacked DRAM system (higher is better).

All three 3D-stacked DRAM designs have four stack layers (see Table II). By accessing
those four layers simultaneously, SMLA-based mechanisms provide four times more
bandwidth compared to the baseline. Each mechanism was evaluated with two rank
organizations from Section 5: Single-Layer Rank (Figure 14(a)), and Multi-Layer Rank
(Figure 14(b)). For each application, the figures show two metrics: (1) the performance
improvement of SMLA-based mechanisms compared to the baseline and (2) the DRAM
energy reduction of SMLA-based mechanisms relative to the baseline. We draw three
major conclusions from Figure 14.

System Performance with Rank Organizations. First, SMLA-based mecha-
nisms provide significant average performance improvement in both rank organizations
over the baseline. However, individual applications show different performance benefits
depending on the rank organization.

In SLR (Figure 14(a)), both of our mechanisms improve performance for all memory-
intensive applications. The average improvement for memory-intensive applications is
25.2% and 31.6% for Dedicated-IO and Cascaded-IO, respectively (19.2%/23.9% aver-
aged over all 31 workloads). Intuitively, performance benefits are higher for applica-
tions with higher memory intensity (the MPKI of the seven leftmost applications is
less than eight, while the MPKI of the seven rightmost applications is more than 35).

In MLR (Figure 14(b)), while SMLA improves performance for most applications
compared to the baseline (by 8.8% on average for both Dedicated-IO and Cascaded-IO,
across all 31 workloads), there are a few applications that experience performance
degradation. Note that even though both Dedicated-IO and Cascaded-IO enable much
higher bandwidth, these mechanisms with MLR have only one rank per channel. This
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reduces the number of opportunities for rank-level parallelism. As a result, several
applications (e.g., hmmer, zeusmp, leslie3d, GemsFDTD, sphinx3, omnetpp) that ben-
efit more from having higher rank-level parallelism (in the baseline) than from having
higher bandwidth (in MLR) experience performance loss.

For most applications, SMLA with SLR provides better performance compared to
MLR. There are, however, a few noticeable exceptions (e.g., libquantum, h264ref)
where Dedicated-IO and Cascaded-IO show better performance improvement with
MLR. These applications are more latency sensitive, and hence they benefit more from
the low latency in MLR than from rank-level parallelism in SLR.

System Performance with SMLA Designs. Second, Cascaded-IO usually provides
better performance improvements than Dedicated-IO in SLR. This is because Cascaded-
IO has a lower average latency than Dedicated-IO in SLR. However, in MLR, both
mechanisms have the same latency (as shown in Table II). Furthermore, the upper
layers in Cascaded-IO operate at a lower frequency, leading to a reduction in the
command and address bandwidth for the upper layers, which in turn degrades the
latency of some accesses that map to the upper layers. As a result, in MLR, Dedicated-
IO shows slightly better performance than Cascaded-IO.

DRAM Energy Consumption. Third, Cascaded-IO provides lower DRAM energy
consumption than Dedicated-IO due to the reduction in the frequency of the third and
fourth layers. However, due to the increase in the average frequency of the layers (and
especially for the lower layers in Cascaded-IO), both Dedicated-IO and Cascaded-IO
consume more DRAM energy compared to the baseline (10.1%/5.2% more with SLR
and 13.1%/8.5% more with MLR, respectively), as seen in Figure 14.

8.2. Multicore Results

System Performance. Figure 15(a) shows the system performance improvement for
our mechanisms in multiprogrammed workloads. Similar to the single-core results
with SLR, both Dedicated-IO and Cascaded-IO provide significant performance im-
provements over the baseline in all system configurations. On average, Dedicated-IO
improves performance by 14.4%/28.3%/50.4% for four-/eight-/16-core systems, respec-
tively, while Cascaded-IO improves performance by 18.2%/32.9%/55.8%. As memory
bandwidth becomes a bigger bottleneck with more cores, the performance benefits of
our mechanisms increase. Due to the reduction in rank-level parallelism, the perfor-
mance benefits of our mechanisms using MLR are lower than with SLR.

DRAM Energy Consumption. In the multicore case, our mechanisms reduce the
DRAM energy consumption significantly using SLR, with respect to the baseline. De-
spite the additional power consumption, SMLA greatly reduces the execution time of
our applications, resulting in much lower DRAM energy consumption.

We see that unlike in the single-core case, our mechanisms with SLR actually deliver
significant DRAM energy reductions as the number of cores (and therefore memory
contention) increases. Figure 15(b) shows that Cascaded-IO with SLR reduces average
DRAM energy consumption by 1.9%/9.4%/17.9% for four/eight/16 cores, respectively.
This reduction mainly comes from the reduced contention in the memory system,
leading to lower overall execution times for our workloads. Unlike SLR, MLR is geared
toward latency and not parallelism, and as such is unable to ease the contention
pressure as well, resulting in increased DRAM energy consumption. We conclude that
SMLA with SLR is very effective at both improving system performance and reducing
DRAM energy consumption.

8.3. Sensitivity to the Number of Stack Layers

The maximum bandwidth improvement in our mechanisms depends on the number of
stack layers whose global bitline interfaces can operate simultaneously. For example, in
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Fig. 15. Multicore evaluation (four/eight/16 cores, four layers), normalized to the baseline.

a two-layer stacked memory system, our mechanism can enable twice the bandwidth of
the baseline 3D-stacked DRAM (4/8 times the bandwidth for four-/eight-layer DRAM,
respectively). Figure 16 shows the system performance improvement and DRAM en-
ergy reduction of our mechanisms in two- to eight-layer 3D-stacked DRAM. We use
eight-core multiprogrammed workloads, and our evaluated memory system has four
channels.

Two observations are in order. First, as expected, the performance improvement
and DRAM energy reduction of our mechanisms with SLR grow with the number of
stack layers in DRAM. At the same time, we observe fewer performance benefits in
eight-layer stacked DRAM with MLR, mainly due to reduction in the number of ranks
(one rank in the MLR-based system vs. eight ranks in the baseline system). Second,
a 3D-stacked DRAM with more layers (e.g., an eight-layer stacked DRAM) has better
performance with Dedicated-IO than with Cascaded-IO, due to the reduced frequency
of the higher layers in Cascaded-IO, as this leads to a reduction in the command
bandwidth of upper layers. We conclude that the benefits of our mechanisms scale with
the number of layers in 3D-stacked DRAM.

8.4. DRAM Energy Consumption with Varying Memory Intensity

Figure 17 shows the DRAM energy consumption of SMLA as we vary the memory
intensity (MPKI) of a microbenchmark, which is similar to GUPS [Univ. of Tennessee
2015], in two different ways. First, we plot the absolute DRAM energy consumed when
executing 100 million instructions (Figure 17(a)). As expected, the DRAM energy con-
sumption of all three mechanisms grows with memory intensity (21 times more DRAM
energy consumed at 51.2 MPKI than at 0.1 MPKI). Second, we analyze the relative
DRAM energy increase when executing the same microbenchmarks (Figure 17(b)). We
observe that the amount of DRAM energy increase for SMLA (relative to the baseline)
significantly reduces at higher MPKIs. This is because, at high memory intensities,
DRAM consumes more energy to serve more memory requests, and the amount of
energy consumed by these requests is much less dependent on IO frequency than in
low memory intensities. In other words, as much more DRAM energy is consumed
by the baseline at higher memory intensities (Figure 17(a)), SMLA’s relative energy
overhead is much smaller at higher memory intensities (Figure 17(b)). We conclude
that SMLA’s energy overhead is low for memory-intensive workloads, where memory
energy is a more important problem.

Cascaded-IO always consumes less energy than Dedicated-IO for our microbench-
mark (about 30% lower), due to the lower energy consumed by the slower upper lay-
ers in Cascaded-IO. Based on this analysis, we conclude that (1) SMLA can increase
DRAM energy consumption, but this overhead is relatively small compared to the
overall DRAM energy when running memory-intensive applications, and is also small
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Fig. 16. System performance and memory energy sensitivity to layer count (eight cores, two/four/eight
layers), normalized to the baseline.

Fig. 17. Memory intensity versus DRAM energy consumption with SMLA (over baseline).

compared to the overall DRAM energy when applications are not memory intensive,
and (2) Cascaded-IO provides better DRAM energy efficiency than Dedicated-IO.

8.5. Thermal Analysis

A DRAM cell leaks charge over time and loses more charge at higher tempera-
tures [Restle et al. 1992; Yaney et al. 1987; Mori et al. 2005; Khan et al. 2014; Liu et al.
2013]. Therefore, DRAM needs to refresh cells more frequently at higher temperatures,
which can potentially lead to some performance loss [Liu et al. 2012, 2013; Chang
et al. 2014; Qureshi et al. 2015]. To understand the thermal characteristics of our
proposed mechanisms, we generate four thermal models of 3D-stacked DRAM using
HotSpot [Huang et al. 2004]: (1) a baseline Wide I/O (Wide-I/O-200, operating at
200MHz), (2) a high-frequency Wide I/O that contains four times as many global sense
amplifiers (Wide-I/O-1600, operating at 1600MHz), (3) Cascaded-IO (1600MHz), and
(4) Dedicated-IO (1600MHz). Figure 18 compares the operating temperatures of these
four models at each DRAM layer, with a workload that exerts full load on the TSV
channel by issuing read requests with minimum delay. Compared to the baseline
Wide-I/O-200, implementing Wide I/O at higher frequency (Wide-I/O-1600) increases
the operating temperature by 13◦C, mainly due to the activation of more global sense
amplifiers and the increased clock frequency. Dedicated-IO operates at even higher
temperatures than Wide-I/O-1600 (by 5.4◦C), even though both Wide-I/O-1600 and
Dedicated-IO have the same bandwidth and clock frequency. This is because Dedicated-
IO simultaneously activates more layers (all four layers) than Wide-I/O-1600 (only
one layer), leading to greater standby power consumption. Cascaded-IO operates at
a higher operating temperature than Wide-I/O-200, but at a lower temperature than
Wide-I/O-1600 and Dedicated-IO, due to the reduced upper layer clock frequencies.

Despite these increased temperatures over Wide I/O, it is important to note that
contemporary DRAM specifications are designed to allow normal DRAM operation and
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Fig. 18. Temperature analysis (ambient temperature: 45 ◦C).

refresh interval at temperatures as high as 85◦C [Micron 2014; JEDEC 2012a], which
is much higher than the temperatures observed for any of these models. Based on this,
we conclude that Cascaded-IO achieves both higher bandwidth (than Wide-I/O-200)
and lower area cost (than Wide-I/O-1600) at reasonable operating temperatures.

9. RELATED WORK

To our knowledge, this is the first work that (1) enables higher bandwidth at low cost
by leveraging the existing global bitline interfaces in multiple layers of 3D-stacked
DRAM and (2) provides higher bandwidth with low energy consumption by optimizing
IO frequency individually for each layer in 3D-stacked DRAM. In this section, we
discuss the prior works that aim to improve memory system bandwidth.

Bank Groups. LPDDR3 [JEDEC 2013b] and DDR4 [JEDEC 2012b] categorize
banks into multiple groups (bank groups), where each group has its own set of global
sense amplifiers. LPDDR3 and DDR4 increase the internal DRAM bandwidth by si-
multaneously accessing each bank group. In contrast, our design provides higher band-
width in 3D-stacked DRAM by aggregating the DRAM internal bandwidth of multiple
layers. These two approaches are orthogonal to each other and can be applied together
to further increase the bandwidth in 3D-stacked DRAM.

High Bandwidth Memory. HBM [JEDEC 2013a; Lee et al. 2014] enables high
bandwidth (128GBps) 3D-stacked DRAMs by (1) adding extra global bitlines per chip
(2 times compared to Wide I/O), (2) allowing simultaneous accesses to different bank
groups that have their own set of global sense amplifiers (same as LPDDR3 and
DDR4 [JEDEC 2012b, 2013b]), and (3) aggregating the bandwidth of each layer by
assigning exclusive IO channels to each layer. In contrast, SMLA provides higher
bandwidth without adding any extra bitlines, by aggregating data available at dif-
ferent layers and transferring them simultaneously at a higher frequency. HBM can
achieve performance and energy efficiency similar to Dedicated-IO, but lower than
Cascaded-IO, while having higher cost than our proposals due to its doubling of the
global sense amplifiers (as shown in Section 2.4).

Hybrid Memory Cube. The Hybrid Memory Cube (HMC) [Hybrid Memory Cube
Consortium 2013, 2014] is a 3D-stacked DRAM that integrates a local memory con-
troller within the stacked memory, a major difference from Wide I/O. So far, we have
explained our mechanisms on top of the Wide I/O implementation, but our mechanism
can also be integrated easily on top of HMC. HMC consists of a bottom layer that has
a memory controller, and many stacked memory layers that contain the DRAM cells.
Basically, these upper memory layers are conceptually the same as a Wide I/O chip. As
such, our mechanisms can be implemented on top of the existing memory layer TSVs
within HMC in the same way that we described in Section 4.
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One major benefit of HMC is that it decouples the memory organization from the
processor and enables many lower-level optimizations at the local memory controller.
Our low-cost high-bandwidth mechanisms, when integrated within HMC, can also
benefit from such controller optimizations. For example, data for latency-critical appli-
cations can be allocated at lower layers in Cascaded-IO with SLR, as the lower layers
have a smaller latency than the upper layers. We believe that future work on such
optimizations can yield further performance improvements, building upon the new
SMLA substrate we propose (see Section 10).

3D-Stacked DRAM Studies. Prior works on 3D-stacked DRAM focused on utilizing
its higher capacity as cache, and as main memory [Black et al. 2006; Loh 2008, 2009;
Woo et al. 2010]. None of these works focus on solving the limited internal bandwidth
of DRAM in the presence of a wider IO interface.

Multiplexing TSVs. Like our Cascaded-IO design, Tezzaron’s DiRAM [Chapman
2013] also uses multiplexers to share TSVs. However, there are key architectural dif-
ferences. Unlike the more common and widespread 3D-stacked DRAM architectures
(e.g., Wide I/O, HBM, HMC), DiRAM removes most of its wordline and bitline decoding
logic from the DRAM cell layers, and instead places this logic in the lowermost layer
of the chip. To reduce the number of TSVs required for such an architecture, DiRAM
performs TSV multiplexing across several bitlines within a single layer, in effect per-
forming part of the decoding. In contrast, Cascaded-IO time-multiplexes data across
different 3D layers, after the peripheral logic inside each layer has performed decoding.
As the goal of TSV multiplexing in DiRAM is to reduce TSV count, there is no signifi-
cant performance benefit from the multiplexing. The multiplexing in Cascaded-IO, in
contrast, enables multiple layers in the widespread 3D DRAM architectures to operate
simultaneously, leading to higher bandwidth utilization.

Reconfiguring DIMM Organization. Mini-ranks [Zheng et al. 2008] enable in-
dependent accesses to subdivided ranks, similar to our mechanisms. However, our
mechanisms enable more bandwidth by mitigating the internal bandwidth bottleneck
of 3D-stacked DRAM, which is not possible with mini-ranks. By integrating a buffer on
DIMM, Decoupled-DIMM [Zheng et al. 2009] enables a higher-frequency memory chan-
nel by decoupling the memory channel from DRAM chips, similar to our mechanisms.
However, our mechanisms can be implemented with small changes to the 3D-stacked
DRAM, while Decoupled-DIMM requires an expensive high-performance buffer. Other
recent proposals to change DIMM organization [Malladi et al. 2012; Seshadri et al.
2015] are complementary to our proposals.

Multi-Layer Rank Organization. Loh [2008] introduces a 3D-stacked DRAM that
forms a rank over multiple layers. That work assumes that all upper layers only have
DRAM cells, while the bottom layer contains control logic, including both peripheral
logic and sense amplifiers, to access all DRAM cells in the upper layers. In contrast,
our mechanisms enable MLR while retaining the architecture of existing 3D-stacked
DRAMs (where all layers contain their own peripheral logic and sense amplifiers), by
enabling simultaneous multi-layer access through minimal, uniform additions to the
control logic.

High-Performance DRAM Architecture. Many previous works introduce new
DRAM architectures for either achieving lower DRAM latency [Lee et al. 2013, 2015a;
Seshadri et al. 2013; Malladi et al. 2012] or higher parallelism [Kim et al. 2012]. Our
mechanisms are orthogonal to these works and can be applied together with them to
further increase memory system performance.

10. FUTURE DIRECTIONS

In this work, we propose efficient mechanisms to increase the 3D-stacked DRAM band-
width by accessing multiple layers simultaneously and by adapting the frequency
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of layers to the bandwidth requirements. Our mechanisms provide a substrate that
can be leveraged in several ways for further performance improvement. We briefly
introduce two potential research directions that build upon the SMLA substrate, which
we believe are promising for future works to study.

The first direction is SMLA-aware memory placement and allocation mechanisms. As
we explained, Cascaded-IO (with SLR) provides different access latencies for stacked
layers. Hardware (i.e., the memory controller) and software (i.e., the operating system)
are currently oblivious to this latency heterogeneity. Either can be modified to allocate
data intelligently based on (1) the DRAM layout and (2) the latency criticality of the
application/data, leading to improved system performance.

The second direction is SMLA-aware dynamic energy management. The upper layers
in Cascaded-IO consume less power than the lower layers, resulting in heterogeneity in
energy consumption. When systems execute less memory-intensive workloads, or when
the memory systems are mostly idle, activating only the upper layer and powering down
the other layers can lead to significant energy reduction. In such systems, only the TSV
control logic in each layer must still be powered on to allow data to propagate from the
upper layer to the processor.

11. CONCLUSION

In this work, we introduce Simultaneous Multi-Layer Access (SMLA), a new IO or-
ganization for 3D-stacked DRAM that enables greater off-chip memory bandwidth at
low cost over existing 3D-stacked DRAM. We identify that the major bandwidth bot-
tleneck of 3D-stacked DRAM is the costly global bitline interface that is internal to the
DRAM chips. We offer a cheaper alternative to adding more global bitlines and sense
amplifiers, by instead exploiting the otherwise idle internal global bitline interfaces of
multiple DRAM layers in the 3D stack to deliver much greater DRAM bandwidth.

We propose two implementations of SMLA. The first, Dedicated-IO, assigns a subset
of the TSVs exclusively to each layer and drives the TSVs at higher frequency, so that
all of the DRAM layers can transmit data in parallel. The second, Cascaded-IO, over-
comes the shortcomings of Dedicated-IO by time-multiplexing the IO bus across all of
the DRAM layers, which reduces the DRAM design effort. Cascaded-IO also adapts the
frequency of each layer to its bandwidth requirements, thereby reducing energy con-
sumption at higher layers that transfer less data. We evaluate SMLA over a wide array
of applications and show that our proposed mechanisms significantly improve perfor-
mance and reduce DRAM energy consumption (on average 55%/18%, respectively, for
16-core multiprogrammed workloads) over a baseline 3D-stacked DRAM. We conclude
that SMLA provides a high-performance and energy-efficient IO interface for building
modern (and future) 3D-stacked memory systems at low cost.
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