
Utility-Based Hybrid Memory Management

Yang Li† Saugata Ghose† Jongmoo Choi‡ Jin Sun† Hui Wang? Onur Mutluu†
†Carnegie Mellon University ‡Dankook University ?Beihang University uETH Zürich

While the memory footprints of cloud and HPC applications
continue to increase, fundamental issues with DRAM scaling are
likely to prevent traditional main memory systems, composed
of monolithic DRAM, from greatly growing in capacity. Hybrid
memory systems can mitigate the scaling limitations of monoli-
thic DRAM by pairing together multiple memory technologies
(e.g., di�erent types of DRAM, or DRAM and non-volatile mem-
ory) at the same level of the memory hierarchy. The goal of a
hybrid main memory is to combine the di�erent advantages of
the multiple memory types in a cost-e�ective manner while
avoiding the disadvantages of each technology. Memory pa-
ges are placed in and migrated between the di�erent memories
within a hybrid memory system, based on the properties of each
page. It is important to make intelligent page management (i.e.,
placement and migration) decisions, as they can signi�cantly
a�ect system performance.
In this paper, we propose utility-based hybrid memory ma-

nagement (UH-MEM), a new page management mechanism
for various hybrid memories, that systematically estimates the
utility (i.e., the system performance bene�t) of migrating a page
between di�erent memory types, and uses this information to
guide data placement. UH-MEM operates in two steps. First, it
estimates how much a single application would bene�t from
migrating one of its pages to a di�erent type of memory, by
comprehensively considering access frequency, row bu�er lo-
cality, and memory-level parallelism. Second, it translates the
estimated bene�t of a single application to an estimate of the
overall system performance bene�t from such a migration.

We evaluate the e�ectiveness of UH-MEM with various types
of hybrid memories, and show that it signi�cantly improves
system performance on each of these hybrid memories. For a
memory system with DRAM and non-volatile memory, UH-
MEM improves performance by 14% on average (and up to 26%)
compared to the best of three evaluated state-of-the-art mecha-
nisms across a large number of data-intensive workloads.

1. Introduction
Modern large-scale computing clusters continue to employ
dynamic random access memory (DRAM) as the main mem-
ory system within each server. However, as the amount
of memory consumed by the applications running on these
clusters (e.g., high-performance computing workloads, large-
scale data analytics) grows, traditional DRAM-based memory
systems are unlikely to be able to keep up with this gro-
wth. DRAM scaling is expected to become increasingly dif-
�cult [90, 91] due to increasing cell leakage current [42, 65,
66, 97], reduced cell reliability [46, 76, 91, 113], and increa-

sing manufacturing complexity [37, 41, 46, 74, 90, 91, 96, 107].
As a result, other memory solutions have emerged to o�er
low-latency, low-power, or high-capacity substrates without
heavily relying on DRAM scaling. New DRAM products such
as 3D-stacked DRAM [3,45,60,61,99], reduced-latency DRAM
(RLDRAM) [80], and low-power DRAM (LPDRAM) [82] make
use of novel DRAM circuit design, architectures, and interfa-
ces to better cater to applications such as scienti�c computing,
data mining, network tra�c, and mobile computing. In ad-
dition, emerging non-volatile memory (NVM) technologies
(e.g., PCM [53, 54, 55, 104, 124], STT-RAM [52], ReRAM [68],
and 3D XPoint [83]) have shown promise for future main
memory system designs to meet increasing memory capacity
demands of data-intensive workloads. With projected scaling
trends, NVM cells can be manufactured more easily at smaller
feature sizes than DRAM cells, achieving high density and
capacity [14, 15, 52, 53, 54, 55, 68, 104, 107, 120, 124, 131].

However, these new memory technologies are unlikely
to fully replace commodity DRAM in main memory sys-
tems. For example, 3D-stacked DRAM is limited in capa-
city [12]. RLDRAM has higher cost-per-bit than commodity
DRAM [8,49,58,59]. Most NVMs incur high access latency and
high dynamic energy consumption, and some NVM technolo-
gies have limited write endurance. To address these weaknes-
ses, hybrid memory systems or heterogeneous memory systems,
comprised of both commodity DRAM and one of these alter-
native memory technologies, have been proposed. A hybrid
memory system aims to combine the bene�ts of both of its
component memory types in a cost-e�ective manner [104,126].
For example, commodity DRAM is faster than NVM, but has
a higher cost per bit. A hybrid memory with both commodity
DRAM and NVM utilizes a small amount of DRAM and a
large amount of NVM, to provide the illusion that the system
has large memory capacity (of NVM), and that all data can be
accessed at low latency (of DRAM). Hybrid memory systems
can potentially meet both the performance and memory capa-
city (as well as memory energy e�ciency) needs of large-scale
computing clusters [4, 5, 31, 33, 64, 73, 75, 98, 100, 104, 126].

In order to successfully deliver high memory capacity at
low latency, hybrid memory systems must make intelligent
data placement decisions, choosing whether each page should
be placed in the high capacity memory or in the fast mem-
ory. Previous data management proposals for hybrid memo-
ries consider only a limited number of characteristics, using
these few data points to construct a placement heuristic that
is speci�c to the memory types being used in the system.
For example, the majority of prior work on hybrid DRAM–

NVM main memory systems either treats DRAM as a con-
ventional cache [104] or places data with high access fre-
quency, high write intensity, and/or low row bu�er locality
in DRAM [20, 39, 106, 126, 129], while placing the remaining
data in NVM, as the access latency of NVM is generally higher
than that of DRAM [53, 104]. A mechanism for combining
commodity DRAM with 3D-stacked DRAM organizes the
faster 3D-stacked DRAM as a page-granularity cache of the
commodity DRAM, but identi�es and places only the cache
blocks that will be accessed in 3D-stacked DRAM [38]. Work
on combining RLDRAM with commodity DRAM identi�es
and places only critical data words into the RLDRAM to re-
duce access latency [11].

These heuristic-based approaches do not directly capture
the overall system performance bene�ts of data placement deci-
sions (as we will show in Section 3). Therefore, they can only
indirectly optimize system performance, which sometimes
leads to sub-optimal data placement decisions. For example,
let us consider a memory manager that migrates memory
pages that are accessed frequently [39] and that inherently
have a high access latency (i.e., they have low row bu�er lo-
cality) [126] from the slower NVM to the faster commodity
DRAM. A page migration based on only these two heuristics
may not improve system performance, if, for instance, acces-
ses to the page being migrated are completely overlapped
with other requests from the same application that continue
to access the slower NVM. In such a case, the latency re-
duction for accesses to the migrated page would not reduce
the application’s execution time, as the application still needs
to wait for the accesses to the slower NVM to complete. The
example memory manager is unable to capture this overlap
with its simple heuristics, and thus incorrectly decides to
migrate the page in this example.
Our goal in this work is to devise a generalized mechanism

that directly estimates the overall system performance bene-
�t of migrating a page between any two types of memory,
and places only the performance-critical data in the fastest
memory within the hybrid main memory system. To this
end, we propose utility-based hybrid memory management
(UH-MEM), a new hardware mechanism that estimates the
marginal performance utility of each page (i.e., the system
performance bene�t of migrating the page to a faster memory
type), and migrates only those pages with the greatest utility.
UH-MEM employs two steps. First, it determines how much
migrating a page belonging to that individual application
would improve the application’s performance. To do this,
UH-MEM uses a new performance model that considers se-
veral factors, including how frequently each page is accessed,
whether row bu�er locality impacts the performance bene�ts
of migration, and how much the page access latency is hid-
den by overlapping requests (i.e., the level of memory-level
parallelism, or MLP [13, 57, 87, 92, 93, 94]). Second, UH-MEM
estimates how much the improvement of a single applica-
tion’s performance bene�ts the overall system performance,
as di�erent workloads have di�erent amounts of impact on

overall system performance. UH-MEM migrates those pages
with the greatest estimated system-level performance bene�t
from slow memory into fast memory.
Key Results. We extensively evaluate UH-MEM using a

wide range of hybrid memory con�gurations, and show that
it is e�ective at improving system performance over state-of-
the-art hybrid memory managers. We quantitatively show
that for a memory system with both conventional DRAM
and NVM, UH-MEM improves system performance by 14%
on average (and up to 26%) compared to the best of three
state-of-the-art mechanisms that we evaluate (a conventional
cache insertion mechanism [104], an access frequency based
mechanism [39, 106], and a row bu�er locality based mecha-
nism [126]), for a large number of data-intensive workloads.
We also show that the hardware cost of UH-MEM is very
modest (∼40KB in our baseline system).

In this paper, we make three main contributions:
• We propose the �rst general utility metric to estimate the

potential system performance bene�t of migrating a page
between the di�erent memories within a hybrid main mem-
ory system. This utility metric represents the system per-
formance bene�t as a function of (1) an application’s stall
time reduction if the accessed page is migrated to a faster
type of memory, and (2) how an improvement to a single
application’s stall time impacts overall system performance.

• We propose a new performance model that can be imple-
mented in hardware, which comprehensively considers the
access frequency, row bu�er locality, and MLP of a page to
systematically estimate an application’s stall time reduction
from migrating the page. This is the �rst work to consider
MLP in addition to access frequency, row bu�er locality,
and write intensity, and to model the interactions between
them, for page placement decisions.

• Based on our new metric and new performance model, we
propose the �rst utility-based hybrid memory management
mechanism, UH-MEM, which selectively places pages that
are most bene�cial to overall system performance in fast
memory within a hybrid memory system. Our mechanism
is general, and works with a wide variety of memory types
that can be used in a hybrid memory system. We quan-
titatively demonstrate that UH-MEM outperforms three
state-of-the-art hybrid memory management techniques.

2. Background
In this section, we provide background on the organization
and management of hybrid memory systems. Figure 1 shows
an example hybrid memory system. This hybrid memory
system has two di�erent types of memory, which we call
Memory A and Memory B. One of these memories (we arbi-
trarily choose Memory A) is faster than the other, while the
other memory (Memory B) has a greater capacity due to its
higher density. The goal of a hybrid memory system is to
provide the large main memory capacity of Memory B, while
providing the fast access latencies of Memory A for memory
accesses that a�ect execution time.

2

… …

Row Buffer Bank Channel A Channel B

Memory A Memory B

Cores/Caches

Memory Controllers

(Fast, Small) (Large, Slow)

Figure 1: A typical hybrid memory system.

When a memory request is issued by a processor (e.g., the
CPU), the memory controllers determine whether the request
should be sent to Memory A or Memory B. Each memory
has its own memory channel (i.e., a bus that connects the
memory to its respective memory controller), and is internally
organized similar to today’s DRAM.1 Each memory consists
of multiple banks, where each bank is a two-dimensional array
of memory cells organized into rows and columns. Each bank
can operate in parallel, but all banks within a channel share
the address, data, and command buses.

Within each bank, there is an internal bu�er called the row
bu�er. When data is accessed from a bank, the entire row
containing the data is brought into the row bu�er. Hence, a
subsequent access to data from the same row can be served
from the row bu�er and need not access the array. Such an
access is called a row bu�er hit. If a subsequent access is to
data in a di�erent row, the contents of the row bu�er need to
be written back to the row, and the new row’s contents need
to be brought into the row bu�er. Such an access is called
a row bu�er con�ict (or row bu�er miss). A row bu�er miss
incurs a much higher latency than a row bu�er hit. Previous
works on hybrid memory systems observe that the latency
of a row bu�er hit is similar across memory types, while the
latency of a row bu�er con�ict/miss is generally much higher
in denser memories [53,54,55,78,79,126]. The fraction of row
bu�er hits out of all memory accesses to a row is called row
bu�er locality. We can expect that migrating a page with low
row bu�er locality to the fast memory bene�ts performance,
as a low-locality page experiences more row bu�er misses,
and such misses are serviced at a lower latency in the fast
memory. Conversely, we can expect that migrating a page
with high row bu�er locality does not bene�t performance
much, as most of the accesses to such a high-locality page hit
in the row bu�er, and a row bu�er hit has a similar latency
in both the fast memory and the slow memory [126].

An important issue for a hybrid memory system is how
to manage data stored in di�erent memory devices. In our
study, we adopt the con�guration proposed by Qureshi et
al. [104], and organize the fast, small memory (Memory A)
as a cache for the pages in the large, slow memory (Mem-
ory B). We assume that all pages are initially in Memory B.
Instead of unconditionally migrating a page when the page
is accessed [69, 77, 102, 104], we selectively migrate pages into

1We refer the reader to prior works for the detailed internal operation,
organization, and control of DRAM [9, 10, 34, 46, 49, 59, 66, 88, 93, 111].

Memory A based on some metric, which is the utility of the
page in our proposal. This migration may trigger the eviction
of a victim page cached in Memory A, which is handled by
the cache replacement policy of Memory A. We discuss our
migration mechanism in Section 4.1. The migration process
between memory devices is fully managed by hardware, and
is transparent to the OS.

3. Motivation
In systems that can issue multiple memory requests in parallel
(e.g., out-of-order execution processors, multicore processors,
runahead processors), the number of cycles saved for a single
memory request does not directly translate into a reduction
in the application’s execution time. In order to estimate the
true utility of a page (i.e., the impact that migrating that page
has on system performance), we need to estimate (1) by how
much the latency reduction from migration would reduce the
individual application’s execution time (i.e., the application’s
stall time reduction), and (2) by how much the application’s
stall time reduction translates to an improvement in overall
system performance (i.e., the sensitivity of overall system per-
formance to each application’s stall time). In this section, we
�rst demonstrate that we need to comprehensively consider
three major factors, i.e., access frequency, row bu�er locality,
and memory-level parallelism (MLP), to estimate the stall time
reduction a page provides when migrated. These factors were
not fully captured in prior works [20, 39, 106, 126, 129], none
of which try to estimate the e�ect of migration on application
or system performance. Then, we show that overall system
performance exhibits di�erent sensitivity to di�erent appli-
cations’ stall time reductions, and that we want to migrate
pages from applications with high sensitivity to maximize
overall system performance.

3.1. Comprehensive Stall Time Estimation
of an Application

To the �rst order, an application’s stall time reduction de-
pends on two parts: (1) how much the latency for accessing
the page can be reduced, and (2) how this latency overlaps
with the latencies of other memory requests from the applica-
tion. For the �rst part, since only the row bu�er miss accesses
can achieve shorter latency after the migration, we need to
comprehensively consider access frequency and row bu�er
locality of the page (i.e., we can count the number of row buf-
fer misses to the page) to estimate the latency reduction for
the memory requests to the page. The second part depends
on the parallelism of memory requests from an application
(MLP). MLP is the number of concurrent outstanding requests
(i.e., the in-�ight memory requests that are yet to be com-
pleted) from the same application [13,30,87, 92,93,94]. In our
mechanism, we consider the MLP for each page, and check
how many concurrent requests from the same application
typically exist when the page is accessed. If there are many
concurrent requests, the access latency to the page is likely to
overlap with the access latency to other pages, and therefore
migrating the page to fast memory, while it may reduce its

3

access latency, will likely result in only a limited or small
reduction in the application’s stall time.

We illustrate this MLP e�ect using the conceptual example
in Figure 2. Pages 0, 1, and 2 all have the same number of row
bu�er miss requests. Requests to Page 0 are not overlapped
with other requests from the same application, while requests
to Pages 1 and 2 are overlapped. We would like to see by
how much the application’s stall time would be reduced if
we migrate each of these pages from slow memory to fast
memory.

request to Page 0

request to Page 0

request to Page 1

request to Page 2

request to Page 1

request to Page 2

t t

Before migration:

After migration:

Application stall time
reduced by T

Application stall time
reduced by T

(a) Alone request (b) Overlapped requests

T T

(a) alone request

request to Page 0

request to Page 0

request to Page 1

request to Page 2

request to Page 1

request to Page 2

t t

Before migration:

After migration:

Application stall time
reduced by T

Application stall time
reduced by T

(a) Alone request (b) Overlapped requests

T T

(b) overlapped requests

Figure 2: Conceptual example showing that the MLP of a
page in�uences how much e�ect its migration to fast mem-
ory has on the application stall time.

Suppose we migrate Page 0 to fast memory (Figure 2a). As
there is no other request that overlaps with the request to
Page 0, the request to Page 0 is likely to be stalling at the head
of the processor reorder bu�er (ROB), which often stalls the
entire application [29, 51, 87, 92, 94, 95, 103]. The requests to
Page 0 will complete faster upon migration, thereby decrea-
sing the application’s stall time and thus being more likely
to improve application performance [29, 51, 87, 92, 94, 95, 103].
On the other hand, if we migrate both Pages 1 and 2 to fast
memory (Figure 2b), requests to both pages also complete
faster, but the application’s overall stall time will be reduced
by roughly the same amount as that enabled by migrating
only Page 0, since the access latencies to Pages 1 and 2 are
overlapped. In other words, despite incurring double the
number of migrations and consuming double the amount of
limited fast memory capacity by migrating two overlapping
pages (Pages 1 and 2), we achieve only the same performance
bene�t enabled by migrating only a single page that is ser-
viced alone (Page 0). Unfortunately, without MLP, we are
unable to build a comprehensive model that distinguishes
between these two scenarios, and mechanisms that consider
only row bu�er locality and access frequency may migrate
pages like Pages 1 and 2 that contribute less to reducing the
application’s stall time.2

Figure 3 shows the distribution of MLP across all memory
pages for three representative benchmarks: soplex, xalan-

2In fact, if a mechanism migrates only one of the overlapping pages
(either Page 1 or Page 2), it is unlikely that it will reduce stall time at all as
the non-migrated page would still stall the CPU. A similar observation is
made by Qureshi et al. in the context of caching [103].

cbmk, and YCSB-B [16, 35].3 We can see that di�erent pages
within an application have very di�erent MLP. Other bench-
marks in our evaluation exhibit similar MLP diversity across
their pages. Hence, we can take advantage of this diversity
to optimize system performance.

0 10 20
0

5

10

15

20

MLP

F
re

q
u

en
cy

 (
%

)

(a) soplex

0 10 20
0

5

10

15

20

MLP

F
re

q
u

en
cy

 (
%

)

(b) xalancbmk

0 5 10 15
0

10

20

30

40

MLP

F
re

q
u

en
cy

 (
%

)

(c) YCSB-B
Figure 3: MLP distribution for all pages in three workloads.

In order to quantify the impact of di�erent factors on an
application’s stall time, we measure the stall time contribu-
tion of each page (i.e., the time that the outstanding memory
requests to the page cause the processor to stall) for every
benchmark in our evaluation. Table 1 shows the correla-
tion coe�cients between the average stall time per page and
three di�erent page-level access characteristic metrics (i.e.,
access frequency, row bu�er locality, and MLP, along with
combinations of the three).4 This shows that independently,
access frequency, row bu�er locality, and MLP all correlate
somewhat with a page’s stall time contribution. However, this
correlation becomes very strong when we comprehensively
consider all three factors together (correlation coe�cient =
0.92). We see that the two factors considered together in prior
work (access frequency and row bu�er locality) [126] do not
correlate nearly as strongly (correlation coe�cient = 0.76).
Therefore, we conclude that access frequency, row bu�er loca-
lity, and MLP are all indispensable factors to comprehensively
model the performance impact of data placement.

AF RBL MLP
Correlation 0.74 0.59 0.54

AF+RBL AF+MLP AF+RBL+MLP
Correlation 0.76 0.86 0.92

Table 1: Absolute Spearman correlation coe�cients between
the average stall time per page and di�erent factors (AF:
access frequency; RBL: row bu�er locality; MLP: memory le-
vel parallelism). The correlation coe�cients are between 0
and 1, where 0 = no correlation, and 1 = perfect correlation.

3We run each workload separately on a system that is similar to the
con�guration shown in Section 5, though we use a single-core processor for
the experiments shown here. When a page in the workload is accessed by a
memory request, we measure how many outstanding memory requests with
the same type (i.e., either read or write) exist in the workload, and use that
number as the current MLP of the page. We then calculate the average MLP
of each page, and report the distribution of average MLP across all of the
pages in these �gures.

4For each benchmark, we divide all of its pages into several bins, sorted
by the values of the factors under consideration. We then calculate the
average stall time per page for each bin. We analyze the correlation between
the average stall time and the factors, and obtain the correlation coe�cient.
We report the average correlation coe�cient over all of our benchmarks.

4

3.2. Estimating E�ect on
Overall System Performance

Prior proposals for hybrid memory page management
that only use heuristics that are, as we have shown in
Section 3.1, only somewhat correlated to application perfor-
mance [11, 20, 38, 39, 104, 106, 126, 127, 128, 129] fail to capture
how the stall time of a single application a�ects overall sys-
tem performance. We �nd that this impact is not uniform
across the applications within a multiprogrammed workload.
There are several di�erent metrics that can be used to express
system performance, as has been discussed in a number of
prior works [6, 26, 71, 112] (e.g., weighted speedup, harmonic
speedup). These metrics express overall system performance
by weighting the performance of each application within the
workload di�erently, based on some application characteris-
tics. For example, weighted speedup normalizes the perfor-
mance of each application to its performance when running
alone, in order to capture the e�ects of system interference
between applications [26, 112]. For two applications with
an equal amount of stall time reduction (in terms of abso-
lute cycle count), the reduction for the application with a
greater weight will result in a greater system performance
improvement.

As prior page management mechanisms are oblivious to the
unequal impact of application performance bene�ts on overall
system performance, they can migrate pages that are less impor-
tant for overall system performance into the fast memory. We,
therefore, incorporate the relation between application per-
formance and overall system performance directly into our
mechanism, using application weighting to prioritize pages
from applications that impact the overall system performance
the most. In this work, we use weighted speedup [112], which
has been shown to correspond to system throughput for mul-
tiprogrammed workloads [26]. However, system designers
with other target objectives can use di�erent system perfor-
mance metrics, by simply modifying the system performance
estimation hardware within our proposed mechanism.

4. UH-MEM: Utility-Based
Hybrid Memory Management

In this section, we introduce utility-based hybrid memory
management (UH-MEM). UH-MEM is a hardware mecha-
nism that resides within the memory controller. It per-
forms interval-based calculations to determine which pages
should be migrated from slow memory to fast memory, where
fast memory is treated as a set-associative (16-way) page
cache with LRU cache replacement policy, similar to prior
work [77, 104, 126]. During each interval (1 million cycles
in our experiments, determined empirically), pages are se-
lected for migration by UH-MEM, and a migration mechanism
caches the data in the fast memory by copying the data �rst
to the migration bu�er in the memory controller, and then
to the fast memory. Once a page is migrated to fast memory,
it is inserted into a tag store within the memory controller.
Whenever a request misses in the last-level on-chip cache, it

looks up the tag store and the migration bu�er, to see if the
requested data resides in fast memory or in the migration buf-
fer. The request is then dispatched to the appropriate location
based on this lookup. As with on-chip caches, UH-MEM’s
operations are transparent to the OS.

4.1. Mechanism Overview
UH-MEM comprehensively estimates how the migration of
each page would improve overall system performance, which
we de�ne as the utility of each page (see Section 3). The page
utility calculation, as performed in hardware, is described in
detail in Section 4.2. During each interval, when a page is
accessed in slow memory, UH-MEM migrates the page to fast
memory if its utility is greater than the migration threshold. It
is not bene�cial to move every accessed page into fast mem-
ory, because (1) migration operations take time to complete,
and (2) doing so would cause the slow memory bandwidth
to go unused. We include a mechanism to dynamically set
the migration threshold at the end of each interval, which we
discuss in Section 4.3.

When a page is selected for migration, we �rst check the
tag store of the fast memory to see if we need to evict another
page in the destination fast memory cache set. We imple-
ment a migration bu�er within the memory controller to
temporarily hold the migrating page(s). Each cache block in
the bu�er includes two migration status bits to determine
where the cache block currently resides (i.e., in either of the
memories, or in the bu�er). The status bits allow UH-MEM
to direct incoming memory requests for a migrating page
to the correct place. After completing the data movement,
the corresponding metadata information in the tag store is
updated.

4.2. Computing Page Utility
The utility of a page depends on (1) the stall time reduction
of an application due to migration of the page to the fast
memory, and (2) the system performance sensitivity to the
application.5 Suppose that one page of Application i is mi-
grated to fast memory, such that the application stall time is
reduced by ∆Stall Timei . The utility of that page (U) can be
expressed as:

U = ∆Stall Timei × Sensitivityi (1)

4.2.1. Estimating Application Stall Time Reduction.
The stall time reduction due to a page migration is depen-
dent on two factors: (1) the access latency reduction for that
page, and (2) the degree to which the page’s access latency
is masked (i.e., overlapped) by the access latency of other
concurrent requests for the same application.

The degree to which a page’s total access latency is redu-
ced can be determined by using a combination of the page’s
access frequency and row bu�er locality. If a page is migrated
from slow memory to fast memory, the latency of row bu�er

5Without loss of generality, we use the term “application” to refer to a
hardware thread context executing an application.

5

misses decreases, while row bu�er hits still achieve a similar
latency. Therefore, the expected decrease in access latency
is proportional to the total number of row bu�er misses for
that page, which is a function of access frequency and row
bu�er locality. We can estimate this decrease as:

∆Read Latency = #ReadMiss × (tslow,read – tfast,read)
∆Write Latency = #WriteMiss × (tslow,write – tfast,write)

(2)

where #ReadMiss and #WriteMiss are the number of row buf-
fer read and write misses, respectively, and tfast,read , tfast,write ,
tslow,read , and tslow,write are the device-speci�c read/write la-
tencies incurred on a row bu�er miss for fast memory and
slow memory, respectively.

In order to quantify the degree of access latency masking,
we sample the total number of outstanding memory requests
for that same application to model the “overlap e�ect.” Spe-
ci�cally, we de�ne the MLP ratio of an application to be the
reciprocal of the outstanding memory request count.6 Intui-
tively, if there are fewer outstanding requests, then there is
less memory-level parallelism available to overlap the page’s
access latency. As such, we use the reciprocal of the num-
ber of outstanding memory requests so that the MLP ratio
represents the fraction of the access latency that impacts the
application’s performance. During a sampling period t, the
MLP ratio for an application with Nread,t /Nwrite,t outstanding
read/write requests is as follows, respectively for reads and
writes:

MLPRatioread,t = 1
Nread,t

MLPRatiowrite,t = 1
Nwrite,t

(3)

We can use the MLP ratio of the application to deter-
mine the MLP ratio for individual pages. For most appli-
cations, di�erent pages do not typically have equal amounts
of MLP. Therefore, we approximate an average MLP ratio
for each page across all of the sampling periods that have
taken place so far in the current interval. We compute two
values, PageMLPRatioread and PageMLPRatiowrite , which are
the average MLP ratio of a page during the interval for out-
standing read and write requests, respectively, to that page.
We can model PageMLPRatioread and PageMLPRatiowrite as:

PageMLPRatioread =

∑
t
MLPRatioread,t × mread,t∑

t
mread,t

=

∑
t

mread,t
Nread,t∑

t
mread,t

PageMLPRatiowrite =

∑
t
MLPRatiowrite,t × mwrite,t∑

t
mwrite,t

=

∑
t

mwrite,t
Nwrite,t∑

t
mwrite,t

(4)

6We calculate the MLP ratio separately for reads and writes, to account for
their di�erent behavior in main memory. While reads are often serviced as
soon as possible (as they can fall along the critical path of execution), writes
are deferred, and are eventually drained in batches [56, 110]. Distinguishing
between reads and writes allows us to more accurately determine the MLP
behavior a�ecting each type of request.

To calculate PageMLPRatioread , we start with the overall app-
lication MLP ratio at each sampling period t (MLPRatioread,t).
We determine the total contribution of the page to the app-
lication’s MLP during sampling period t by multiplying
MLPRatioread,t with the number of outstanding read requests
during the sampling period to the page (mread,t). We then
sum up the page’s MLP contributions over all of the sampling
periods so far in the current interval, and divide it by the
total number of outstanding read requests to the page during
these sampling periods. This, in e�ect, gives us the average
MLP contribution of each outstanding read request for the
page. We repeat the same calculation for write requests.

We can now combine the latency reduction (Equation 2)
and the average MLP ratio (Equation 4) to determine the stall
time reduction for Application i as a result of migrating a
particular page:

∆Stall Timei =∆Read Latency × PageMLPRatioread
+ p × ∆Write Latency × PageMLPRatiowrite

(5)

where p represents the probability that the write requests
appear on the critical path. Prior work [130] has shown that
this probability is dependent on an application’s write access
pattern, and is generally larger if the application has a large
number of write requests. For simplicity, we choose to set
p = 1, though using an online iterative approach to determine
p [130] may yield better performance since it can enhance
the accuracy of the stall time estimation.

Equation 5 shows that the stall time reduction due to a
page migration from slow memory to fast memory can be
determined by using a combination of access frequency, row
bu�er locality, and MLP for each page. Intuitively, a high
access frequency and low row bu�er locality increase the
number of total row bu�er misses, thus enlarging the bene�ts
of migrating to fast memory. Likewise, poor MLP, with fewer
concurrent outstanding requests, increases the average MLP
ratio due to low likelihood of overlapping the request latency,
and also increases the bene�ts from migration.

4.2.2. Estimating System Performance Sensitivity. For
multiprogrammed workloads, we use the weighted speedup
metric [27, 112] to characterize system performance.7 For
each application, the speedup component of Application i is
the ratio of execution time when running alone, i.e., without
interference from other applications (Talone,i) to that when
running together with other applications (Tshared,i):

System Performance =
∑
i

Speedupi =
∑
i

Talone,i
Tshared,i

(6)

7UH-MEM can be adapted to use di�erent system performance or fairness
metrics [22, 24, 32, 47, 48, 86, 88, 93, 116, 117, 121, 125]. In order to support
di�erent system performance metrics, we can implement logic to estimate
the sensitivity for each metric, and let the OS choose the most suitable metric
to optimize based on the applications currently running within the system
and the user’s preferences.

6

When Application i migrates a page to fast memory, the
speedup of that application improves by ∆t:

Speedup′
i =

Talone,i
Tshared,i – ∆t

(7)

Since the stall time reduction due to page migration is gen-
erally much smaller than the execution time (∆t � Talone,i,
Tshared,i), we can perform a Taylor expansion to �nd the
change in speedup:

∆Speedupi = Speedup′
i – Speedupi =

Talone,i∆t
(Tshared,i – ∆t)Tshared,i

≈
Talone,i
Tshared,i

· ∆t
Tshared,i

= Speedupi × ∆t
Tshared,i

(8)

We de�ned the performance sensitivity of the system to an
application in Section 3.1 as the measure of how the change in
an application’s stall time impacts the overall system perfor-
mance. We can thus estimate it using Equation 9 (by plugging
in Equation 8 at the appropriate place):

Sensitivityi = ∆Performance
∆Stall Timei

= ∆Speedupi
∆t

= Speedupi
Tshared,i

(9)

We calculate the performance sensitivity using an interval-
based approach, where the speedup (Speedupi) and execution
time (Tshared,i) obtained in the last interval are used to esti-
mate performance sensitivity in the current interval. The
execution time of each application running on the system
is equal to the length of an interval. We need to estimate
the speedup of the application (Speedupi) during the inter-
val. This speedup estimate can be obtained by using prior
proposals [22, 23, 84, 88, 118, 119]. These works consider the
impact of memory interference and/or cache contention on
the speedup of an application. In our implementation, we
estimate speedup based on the approach in [88].

Equations 5 and 9 are combined using Equation 1 to give
us the overall utility of migrating the page in question. A
few measurements are required to obtain this utility calcu-
lation, and we discuss the implementation details of these
mechanisms in Section 4.4.

4.3. Performing Page Migration

Algorithm 1 summarizes how UH-MEM decides which pages
it should move to the fast memory. Whenever an outstanding
memory request completes, UH-MEM (1) updates counters
that hold statistics for the page accessed by the request, (2) re-
calculates the utility of the page, and (3) compares the calcu-
lated utility with the migration threshold. The page will only
be migrated from slow memory to fast memory if the utility
exceeds the migration threshold. At the end of each inter-
val, UH-MEM adjusts the migration threshold to account for
transient application behavior, and clears the page statistic
counters.

Algorithm 1 Migrating pages with UH-MEM.
1: for every interval do
2: for every completed memory request do
3: Update the corresponding page’s statistics counters
4: Calculate the page’s utility (Section 4.2)
5: if the page’s utility exceeds the migration threshold

then
6: Migrate the page to the fast memory
7: end if
8: end for
9: if at the end of the interval then

10: Adjust the migration threshold (Section 4.3)
11: Estimate speedup for each application (Section 4.2.2)
12: Reset all counters to zero
13: end if
14: end for

A key question is how to determine this migration thresh-
old. We choose to use a hill climbing based approach to deter-
mine this threshold dynamically, similar to the policy used by
Yoon et al. [126]. We use the total stall time of all applications
in each interval to re�ect the system performance. At the
end of each interval, the total stall time is recalculated. We
then compare the current total stall time with the total stall
time from the previous interval, and determine whether the
previous threshold adjustment yielded a system performance
improvement. If the total stall time of the current interval
is lower (meaning that the threshold adjustment improved
system performance), we continue to adjust the threshold in
the same direction. Otherwise, since the previous adjustment
degraded performance, we move the threshold in the opposite
direction.

4.4. Hardware Structures

UH-MEM performs the calculations described in Section 4.2 in
hardware. We �rst discuss the various hardware components
required for UH-MEM to calculate the MLP ratios and page
utility. Then, we summarize the total cost of the hardware.

4.4.1. MLP Ratio Calculation. To calculate the MLP ratios
from Equation 4, we must maintain four temporary coun-
ters for every page with outstanding requests in the memory
controller. Two of the counters, MLPAccread and MLPAccwrite ,
accumulate the numerator from Equation 4, while the other
two counters, MLPWeightread and MLPWeightwrite , accumu-
late the denominator of the equation, as follows:
MLPAccread =

∑
t

mread,t
Nread,t

MLPWeightread =
∑
t
mread,t

MLPAccwrite =
∑
t

mwrite,t
Nwrite,t

MLPWeightwrite =
∑
t
mwrite,t

(10)

For every sampling period (30 cycles in our experiments), we
monitor both the outstanding read/write requests Nread and
Nwrite for each application, as well as the outstanding requests
mread and mwrite for each page, and update the corresponding
counters.

7

When all the outstanding requests to a page have com-
pleted, the contents of the page’s temporary counters are
added to its corresponding counters in a statistics store (i.e.,
stats store), and are then reset. The stats store is a 32-way set-
associative cache with LRU replacement policy, residing in
the memory controller. Each stats store entry corresponds to
a page, and consists of six counters that record the number of
row bu�er misses, the sum of weighted MLP ratios (MLPAcc),
and the sum of weights for the MLP ratios (MLPWeight)
for read/write requests. We can use the ratio of MLPAcc
to MLPWeight to calculate the average MLP ratio of the page
(PageMLPRatio), respectively for read and write requests.
When a page in slow memory is accessed, if it has an existing
entry in the stats store, the content of its entry is updated;
otherwise, an entry is allocated, which may evict the entry of
the least recently used page within the set. The access latency
to the stats store is not on the critical path, as we update the
stats store in the background.

When a system has multiple memory controllers, the stats
store and the counters used to calculate MLP ratios need to
be shared by these memory controllers. Di�erent memory
controllers need to communicate with each other to maintain
the information, such as the number of outstanding requests,
as done in prior works [17, 36, 47, 85, 86].

4.4.2. Utility Calculation for Shared Pages. For pages
shared by multiple applications, we can use separate entries
in the stats store to record the statistical information of the
page with respect to each application. We can use our previ-
ous method to calculate the page utility for each application,
and then add these utility values to obtain the aggregate utility
for the page. The insight is that the total system performance
improvement correlates with the sum of the performance
improvement of each application. Therefore, summing up the
page utility for each application (i.e., its performance improve-
ment) should re�ect the system performance improvement.

4.4.3. Hardware Cost. Table 2 describes the main hardware
costs for UH-MEM. The largest component is the stats store.
We use a 2048-entry stats store (organized as 32-way set-
associative cache), as it leads to negligible performance de-
gradation compared with an unlimited-size stats store. The

main hardware cost of UH-MEM is 42.87KB,8 which is only
approximately 2% of our baseline system’s L2 cache size.

UH-MEM also requires hardware logic to calculate the
MLP ratios. For each page with outstanding requests in slow
memory (96 at most; limited by the read request queue size
and write bu�er), we need to perform 4 25-bit additions and
2 fast divisions every 30 cycles to compute the MLP ratios.9
We achieve this by pipelining the logic, and making it 3-
way superscalar. We can implement fast division using a
32× 32 ROM table that contains the precomputed results of
the division, since both the numerator and denominator of
the division are limited by the MSHR size of the last-level
cache. As each quotient is 10 bits wide, the total size of such
a ROM table is 1.25KB.

UH-MEM does not require any modi�cations to the op-
erating system to support page migration. This is because
UH-MEM does not use the virtual or physical address of a
page to determine whether the page resides in fast memory or
slow memory. Instead, UH-MEM uses a dedicated hardware
tag store in the memory controller to determine whether the
page has been migrated to the fast memory.

5. Evaluation Methodology
Similar to prior works [39, 104, 106, 126], we evaluate our
proposed UH-MEM mechanism using a cycle-accurate x86
multicore simulator [2], whose front end is based on Pin [70].
We released our simulator [2, 109]. This in-house developed
simulator is similar to Ramulator [1, 50], which is a widely-
accepted open-source multicore simulator that models the
main memory system in detail. In our simulator, page mi-
grations between fast and slow memories are modeled as
additional read requests to the memory device where the
page is currently located, to read the entire page from it, fol-
lowed by additional write requests in the destination memory
device to write the entire page. The latency for determining
whether a page resides in fast or slow memory is modeled
as six cycles. Table 3 summarizes the major parameters of
the baseline system consisting of DRAM and NVM in our

8This does not include the hardware used to determine whether a page
resides in fast memory or slow memory, as this hardware is required by most
hybrid memory management mechanisms [104, 106, 126], and the implemen-
tation of UH-MEM is orthogonal to the implementation of this structure.

9We determined all values empirically and did not optimize heavily.
Reduction in hardware cost is possible with careful optimization.

Name Purpose Structure (number of bits in parentheses) Size
Stats store Tracks statistical information for

recently-accessed pages
2048 entries; each entry consists of read row bu�er miss count (14),
write row miss count (14), MLPAccread (30), MLPAccwrite (30),
MLPWeightread (21), MLPWeightwrite (21) and page number tag (30)

40.00KB

Counters for
outstanding pages
in slow memory

Records updates of MLPAcc and
MLPWeight for pages with
outstanding requests

For each page with outstanding requests in slow memory (96 at
most), MLPAccread (30), MLPAccwrite (30), MLPWeightread (21),
MLPWeightwrite (21) and page number (36)

1.62KB

ROM table for
MLP ratios

Stores precomputed results of
division used to calculate MLP ratios

32 x 32 entries; each entry consumes 10 bits 1.25KB

Total Hardware Cost (for our evaluated system in Table 3) 42.87KB
Table 2: Main hardware cost of UH-MEM.

8

Processor 8 cores, 2.67GHz, 3-wide issue, 128-entry in-
struction window

L1 Cache 32KB per core, 4-way, 64B cache block
L2 Cache 256KB per core, 8-way, 32 MSHR entries per

core, 64B cache block
Fast Memory
Controller

64-bit channel, 64-entry read request queue, 32-
entry write bu�er, FR-FCFS scheduling policy
[108, 132]

Slow Memory
Controller

64-bit channel, 64-entry read request queue, 32-
entry write bu�er, FR-FCFS scheduling policy
[108, 132]

Baseline
Fast Memory
System

512MB DRAM, 1 rank (8 banks), tCLK=1.875ns,
tCL=15ns, tRCD=15ns, tRP=15ns, tWR=15ns, ar-
ray read (write) energy = 1.17 (0.39) pJ/bit, row
bu�er read (write) energy = 0.93 (1.02) pJ/bit

Baseline
Slow Memory
System

16GB NVM, 1 rank (8 banks), tCLK=1.875ns,
tCL=15ns, tRCD=67.5ns, tRP=15ns, tWR=180ns, ar-
ray read (write) energy = 2.47 (16.82) pJ/bit, row
bu�er read (write) energy = 0.93 (1.02) pJ/bit

Table 3: Baseline system parameters.

evaluation. The detailed DRAM and NVM timing and energy
parameters are based on prior studies [53, 54, 78, 79, 81]. We
calculate the static power of the hybrid memory system to
be 5.6W [53].

In order to evaluate di�erent types of hybrid memory sys-
tems, such as DRAM–RLDRAM and DRAM–NVM memo-
ries, we vary the size of the fast memory and the read/write
write latency ratios of slow memory to fast memory. We also
measure the performance of our evaluated page placement
mechanisms under these di�erent con�gurations.

5.1. Workloads
We use 30 benchmarks chosen from SPEC CPU2006 [35] and
the Yahoo Cloud Serving Benchmark (YCSB) suite [16]. We
classify them as memory-intensive or non-memory-intensive
based on their last level cache misses per 1K instructions
(MPKI) when running alone. Each experiment runs an eight-
application workload on the system, with one application
running on each core. The memory intensity category of
the workload is determined by the percentage of memory-
intensive benchmarks within the workload. For example,
a workload has 75% intensity if it consists of six memory-
intensive benchmarks and two non-memory-intensive bench-
marks. We generate 40 workloads, eight for each category of
workload memory intensity (0%, 25%, 50%, 75%, 100%). In each
experiment, every benchmark was warmed up for 500 mil-
lion instructions, and then executed for another 500 million
instructions. A benchmark in a multiprogrammed workload
is restarted after it completes until all the benchmarks in the
workload complete once.

5.2. Metrics
We use weighted speedup (WSpeedup) [26, 112] and maxi-
mum slowdown (MaxSlowdown) [6, 17, 18, 43, 44, 47, 48, 86,

116, 117, 119, 121, 123] to evaluate system performance and
unfairness, respectively, using the equations shown below.
N is the number of cores; IPCalone,i and IPCshared,i are the
instructions completed per cycle (IPC) when Application i
is running alone and running with other applications, res-
pectively. Weighted speedup (see Section 4.2) �rst weights
the performance of each application (when it is running with
others; IPCshared,i) by the reciprocal of its performance while
running alone (IPCalone,i), re�ecting the speedup of the appli-
cation. Then, weighted speedup sums up the speedup of all
the applications, re�ecting the overall system performance.
Weighted speedup is a widely-used multiprogrammed system
performance metric in computer architecture evaluation [26].
It quanti�es system throughput [26]. For unfairness, we use
maximum slowdown to quantify the worst-case slowdown
of any application in a multiprogrammed workload. Both
weighted speedup and maximum slowdown use normalized
IPC ratios, instead of the IPC itself, to avoid biasing either
metric in favor of high-IPC or low-IPC applications.

WSpeedup =
N–1∑
i=0

IPCshared,i
IPCalone,i

MaxSlowdown = max

(
IPCalone,i
IPCshared,i

)
6. Experimental Results
We evaluate our proposed UH-MEM mechanism across a
wide variety of system con�gurations, covering several fast
memory sizes and latency ratios of slow memory to fast mem-
ory. Throughout our evaluation, we compare UH-MEM to
three other state-of-the-art mechanisms:
• ALL: a conventional cache insertion mechanism. This me-

chanism treats fast memory as a cache to slow memory,
and inserts all the pages accessed in slow memory into fast
memory using the LRU replacement policy. This is similar
to the proposal by Qureshi et al. [104].

• FREQ: an access frequency based mechanism. This mecha-
nism migrates pages with high access frequency to fast
memory. It is similar to two proposals that try to improve
the temporal locality in fast memory and reduce the number
of accesses to slow memory [39, 106].

• RBLA: a row bu�er locality based mechanism [126]. This
mechanism migrates pages that have experienced a large
number of row bu�er misses in slow memory to fast mem-
ory. The intuition is that only the latency of row bu�er
miss requests can be reduced when the page is migrated to
fast memory.

6.1. Results on the Baseline SystemCon�guration
Figure 4 shows the normalized weighted speedup of the four
evaluated mechanisms on the baseline system con�guration,
averaged for each workload intensity category. UH-MEM
outperforms the best previous proposal, RBLA, in all wor-
kload categories with non-zero memory intensity. For the
most memory-intensive category, UH-MEM provides a 14%

9

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0% 25% 50% 75% 100%

N
or

m
al

iz
ed

 W
S

pe
ed

up

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

Figure 4: Normalized weighted
speedup for the baseline con�gura-
tion.

0.0

0.5

1.0

1.5

2.0

0% 25% 50% 75% 100%

A
ve

ra
ge

 A
pp

 S
ta

ll
 T

im
e

(x
10

^9
 c

yc
le

s)

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

Figure 5: Average application stall
time for the baseline con�guration.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0% 25% 50% 75% 100%

N
or

m
al

iz
ed

 U
nf

ai
rn

es
s

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

Figure 6: Normalized unfairness for
the baseline con�guration.

 0

 5

 10

 15

 20

 25

0% 25% 50% 75% 100%

M
em

or
y

En
er

gy
 (J

)

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

 0

 5

 10

 15

 20

 25

0% 25% 50% 75% 100%

En
er

gy
 (J

)

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

 0

 5

 10

 15

 20

 25

0% 25% 50% 75% 100%

En
er

gy
 (J

)

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

 0

 5

 10

 15

 20

 25

0% 25% 50% 75% 100%

En
er

gy
 (J

)

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

Figure 7: Memory energy consump-
tion for the baseline con�guration.

1.5

2.0

2.5

3.0

3.5

256MB 512MB 1GB 2GB

W
S

pe
ed

up

Fast Memory Capacity

ALL FREQ RBLA UH-MEM

Figure 8: Weighted speedup for vari-
ous fast memory sizes.

2.0

2.5

3.0

3.5

x3.0
x3.0

x4.0
x4.0

x4.5
x12

x6.0
x16

x7.5
x20

W
S

pe
ed

up

Slow Memory Latency Multiplier

tRCD:
tWR:

ALL FREQ RBLA UH-MEM

Figure 9: Weighted speedup for vari-
ous slow-to-fast memory latency ra-
tios for tRCD and tWR.

average performance improvement over RBLA. The maxi-
mum performance gain of UH-MEM over RBLA for a single
workload is 26%. UH-MEM’s performance advantage is two-
fold. First, UH-MEM not only considers the latency of each
individual request (as FREQ and RBLA do), but also takes into
account the memory-level parallelism between requests to
estimate each request’s individual contribution to the applica-
tion’s overall stall time. Therefore, UH-MEM can reduce stall
time more e�ectively compared with those prior proposals
by selecting and caching those pages that are more likely to
stall the processor. This is demonstrated by Figure 5, which
shows that each application within a workload stalls for less
with UH-MEM than with RBLA. Second, UH-MEM is aware
of which applications impact the system performance the
most as it estimates system performance sensitivity to di�er-
ent applications, and prioritizes page migrations from those
applications that are likely to bene�t system performance the
most. Figure 6 shows the normalized unfairness of the four
evaluated mechanisms on the baseline system con�guration.
We can see that UH-MEM achieves equivalent or improved
fairness compared to all prior proposals.

We also study the energy e�ciency of the four mecha-
nisms on the baseline system con�guration. Figure 7 shows
the memory energy consumption of the four mechanisms on
workloads with varying memory intensities. We observe that
energy consumption grows with the memory intensity of the
workload. Compared to prior mechanisms, UH-MEM con-
sumes similar energy for non-memory-intensive workloads,
and uses less energy for memory-intensive workloads. For
the memory-intensive workloads, UH-MEM reduces static
energy consumption as a result of its shorter execution time.
UH-MEM also reduces the dynamic energy consumed due
to page migrations, as it selectively migrates the important

pages to DRAM instead of migrating less important pages as
the baseline mechanisms do.

We conclude that UH-MEM improves performance and
lowers energy consumption compared to three state-of-the-
art hybrid memory management mechanisms, because it can
e�ectively gauge the system performance bene�t of each
page migration.

6.2. Sensitivity to Fast Memory Size

The fast memory size determines the room for performance
optimization in hybrid memory systems. A larger fast mem-
ory can allow more pages to migrate from slow memory,
thereby likely o�ering greater system performance. However,
the fast memory size, in practice, cannot be too large, and
therefore can limit the scalability of hybrid memory systems.
In this section, we evaluate how each mechanism performs
across a range of fast memory sizes (256MB, 512MB, 1GB,
and 2GB).

Figure 8 shows the weighted speedup of workloads with
100% memory intensity under various fast memory sizes. We
observe that system performance increases with fast memory
size. Under the four evaluated sizes, UH-MEM outperforms
RBLA by 14%, 14%, 12%, and 12%, respectively. Even for a
256MB fast memory, which o�ers less opportunity for op-
timization, UH-MEM achieves a weighted speedup of 3.30,
which is larger than RBLA’s weighted speedup of 3.04 for
a 2GB fast memory. In other words, UH-MEM can exceed
RBLA’s performance even with only an eighth of the fast
memory capacity. This implies that by estimating the system
performance bene�t of each page and selectively placing only
critical pages in fast memory, UH-MEM can greatly shrink
the fast memory size (while achieving higher performance),
and thereby improve hybrid memory scalability.

10

6.3. Sensitivity to
Slow-to-Fast Memory Latency Ratio

We vary the slow memory access latency to evaluate the
sensitivity of our proposed mechanism to the latency ratio of
slow memory to fast memory. In memory, row activation time
tRCD and write recovery time tWR are two important timing
parameters that determine the read/write access latency [8,
10, 49, 58, 59, 62, 79]. tRCD speci�es the latency between the
row activate and bu�er read/write commands, while tWR
speci�es the latency between the array write and precharge
commands. To evaluate the e�ectiveness of our mechanisms
on hybrid memories with multiple types of DRAM, we set
both the tRCD and tWR latencies of slow memory to be 3 and 4
times their latencies for fast memory, which is in the typical
range of contemporary DRAM products [11, 49, 58, 80, 101].
To evaluate hybrid DRAM–NVM systems, we set the tRCD
latency of slow memory to be 4.5, 6, and 7.5 times that of
fast memory latency, while setting its tWR latency to be 12,
16, and 20 times, re�ecting the generally more expensive
write latency of NVM that is present in PCM [53] and STT-
RAM [52].

Figure 9 shows the absolute weighted speedup under the
di�erent slow-to-fast memory access latency ratios. We make
two observations from the �gure. First, as tRCD and tWR
increase, system performance gradually decreases. This is
because the increased access latency increases the processor
stall time, and in turn decreases system throughput. Second,
the performance of ALL does not signi�cantly change. This
is because ALL tries to insert the whole working set into
fast memory, which leads to very signi�cant fast memory
contention. Unlike the other mechanisms, this contention,
and not the slow memory latency, is the bottleneck for ALL.
For the other mechanisms, since they can perform some form
of load balancing between fast and slow memory (through the
dynamic adjustment of the migration threshold), their main
bottleneck is the latency asymmetry between the di�erent
memory devices, and, as a result, their absolute performance
improves when slow memory latency decreases. For our �ve
latency con�gurations, UH-MEM improves weighted speedup
by 8%, 6%, 14%, 13%, and 13%, respectively, over RBLA.

We conclude that UH-MEM provides performance improve-
ments over state-of-the-art hybrid memory management
techniques for a wide range of hybrid memory con�gurations,
whether they be di�erent types of DRAM or DRAM–NVM.

7. Related Work

To our knowledge, this work provides (1) the �rst utility met-
ric for hybrid memory systems, which quanti�es the system
performance bene�t of placing individual pages in fast mem-
ory; and (2) the �rst comprehensive performance model for
doing so. The most closely related work is a set of proposals
on data placement in DRAM–NVM or heterogeneous DRAM
memory systems, which we brie�y review in this section.

7.1. Hybrid DRAM–NVMMemory Systems
Prior works on hybrid DRAM–NVM memory systems pro-
pose to place pages that are recently accessed [104], or pages
with high access frequency, high write intensity, and/or low
row bu�er locality [106,126,129] in DRAM. These prior works
use only a few aspects of the memory characteristics of a page
to construct a heuristic that optimizes access latency, instead
of directly estimating the overall system performance bene�t
of migrating a page. As discussed in Section 3, improving the
access latency of a page using the heuristics proposed by prior
work does not necessarily lead to an improvement in system
performance. In order to maximize system performance, it
is important to estimate the likely performance bene�t of
placing each page in DRAM, which is demonstrated by our
performance evaluation results of UH-MEM.

Agarwal et al. [5] propose a software-based approach to
manage huge pages (e.g., 2MB pages) in hybrid memory sys-
tems. They propose to pro�le the memory access patterns of
huge pages, and to use these patterns to guide page migration
between DRAM and NVM. Although our work does not ex-
plicitly consider huge pages, our proposals can be extended
easily to cover huge page migration, by treating each huge
page as a series of regular-sized pages (e.g., 4KB pages), and
collecting characteristics and making migration decisions for
each of these regular-sized pages independently.

Dulloor et al. [21] propose a programmer-guided data place-
ment tool. This tool requires (1) programmers to modify the
source code, and (2) a representative pro�ling run of the
application prior to making placement decisions. A major
limitation of the tool is that it cannot be used when the source
code is not accessible, or when a priori pro�ling is infeasible.
Our software-transparent UH-MEM mechanism overcomes
such limitations, and it can also potentially be used together
with programmer-guided data placement.

Several works on hybrid memory management are orthogo-
nal to our work. Peña and Balaji [100] propose a pro�ling tool
to assess the impact of distributing memory objects across
the multiple memory devices in a hybrid memory. Bock et
al. [7] propose a scheme to migrate multiple pages concur-
rently between di�erent memory devices without signi�-
cantly a�ecting memory bandwidth. Gai et al. [28] propose a
data placement scheme that optimizes the energy consump-
tion of hybrid memory systems. Liu et al. [67] propose a
scheme that jointly manages the cache, memory channels,
and DRAM/NVM banks. Ideas from all these works can be
combined with UH-MEM for better performance and e�-
ciency.

7.2. Heterogeneous DRAMMemory Systems
Various techniques are proposed to combine multiple di�er-
ent types of DRAM for better performance, capacity, and
e�ciency [11, 12, 39, 72, 101, 127, 128]. Jiang et al. [39] pro-
pose to cache only hot pages in an on-chip DRAM cache, to
overcome the o�-chip DRAM bandwidth bottleneck. Chat-
terjee et al. [11] observe that the �rst word of cache blocks

11

is usually critical to the system performance, and propose to
store only these words in fast DRAM. Luo et al. [72] propose
heterogeneous-reliability memory, where multiple di�erent
types of DRAM with di�erent reliability characteristics are
used to improve system cost and e�ciency. Chou et al. [12]
and Yu et al. [127, 128] investigate how to utilize on-chip
and/or in-package DRAM as part of the main memory ad-
dress space. UH-MEM is complementary to these proposals.

Phadke and Narayanasamy [101] propose to classify
applications as latency-sensitive, bandwidth-sensitive, or
insensitive-to-both based on the MLP property of applica-
tions. To estimate MLP, they use an o�ine approach to pro�le
applications in the compilation stage. Compared with this
method, the MLP estimation approach in UH-MEM exhibits
two major di�erences: (1) UH-MEM estimates MLP using an
online approach that covers the dynamic events taking place
during program execution; and (2) UH-MEM considers the
MLP e�ects at a page granularity, and di�erentiates between
pages with diverse MLP properties within the same appli-
cation. Thus, UH-MEM works for a much broader range of
applications, including those that we cannot pro�le a priori,
and those that exhibit diverse MLP behavior across di�erent
pages.

7.3. Other Related Work
Several other works take advantage of the concept of memory-
level parallelism to perform resource management [18, 19, 25,
57, 85, 87, 89, 92, 93, 103, 105, 122]. For example, Qureshi et
al. [103] propose an on-chip cache replacement policy that
tends to evict cache blocks that are serviced with larger MLP.
The context of this work is di�erent from ours: it targets
on-chip cache replacement, while our work targets o�-chip
hybrid memory page placement. Hybrid memory placement
is a more complex problem with a much larger design space,
with two key di�erences from on-chip DRAM caching. First,
for on-chip DRAM caches, retrieving data from the cache
is clearly preferred over retrieving data from main memory,
due to the high o�-chip communication latency. If it were
possible, those systems would prefer that all data be kept
in the on-chip cache. In contrast, both our fast and slow
memory are o�-chip, with their row bu�er hits having iden-
tical access latencies. Since the fast and slow memory have
separate data channels, our partitioning mechanism also per-
forms load balancing: some of our applications never �ll up
the fast memory in order to exploit the available slow mem-
ory bandwidth. Second, in some memories (e.g., PCM [53],
STT-RAM [52]), writes require a longer latency than reads.
Therefore, we need to consider the write intensity of a page
when we make page placement decisions in hybrid memory,
whereas on-chip DRAM cache management policies do not
have to consider this due to DRAM’s uniform read and write
latencies. All these reasons make the decision space of hybrid
memory much more complex than that of on-chip caches.

Prior work uses load criticality to make memory schedu-
ling and caching decisions, by estimating or measuring the
importance or processor stall time of each load request on pro-

cessor performance [19, 29, 40, 114, 115]. These mechanisms
are not designed for and hence do not consider the intricacies
of hybrid memory systems. For example, characterizing stalls
based only on load requests is problematic for hybrid memory
management, as these mechanisms cannot correctly account
for (1) stalls due to store requests (e.g., stalls due to a long
memory write queue drain), or (2) the increased write latency
in many types of NVM. As a result, load-criticality-based
page placement may not correctly identify the pages that are
most bene�cial to migrate to fast memory. UH-MEM avoids
this problem by directly estimating the performance impact
of writes independently from the impact of reads.

8. Conclusion
Hybrid memory systems are a cost-e�ective approach to sig-
ni�cantly increasing memory capacity and thus delivering
high memory performance for data-intensive workloads. The
ability to achieve high performance is highly dependent on
data placement decisions made by a hybrid memory mana-
ger. We propose a utility-based hybrid memory management
mechanism (UH-MEM), the �rst mechanism to quantitatively
estimate the system performance bene�t of migrating a page
between di�erent memory types within a hybrid memory
system. UH-MEM consists of two major steps, which are two
new performance models. First, it systematically estimates
the application stall time reduction due to placing the page
in fast memory versus slow memory. Second, it determines
the sensitivity of system performance to each application,
which represents the amount by which each application af-
fects overall system performance. Based on the two models,
UH-MEM migrates pages with high estimated system perfor-
mance improvement to fast memory.

Our experimental results show that UH-MEM improves the
system performance and reduces energy consumption over
three state-of-the-art hybrid memory management proposals
for a wide range of hybrid memory con�gurations. For a
DRAM–NVM hybrid memory system, UH-MEM improves the
system performance by 14% on average (and up to 26%) over
the best of the three state-of-the-art management proposals.
We conclude that the new utility metric and the new utility-
based hybrid memory mechanism proposed in this paper
can enable an e�ective approach to managing future hybrid
memory systems, and hope that our proposal engenders more
research in accurate performance estimation of such complex
hybrid memory systems.

Acknowledgments
We thank the anonymous reviewers of IEEE Cluster 2017,
ICCD 2016, ISCA 2016, PACT 2015, ISCA 2015, HPCA 2015,
and MICRO 2014 for their comments. We especially thank
the anonymous reviewers of IEEE Cluster 2017 for their con-
structive and insightful comments. An earlier version of
this work was posted on arXiv in 2015 [63]. This work is
supported in part by the NSF, SRC, ISTC-CC, and industrial
partners of the SAFARI Research Group, especially Google,
Intel, Samsung, and VMware.

12

References
[1] “Ramulator,” https://github.com/CMU-SAFARI/ramulator, 2016.
[2] “Utility-Based Hybrid Memory Management Simulator,” https://github.com/

CMU-SAFARI/UHMEM, 2017.
[3] Advanced Micro Devices, Inc., “High-Bandwidth Memory (HBM): Re-

vinventing Memory Technology,” https://www.amd.com/Documents/
High-Bandwidth-Memory-HBM.pdf, 2015.

[4] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler, “Page
Placement Strategies for GPUs Within Heterogeneous Memory Systems,” in AS-
PLOS, 2015.

[5] N. Agarwal and T. F. Wenisch, “Thermostat: Application-Transparent Page Ma-
nagement for Two-Tiered Main Memory,” in ASPLOS, 2017.

[6] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and Stretch Metrics
for Scheduling Continuous Job Streams,” in SODA, 1998.

[7] S. Bock, B. R. Childers, R. Melhem, and D. Mossé, “Concurrent Migration of
Multiple Pages in Software-Managed Hybrid Main Memory,” in ICCD, 2016.

[8] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pek-
himenko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[9] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[10] K. K. Chang, A. G. Yaglikci, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-
Voltage Operation in Modern DRAM Devices: Experimental Characterization,
Analysis, and Mechanisms,” in SIGMETRICS, 2017.

[11] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Illikkal,
and R. Iyer, “Leveraging Heterogeneity in DRAM Main Memories to Accelerate
Critical Word Access,” in MICRO, 2012.

[12] C. C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-Level Memory Orga-
nization with Capacity of Main Memory and Flexibility of Hardware-Managed
Cache,” in MICRO, 2014.

[13] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture Optimizations for Exploi-
ting Memory-Level Parallelism,” in ISCA, 2004.

[14] K. C. Chun, H. Zhao, J. Harms, T.-H. Kim, J.-P. Wang, and C. Kim, “A Scaling Ro-
admap and Performance Evaluation of In-Plane and Perpendicular MTJ Based
STT-MRAMs for High-Density Cache Memory,” JSSC, 2013.

[15] S. Chung, K.-M. Rho, S.-D. Kim, H.-J. Suh, D.-J. Kim, H. Kim, S. Lee, J.-H. Park,
H.-M. Hwang, S.-M. Hwang, J. Y. Lee, Y.-B. An, J.-U. Yi, Y.-H. Seo, D.-H. Jung,
M.-S. Lee, S.-H. Cho, J.-N. Kim, G.-J. Park, G. Jin, A. Driskill-Smith, V. Nikitin,
A. Ong, X. Tang, Y. Kim, J.-S. Rho, S.-K. Park, S.-W. Chung, J.-G. Jeong, and S. J.
Hong, “Fully Integrated 54nm STT-RAM with the Smallest Bit Cell Dimension
for High Density Memory Application,” in IEDM, 2010.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmar-
king Cloud Serving Systems with YCSB,” in SoCC, 2010.

[17] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi, “Application-
to-Core Mapping Policies to Reduce Memory System Interference in Multi-Core
Systems,” in HPCA, 2013.

[18] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-Aware Prioritiza-
tion Mechanisms for On-Chip Networks,” in MICRO, 2009.

[19] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aérgia: Exploiting Packet La-
tency Slack in On-Chip Networks,” in ISCA, 2010.

[20] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A Hybrid PRAM and DRAM
Main Memory System,” in DAC, 2009.

[21] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson,
and K. Schwan, “Data Tiering in Heterogeneous Memory Systems,” in Eurosys,
2016.

[22] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via Source Throttling: A
Con�gurable and High-Performance Fairness Substrate for Multi-Core Memory
Systems,” in ASPLOS, 2010.

[23] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-Aware Shared Resource
Management for Multi-Core Systems,” in ISCA, 2011.

[24] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of Multiple
Prefetchers in Multi-Core Systems,” in MICRO, 2009.

[25] S. Eyerman and L. Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy
for SMT Processors,” in HPCA, 2007.

[26] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, 2008.

[27] S. Eyerman and L. Eeckhout, “Restating the Case for Weighted-IPC Metrics to
Evaluate Multiprogram Workload Performance,” IEEE CAL, 2014.

[28] K. Gai, M. Qiu, H. Zhao, and L. Qiu, “Smart Energy-Aware Data Allocation for
Heterogeneous Memory,” in HPCC, 2016.

[29] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling via
Processor-Side Load Criticality Information,” in ISCA, 2013.

[30] A. Glew, “MLP Yes! ILP No,” ASPLOS WACI, 1998.
[31] B. Goglin, “Exposing the Locality of Heterogeneous Memory Architectures to

HPC Applications,” in MEMSYS, 2016.
[32] B. Grot, S. W. Keckler, and O. Mutlu, “Preemptive Virtual Clock: A Flexible,

E�cient, and Cost-E�ective QOS Scheme for Networks-on-a-Chip,” in MICRO,
2009.

[33] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated Control for
Energy-E�cient and Heterogeneous Memory Systems,” in HPCA, 2013.

[34] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[35] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH Comput. Ar-
chit. News, 2006.

[36] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent O�oading and Mapping (TOM): Ena-
bling Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA,
2016.

[37] ITRS, “Process Integration, Devices, and Structures,” in ITRS, 2013.
[38] D. Jevdjic, S. Volos, and B. Falsa�, “Die-Stacked DRAM Caches for Servers: Hit

Ratio, Latency, or Bandwidth? Have It All with Footprint Cache,” in ISCA, 2013.
[39] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, D. So-

lihin, and R. Balasubramonian, “CHOP: Adaptive Filter-Based DRAM Caching
for CMP Server Platforms,” in HPCA, 2010.

[40] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Exploiting Core Criticality for Enhanced GPU Performance,” in SIGMETRICS,
2016.

[41] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. S. Choi,
“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
The Memory Forum, 2014.

[42] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
E�cacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[43] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding
Memory Interference Delay in COTS-Based Multi-Core Systems,” in RTAS, 2014.

[44] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Boun-
ding and Reducing Memory Interference in COTS-Based Multi-Core Systems,”
JRTS, 2016.

[45] J.-S. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J.-G.
Kim, H. Park et al., “A 1.2V 12.8GB/s 2Gb Mobile Wide-I/O DRAM With 4 128
I/Os Using TSV Based Stacking,” JSSC, 2012.

[46] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[47] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers,” inHPCA,
2010.

[48] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Mem-
ory Scheduling: Exploiting Di�erences in Memory Access Behavior,” in MICRO,
2010.

[49] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[50] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-
lator,” IEEE CAL, 2016.

[51] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez, “Checkpointed Early
Load Retirement,” in HPCA, 2005.

[52] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an Energy-E�cient Main Memory Alternative,” in ISPASS, 2013.

[53] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
As a Scalable DRAM Alternative,” in ISCA, 2009.

[54] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture
and the Quest for Scalability,” Communications of the ACM, 2010.

[55] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-Change Technology and the Future of Main Memory,” IEEE Micro, 2010.

[56] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “DRAM-Aware
Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory
Systems,” Univ. of Tecas, HPS Research Group, Tech. Rep. TR-HPS-2010-002,
2010.

[57] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-
Level Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[58] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[59] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-
Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA,
2013.

[60] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S.
Kim, H. B. Park, J. W. Shin et al., “25.2A 1.2V 8Gb 8-Channel 128GB/s High-
Bandwidth Memory (HBM) Stacked DRAM with E�ective Microbump I/O Test
Methods Using 29nm Process and TSV,” in ISSCC, 2014.

[61] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” ACM
TACO, 2016.

[62] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Understanding Reduced-Voltage Operation in Mo-
dern DRAM Devices: Experimental Characterization, Analysis, and Mecha-
nisms,” in SIGMETRICS, 2017.

[63] Y. Li, J. Choi, J. Sun, S. Ghose, H. Wang, J. Meza, J. Ren, and O. Mutlu, “Mana-
ging Hybrid Main Memories with a Page-Utility Driven Performance Model,”
arXiv:1507.03303 [CoRR], 2015.

[64] F. X. Lin and X. Liu, “memif: Towards Programming Heterogeneous Memory
Asynchronously,” in ASPLOS, 2016.

13

[65] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Pro�ling Mechanisms,” in ISCA, 2013.

[66] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[67] L. Liu, H. Yang, Y. Li, M. Xie, L. Li, and C. Wu, “Memos: A Full Hierarchy Hybrid
Memory Management Framework,” in ICCD, 2016.

[68] T. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. Lee, G. Balakrishnan, G. Yee,
H. Zhang, A. Yap, J. Ouyang, T. Sasaki, A. Al-Shamma, C. Chen, M. Gupta,
G. Hilton, A. Kathuria, V. Lai, M. Matsumoto, A. Nigam, A. Pai, J. Pakhale, C. H.
Siau, X. Wu, Y. Yin, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla,
T. Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, H. Inoue, and
L. Fasoli, “A 130.7mm2 2-Layer 32Gb ReRAM Memory Device in 24nm Techno-
logy,” JSSC, 2014.

[69] G. H. Loh and M. D. Hill, “E�ciently Enabling Conventional Block Sizes for
Very Large Die-Stacked DRAM Caches,” in MICRO, 2011.

[70] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” in PLDI, 2005.

[71] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Thoughput and Fairness in
SMT Processors,” in ISPASS, 2001.

[72] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B. Khes-
sib, K. Vaid, and O. Mutlu, “Characterizing Application Memory Error Vulnera-
bility to Optimize Datacenter Cost via Heterogeneous-Reliability Memory,” in
DSN, 2014.

[73] K. T. Malladi, U. Kang, M. Awasthi, and H. Zheng, “DRAMScale: Mechanisms
to Increase DRAM Capacity,” in MEMSYS, 2016.

[74] J. Mandelman, R. Dennard, G. Bronner, J. DeBrosse, R. Divakaruni, Y. Li, and
C. Radens, “Challenges and Future Directions for the Scaling of Dynamic
Random-Access Memory (DRAM),” IBM JRD, 2002.

[75] M. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh,
“Heterogeneous Memory Architectures: A HW/SW Approach for Mixing Die-
Stacked and O�-Package Memories,” in HPCA, 2015.

[76] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

[77] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling E�cient
and Scalable Hybrid Memories Using Fine-Granularity DRAM Cache Manage-
ment,” IEEE CAL, 2012.

[78] J. Meza, J. Li, and O. Mutlu, “A Case for Small Row Bu�ers in Non-Volatile Main
Memories,” in ICCD, 2012.

[79] J. Meza, J. Li, and O. Mutlu, “Evaluating Row Bu�er Locality in Future Non-
Volatile Main Memories,” Carnegie Mellon Univ., SAFARI Research Group, Tech.
Rep. 2012-002, 2012.

[80] Micron Technology, Inc., “576Mb: x18, x36 RLDRAM 3,” 2011.
[81] Micron Technology, Inc., “1Gb: x4, x8, x16 DDR3 SDRAM,” 2013.
[82] Micron Technology, Inc., “LPDRAM for Mobile and Embedded Applications,”

2015.
[83] Micron Technology, Inc., “Breakthrough Nonvolatile Memory Technology,”

https://www.micron.com/about/our-innovation/3d-xpoint-technology, 2016.
[84] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory

Service in Multi-Core Systems,” in USENIX Security, 2007.
[85] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its Application

to Multi-Core DRAM Controllers,” in PODC, 2008.
[86] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda,

“Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning,” in MICRO, 2011.

[87] O. Mutlu, H. Kim, and Y. N. Patt, “E�cient Runahead Execution: Power-E�cient
Memory Latency Tolerance,” IEEE Micro, 2006.

[88] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” in MICRO, 2007.

[89] O. Mutlu, “E�cient Runahead Execution Processors,” Ph.D. dissertation, Univ.
of Texas at Austin, 2006.

[90] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[91] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory

Becomes Denser,” in DATE, 2017.
[92] O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for E�cient Processing in Runa-

head Execution Engines,” in ISCA, 2005.
[93] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[94] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An Al-

ternative to Very Large Instruction Windows for Out-of-Order Processors,” in
HPCA, 2003.

[95] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An Ef-
fective Alternative to Large Instruction Windows,” IEEE Micro, 2003.

[96] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Mem-
ory Systems,” SUPERFRI, 2014.

[97] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Pro�ler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Pro�ling at Aggressive Conditions,”
in ISCA, 2017.

[98] M. Pavlovic, N. Puzovic, and A. Ramirez, “Data Placement in HPC Architectures
with Heterogeneous O�-Chip Memory,” in ICCD, 2013.

[99] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in Hot Chips, 2011.

[100] A. J. Peña and P. Balaji, “Toward the E�cient Use of Multiple Explicitly Managed
Memory Subsystems,” in CLUSTER, 2014.

[101] S. Phadke and S. Narayanasamy, “MLP Aware Heterogeneous Memory System,”
in DATE, 2011.

[102] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-O� in Architecting
DRAM Caches: Outperforming Impractical SRAM-Tags with a Simple and
Practical Design,” in MICRO, 2012.

[103] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A Case for MLP-Aware
Cache Replacement,” in ISCA, 2006.

[104] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-Change Memory Technology,” in ISCA, 2009.

[105] T. Ramirez, A. Pajuelo, O. J. Santana, O. Mutlu, and M. Valero, “E�cient Runa-
head Threads,” in PACT, 2010.

[106] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid Memory
Systems,” in ICS, 2011.

[107] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam, “Phase-Change
Random Access Memory: A Scalable Technology,” IBM JRD, 2008.

[108] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Memory Access Sche-
duling,” in ISCA, 2000.

[109] SAFARI Research Group GitHub Repository, “SAFARI Software Tools,” https:
//github.com/CMU-SAFARI/.

[110] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “The Dirty-Block Index,” in ISCA, 2014.

[111] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko,
Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone:
Fast and Energy-E�cient In-DRAM Bulk Data Copy and Initialization,” in MI-
CRO, 2013.

[112] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simultaneous Mul-
tithreaded Processor,” in ASPLOS, 2000.

[113] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,
and S. Gurumurthi, “Memory Errors in Modern Systems: The Good, The Bad,
and The Ugly,” in ASPLOS, 2015.

[114] S. T. Srinivasan, R. D. Ju, A. R. Lebeck, and C. Wilkerson, “Locality vs. Critica-
lity,” in ISCA, 2001.

[115] S. T. Srinivasan and A. R. Lebeck, “Load Latency Tolerance in Dynamically Sche-
duled Processors,” in MICRO, 1998.

[116] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing
Performance, Fairness and Complexity in Memory Access Scheduling,” TPDS,
2016.

[117] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting
Memory Scheduler: Achieving High Performance and Fairness at Low Cost,” in
ICCD, 2014.

[118] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The Application
Slowdown Model: Quantifying and Controlling the Impact of Inter-Application
Interference at Shared Caches and Main Memory,” in MICRO, 2015.

[119] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE: Providing
Performance Predictability and Improving Fairness in Shared Main Memory
Systems,” in HPCA, 2013.

[120] Y.-H. Tseng, C.-E. Huang, C. H. Kuo, Y. D. Chih, and C.-J. Lin, “High Density
and Ultra Small Cell Size of Contact ReRAM (CR-RAM) in 90nm CMOS Logic
Technology and Circuits,” in IEDM, 2009.

[121] H. Usui, L. Subramanian, K. K.-W. Chang, and O. Mutlu, “DASH: Deadline-
Aware High-Performance Memory Scheduler for Heterogeneous Systems with
Hardware Accelerators,” ACM TACO, 2016.

[122] K. Van Craeynest, S. Eyerman, and L. Eeckhout, “MLP-Aware Runahead Threads
in a Simultaneous Multithreading Processor,” in HiPEAC, 2009.

[123] H. Vandierendonck and A. Seznec, “Fairness Metrics for Multi-Threaded Proces-
sors,” IEEE CAL, 2011.

[124] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proceedings of the IEEE,
2010.

[125] X. Xiang, S. Ghose, O. Mutlu, and N.-F. Tzeng, “A Model for Application Slow-
down Estimation in On-Chip Networks and Its Use for Improving System Fair-
ness and Performance,” in ICCD, 2016.

[126] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu, “Row Bu�er
Locality Aware Caching Policies for Hybrid Memories,” in ICCD, 2012.

[127] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee: Bandwidth-
E�cient DRAM Caching via Software/Hardware Cooperation",” in MICRO,
2017.

[128] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-E�cient DRAM Caching via Software/Hardware Cooperation,”
arXiv:1704.02677 [CoRR], 2017.

[129] W. Zhang and T. Li, “Exploring Phase Change Memory and 3D Die-Stacking for
Power/Thermal Friendly, Fast and Durable Memory Architectures,” in PACT,
2009.

[130] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mosse, “Writeback-Aware Band-
width Partitioning for Multi-Core Systems with PCM,” in PACT, 2013.

[131] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy E�cient Main
Memory Using Phase Change Memory Technology,” in ISCA, 2009.

[132] W. Zuravle� and T. Robinson, “Controllers for a Synchronous DRAM That Max-
imizes Throughput by Allowing Memory Requests and Commands to Be Issued
Out of Order,” U.S. Patent No. 5,630,096, 1997.

14

