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Abstract

Database applications that use multi-terabyte datasets are

becoming increasingly important for scientific fields such as

astronomy and biology. Scientific databases are particularly

suited for the application of automated physical design tech-

niques, because of their data volume and the complexity of the

scientific workloads. Current automated physical design tools

focus on the selection of indexes and materialized views. In

large-scale scientific databases, however, the data volume and

the continuous insertion of new data allows for only limited

indexes and materialized views. By contrast, data partitioning

does not replicate data, thereby reducing space requirements and

minimizing update overhead. In this paper we present AutoPart,

an algorithm that automatically partitions database tables to

optimize sequential access assuming prior knowledge of a repre-

sentative workload. The resulting schema is indexed using a frac-

tion of the space required for indexing the original schema. To

evaluate AutoPart we built an automated schema design tool that

interfaces to commercial database systems. We experiment with

AutoPart in the context of the Sloan Digital Sky Survey database,

a real-world astronomical database, running on SQL Server

2000. Our experiments demonstrate the benefits of partitioning

for large-scale systems: Partitioning alone improves query exe-

cution performance by a factor of two on average. Combined

with indexes, the new schema also outperforms the indexed orig-

inal schema by 20% (for queries) and a factor of five (for

updates), while using only half the original index space.

1 Introduction

Scientific experiments in fields such as astronomy and

biology typically require accumulating, storing, and pro-

cessing very large amounts of information. The ongoing

effort to support the Sloan Digital Sky Survey (SDSS)

[9][18] provides a comprehensive example for both the

terabyte-scale storage requirements and the complex

workloads that will execute on future database systems.

Similarly, the Large-aperture Synoptic Survey Telescope

(www.lsst.org) dataset is expected to be in the scale of

petabytes (the data accumulation rate is calculated at 8 ter-

abytes per night). Typical processing requirements on

these datasets include decision-support queries, spatial or

temporal joins, and versioning. The combination of mas-

sive datasets and demanding workloads stress every aspect

of traditional query processing. 

In environments of such scale, query execution per-

formance heavily depends on the indexes and materialized

views used in the underlying physical design. The data-

base community has recently focused on tools that utilize

workload information to automatically design indexes

[1][5][13]. Currently, all major commercial systems ship

with design tools that identify access patterns in the input

workload and propose an efficient mix of indexes and

materialized views to speed up query execution. Typically,

the tools tend to generate a set of “covering” indexes per

query to enable index-only query processing (essentially,

these indexes implement and ordered partition of the

table). In the case of large-scale applications like SDSS,

performance depends upon a large set of covering indexes,

since accessing the large base tables (even through non-

clustered indexes) is prohibitively expensive. 

Large numbers of covering indexes are expensive to

store and maintain, as data columns from the base table are

replicated multiple times in the index set. Adding multiple

indexes to multi-terabyte scientific databases typically

increases the database size by a factor of two or three, and

incurs a significant storage management overhead. In

addition, indexing complicates insertions and updates. For

instance, new experimental or observation data is often

inserted in the database and derived data is recalculated

using new models. During update operations, all “repli-

cated” new and updated data values must be sorted and

written multiple times for all the indexes. Insertion and

update costs increase as a function of the number of tuples

inserted or modified. If update or storage constraints do

not exist, the workload can always be processed using a

complete set of covering indexes. Such a scenario, how-

ever, is unrealistic for large-scale scientific databases,

where both insertion and storage management costs are

seriously considered.

This paper describes AutoPart, an algorithm that par-

titions the tables in the original database according to a

representative workload. AutoPart is incorporated into an

automated schema design tool that interfaces to commer-

cial database systems. By first designing a partitioned

schema and then building indexes on the new database,

queries can scan the base tables efficiently as well as a

smaller set of indexes, thereby alleviating unnecessary

storage and update overhead. Because data partitioning

increases spatial locality, it improves memory and disk

system performance when the covering index set cannot

be built due to storage or update constraints. 
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This paper makes the following contributions:

• We introduce AutoPart, a data partitioning algorithm.

AutoPart receives as input a representative workload

and utilizes categorical and vertical partitioning as well

as selective column replication to design a new high-

performance schema. 

• To evaluate AutoPart we build an automated schema

design tool that can interface to commercial systems

and utilize cost estimates from the DBMS query opti-

mizer.

• We experimentally evaluate AutoPart on the SDSS

database and workload. Our experiments (i) evaluate

the performance improvements provided by partition-

ing alone, without the use of indexes and (ii) quantify

the performance benefits of partitioned schemas when

indexes are introduced in the design. 

Our experimental results confirm the benefits of parti-

tioning: Even without the use of indexes, a partitioned

schema can speed up query execution by almost a factor of

two when compared to the original schema. Partitioning

alone improves query execution performance by a factor

of two on average. Combined with indexes, the new

schema also outperforms the indexed original schema by

20% (for queries) and a factor of five (for updates), while

using only half the original index space.

This paper is structured as follows: Section 2 summa-

rizes related work. Section 3 discusses the partitioning

problem in greater detail, while in Section 4 we present the

AutoPart algorithm. Section 5 discusses the AutoPart

architecture. Section 6 presents our experimental results

and Section 7 our conclusions.

2 Related work

The following sections present related work on (i) parti-

tioning of database relations, (ii) index and materialized

view selection and (iii) support for partitioning.

2.1 Partitioning

To optimize performance, database researchers have pro-

posed data placement and partitioning schemes [6][21].

Vertical partitioning is known to optimize I/O performance

since the early days of relational databases [19]. Several

studies [11][14][15] exploit affinity within a set of

attributes (a measure of how often queries use attributes

together in a representative workload). Combined with a

clustering algorithm, affinity determines a reasonable

assignment of attributes to vertical fragments. Attribute

affinity identifies clusters by collecting statistics about the

attribute usage by queries, and can therefore scale to large

workloads. Its disadvantage is that it is decoupled from the

system’s optimizer and the query execution engine, and

thus human intervention is eventually required to validate

the quality of the recommended partitioned designs.

An extension to the previous approaches incorporates

query processing using cost estimates given a table config-

uration [7]. The paper defines a set of analytical formulae

that model vertical partitioning as an integer programming

optimization problem. Modern practice, however, suggests

that explicit analytical functions are of limited value, since

they are rarely in accordance to the real cost models in

modern query optimizers and cannot be easily applied on

complex queries or on complex execution engines.

Similarly to today’s tools for automatically evaluating

database indexes, a software cost estimation module

examines candidate configurations and computes their

expected cost [10]. Candidate configurations are deter-

mined through a heuristic that iteratively combines

attributes, minimizing the total workload cost at each step.

Although the proposed scheme is simple and reduces total

workload cost at each iteration, it does not incorporate

workload-specific information such as the sets of

attributes referenced by each query. 

For the horizontal partitioning of database tables, [3]

uses the predicates in the workload to generate first a set

of disjoint horizontal fragments. The fragments are then

combined to minimize an application-dependent cost func-

tion. An idea similar to categorical partitioning [4] is used

for the more efficient execution of group queries.

2.2 Index and Materialized view selection

The method of choice for modern, state-of-the-art auto-

matic design tools is the combination of heuristic search

methods with the system’s own query optimizer. Index

selection tools for relational databases [1][5][13] and the

automatic declustering techniques for parallel DBMS [17]

are based on the optimizer’s cost estimates. The index

selection problem is closely related to vertical partitioning:

since the base table structure is perceived as a static prop-

erty of the database, a viable alternative for reducing the I/

O requirements of a query workload is the use of covering,

multi-attribute indices to facilitate index-only data access.

Such indexes essentially are ordered vertical partitions.

The only difference is that indexes are redundant struc-

tures, therefore a popular column is replicated multiple

times in the final design. Given that the original relations

are not necessarily optimized for a particular workload,

these tools are often face a difficult problem, since the use

of every additional index increases update overhead and

data redundancy.

2.3 Support for partitioning

There has been work on extending the relational engine to

support some form of data partitioning. The most recent

work ,Fractured Mirrors [16], is a storage scheme target-

ing the Decomposition Storage Model (DSM). DSM [6]

first replaced the original relations by single-attribute frag-

ments, and constructed an index on each fragment inde-



pendently from the workload. DSM penalizes queries that

use a large fraction of the relation’s attributes with extra

joins. Fractured mirrors remedy DSM performance by (a)

using thick tuples to reduce the cost of DSM joins and (b)

storing both the partitioned and the non-partitioned ver-

sions of the database, and combining them during query

optimization and execution. Our work aims at performing

workload-conscious partitioning on the initial database

while keeping one copy of the database around, and can be

combined with mirroring for even better performance.

DSM is also used in the Monet [2] database manage-

ment system. Monet is optimized for memory resident

databases and relies on specialized joining algorithms for

reducing the cost of combining multiple single-attribute

fragments in main memory. Our work explores the appli-

cation of workload-based partitioning (not necessarily

DSM-like) for general purpose relational systems.

GMAP [20] decouples the logical structure of the

database from the physical structures storing the data. A

number of physical design alternatives are examined,

including vertical partitioning of relations and replication

of attributes. GMAP provides algorithms for the transla-

tion of queries expressed in terms of the logical schema so

that they can efficiently access the underlying physical

structures, or for updating the physical level data accord-

ing to changes in the logical level. GMAP is complemen-

tary to our work: It provides a framework that can support

modifications of the schema in the physical level. It does

not cover the problem of identifying the optimal partition-

ing schemes for a given workload, rather it provides the

primitives that allow a system to transparently support

changes in its physical layer.

3 Workload-based data partitioning

In this section, we first briefly describe the vertical

partitioning idea and the factors that limit its efficiency.

We then explain how categorical partitioning and replica-

tion can alleviate the problem, using examples drawn from

real scientific databases.

A general formulation of the vertical partitioning

problem is the following: Given a set of relations R = {R1,

R2,…,Rn} and a set of queries Q = {Q1, Q2, …, Qm}

determine a set of relations R’  R to be partitioned and

generate a set of fragments F = {F1, F2, …, FN} such that:

1. Every fragment F F stores a subset of the attributes

of a relation R R’ plus an identifier column.

2. Each attribute of a relation R R’, is contained in

exactly one fragment F F. (except for the primary

key). 

3. The sum of the query costs when executed on top of

the partitioned schema, cost (Q, (R - R’)  F ) is

minimized. 

We expect the workload cost over the partitioned

schema to be lower, because the fragments are faster to

access than the original relations and queries will be able

avoid accessing attributes they do not use. We define the

Query Access Set (QAS) of a query Q with respect to a

relation R (QAS(Q,R)), as the subset of R’s attributes ref-

erenced by Q. In the ideal case, where for all query pairs

Qi, Qj, QAS(Qi,R)  QAS(Qj,R) = , the solution to the

vertical partitioning problem would be to simply generate

a fragment F for each distinct QAS in the workload. Then,

each query would have to access a single fragment con-

taining exactly the attributes it references, resulting in

minimal I/O requirements. Realistically, however, the

workload will contain overlapping QAS. In this case,

“clean” solutions to the vertical partitioning problem are

not feasible.

Consider the example in Figure 1(a), drawn from a

simplified astronomical database. Our database consists of

a single table (Objects) that stores astronomical objects

(galaxies and stars). Our workload consists of queries

Q1,Q2,Q3, shown in the figure with their QAS. Figure

1(b) shows one possible solution for vertically partitioning

Objects into 3 fragments (O1,O2,O3). Q1 needs to access

only O1, minimizing its I/O requirements. Since the

attribute TYPE exists in all QAS, queries Q2 and Q3 will

have to access fragment O1 in addition to O2 and O3 and

perform the necessary joins. Also, since QAS(Q2)

QAS(Q3) = {MAG}, Q2 will have to access fragment O3

to obtain its missing attribute, performing an additional

join. Alternatively, merging some of the O1,O2,O3 would

result in lower joining overheads, but the queries would

FIGURE 1: Partitioning example. (a) original schema. 

(b) schema after vertical partitioning. (c) schema after

categorical and vertical partitioning. (d) schema after

categorical and vertical partitoining with attribute repli-

cation.

TYPE RA DEC CX CYERR MAG

ObjectsQ1: TYPE, ERR

Q2: TYPE, RA, DEC,MAG

Q3: TYPE, CX,CY,MAG

TYPE RA DEC CX CYERR MAG

O1 O2 O3

TYPE RA DEC CX CYERR MAG

TYPE RA DEC CX CYERR MAG

TYPE RA DEC CX CYERR MAG

TYPE RA DEC CX CYERR MAGMAG

(a)

(b)

(c)

(d)

Galaxies1 Galaxies2

Galaxies1 Galaxies2

Stars

Galaxies



have to access a larger number of additional attributes and

the I/O cost would increase.

The previous example demonstrates that overlapping

QAS in a workload reduce the efficiency of vertical parti-

tioning, because it is impossible to avoid additional joins

for some of the queries in the workload. Often, however,

much of the overlap implied by comparing the QAS is not

real. Consider, for instance, that in the previous example

Q1 restricts its search to objects of type “Star” (TYPE =

“Star”), whereas Q2 and Q3 only care about objects of

type “Galaxy” (TYPE = “Galaxy”). In this case, consider-

ing only QAS leads to “false sharing” as Q1 will process a

completely disjoint set of tuples than Q2 and Q3. By cate-

gorically partitioning Objects we remove the overlap

between QAS(Q1) and QAS(Q2) QAS(Q3), since they

now access only the categorical fragments (Figure 1 (c)).

Now, the fact that Q1 needs to access attributes {TYPE,

ERR} together does not affect queries Q2, Q3. In addition,

we remove TYPE from the two horizontal fragments alto-

gether. With this form of partitioning queries benefit not

only from the elimination of unnecessary accesses to

objects of the wrong class, but also from the removal of

categorical columns. Application of categorical partition-

ing is the first step of the partitioning algorithm used in

AutoPart.

Note that even in the categorically partitioned schema

of Figure 1 (c), there is still an overlap between QAS(Q2)

and QAS(Q3) on MAG. We reduce the impact of such

overlaps, that cannot be removed by categorical partition-

ing, by allowing the replication of attributes belonging to

the intersection of two or more QAS. In our example, we

replicated attribute MAG in the two fragments, Galaxy1

and Galaxy2, in order to remove the remaining joins (Fig-

ure 1(d)). The resulting schema has no additional joins or

unnecessary data accesses. Attribute replication is an

effective way to remove the overheads introduced by over-

lapping QAS. To control the amount of replication intro-

duced in the schema, we constraint the partitioning

algorithm so that it uses no more than a specified amount

of space for attribute replication. 

4 The AutoPart Algorithm

This section describes the data partitioning algorithm used

in AutoPart. The input to AutoPart is a collection of que-

ries Q, a set of database relations R, and the replication

constraint, denoting the amount of storage available for

attribute replication. The output is a set F of fragments,

which accelerate the execution of Q. This section presents

the stages of the partitioning algorithm.

4.1 Terminology

In our model, a relation R is represented by a set of

attributes, whereas a fragment F of R is represented by a

subset of R. We distinguish between two kinds of frag-

ments: atomic fragments are the “thinnest” possible frag-

ments of the partitioned relations, and are accessed

atomically: there are no queries that access only a subset

of an atomic fragment. In addition, atomic fragments are

disjoint and their union is equal to R. A composite frag-

ment is the union of two or more atomic fragments. The

query extent of a fragment F is the set of queries that refer-

ence it (if F is atomic) or the intersection of the sets of

queries that access each of its atomic components (if F is

composite).

4.2 Algorithm overview

The general structure of our algorithm is shown in Figure

2. The first step of the algorithm is to identify the categor-

ical predicates in Q, and to partition the input relations

accordingly to avoid the “false sharing” between queries

that have overlapping QAS but access different object

classes. In the second step, the algorithm generates an ini-

tial version of the partitioned schema, consisting only of

atomic fragments of the partitioned relations. The perfor-

mance of this initial version of the solution is determined

by the joining overhead (since atomic fragments may often

contain a single attribute). 

The algorithm then improves the initial schema by

forming composite fragments that reduce the joining over-

head in the resulting schema but increase I/O cost: queries

accessing a composite fragment don’t necessarily refer-

ence all the attributes in it. Composite fragments can either

replace their constituent atomic fragments in the parti-

tioned schema, or just be appended to the schema (assum-

ing the replication constraint is not violated). The

Composite Fragment Generation module determines a set

of composite fragments that should be considered for

FIGURE 2: Outline of the partitioning algorithm used by

AutoPart

Categorical Partitioning

Atomic Fragm ent G eneration

Composite Fragm ent G eneration

Composite Fragm ent Evaluation

Improvem ent 

in cost?

Pair-w ise m erging

No

Q, R, repl. constraint

AutoPart
F



inclusion in the schema, while the Composite Fragment

Selection module evaluates the available options and

chooses the fragments that are found to provide the highest

improvements for the workload.

The algorithm iterates through the composite fragment

generation and selection steps multiple times, each time

expanding the fragments selected in the previous steps.

The generation of fragments with an increasing number of

attributes, based on the results of previous iterations, is a

useful heuristic, applied also in index selection [5], to

reduce the number of combination considered by the

selection module. Note that the composite fragments con-

sidered may contain attributes that are also included in

other fragments in the partitioned schema, thus allowing

for attribute replication. When the workload cost cannot

be further improved by the incorporation of composite

fragments, the resulting schema is passed through a

sequence of pair-wise merges of fragments, attempting to

further improve performance. 

The following sections present the algorithm in more

detail. The algorithm’s pseudocode is shown in Figure 3. 

4.3 Categorical Partitioning

The categorical partitioning step first generates horizontal

fragments of the partitioned relations. The partitioning

depends on the existence of categorical attributes in the

relations and in the workload. Categorical attributes are

attributes that take a small number of discrete values and

are used to identify classes of objects. The basic motiva-

tion for categorical partitioning is that if queries operate on

distinct classes of objects, those classes can be stored in

separate horizontal fragments. The algorithm used for cat-

egorical partitioning of a relation R, under a query work-

load Q is shown in Figure 4. The algorithm first identifies

the set of categorical attributes {Ai} in R and their corre-

sponding domains {Di} (step 1). This information can be

provided either by the system’s designer or the system cat-

alog. Each query containing predicates on those attributes,

defines a horizontal subset of R, containing all the objects

that satisfy the predicates. The purpose of the algorithm is

to determine a suitable collection of non-overlapping sub-

sets, which will be assigned to different horizontal frag-

ments.For this, we use the methodology developed in [3]

We can express every query predicate involving each

of those attributes in the form xi: {Ai  d Di}. Let X =

{xi} be the collection of such predicates, and assume that it

is minimal and complete, according to [3]. Then, the min-

term predicates Y(X) [3] computed in Step 4 define a col-

lection of non-overlapping horizontal fragments that can

be used to define the horizontal fragments of R. If there

exist categorical attributes Ai that take a unique value in

the horizontal fragments determined, they are removed

(Step 5).  

4.4 Composite fragment generation

The composite fragment generation stage (Step 2, Figure

3) provides, in each iteration, a new set of composite frag-

ments to be considered for inclusion in the schema. 

The input to the stage for iteration k is the set of com-

posite fragments SF(k-1) that were selected in the previous

iteration. For the first iteration (k=1) the input to the stage

is the set AF of atomic fragments. 

As explained in section 4.1, the algorithm reduces the

total number of composite fragments evaluated for inclu-

sion by extending only those fragments that were selected

in the previous iteration. Those fragments are extended in

two ways:

1. By combining them with fragments in AF.

2. By combining them with fragments in SF(k-1)

  invoke categorical_partitioning(R,Q,N)

/* Schema PS is the best partial solution so far */

/* Compute atomic fragments */

1. schema PS := AF 

/*Composite fragment generation*/

2. for each composite fragment F SF(k-1)

2.a E(f) := {composite_fragments (F,A AF)

composite_fragments (F, A AF) having 

query extent > X }

2.b CF(k) := CF(k) E(f)

/*Composite fragment selection */

3. for each composite fragment F CF(k)

3.schema SF := add_fragment (F,PS)

3.b if size(SF) > B then continue with the next F

3.c compute cost(SF, Q )

4.select Fmin = arg_max (cost (SF, Q ))

 with cost (SFmin,Q ) < cost (PS,Q )

5. if no solution was found then goto 9 /* exit */

6. PS := SFmin
7. SF(k) := SF(k) Fmin
8. remove Fmin from CF(k)

9. repeat steps 3-8

/* proceed with next iteration*/

10. k++

FIGURE 3: The AutoPart algorithm

categorical_partitioning(relation R, queries Q, size N)

1. A := categorical attributes e R. 

2. Let X = collection of predicates in Q of the form

xi:{Ai  d Di}

3. XM := complete_minimal_set({xi})

4. horizontal fragments Y := minterm_fragments(X)

5. For each fragment F Y, remove all attributes in 

F that take a single value.

FIGURE 4: Categorical partitioning algorithm



The number of fragments generated in the initial steps

of the algorithm is in the worst case quadratic to the num-

ber of atomic fragments. Depending on the size of the AF

set, this number could be very large. It is possible to

reduce the number of fragments generated, by selecting

only those that will have the largest impact in the work-

load. Intuitively, a composite fragment is useful if it is ref-

erenced by many queries. The query extent of a fragment

is a measure of a fragment’s importance. Step 2.a prunes

the fragments that are referenced by less than X queries in

the workload. Pruning based on the query extent criterion

reduces the set of fragments considered during the initial

steps of the algorithm. 

4.5 Greedy fragment selection

Given the collection of composite fragments provided by

the generation stage, the selection stage (Steps 3-8 in Fig-

ure 3) greedily picks a subset of those for inclusion in the

partitioned schema. 

For each iteration, the selection module starts with the

best "partial" schema found so far, PS, and a set of com-

posite fragments CF(k) that must be evaluated for inclu-

sion in the schema (step 3). The algorithm incorporates

each candidate fragment in the current partial solution PS

and computes the workload cost on the resulting schema

(Steps 3.a, 3.b, 3.c). The fragment that minimizes work-

load cost is selected and permanently added to PS (Steps

6-8). The procedure is repeated until the workload cost

cannot be further improved by fragments in CF(k). 

The function add_fragment (Figure 5, used in step

3.a) removes all the subsets of a new fragment before add-

ing it to the schema. This "recycling" of fragments simpli-

fies the management of the storage space during the

execution of the algorithm. If we were simply appending

the new fragments to the partial solution, then the algo-

rithm would quickly run out of space and then a separate

process for removing fragments would have to be used.

Using this replacement strategy , our algorithm works nat-

urally when no replication is allowed in the partitioned

schema.

Cost evaluation: Cost models

The selection module makes decisions based on the work-

load cost. We implemented AutoPart to utilize both a sim-

ple analytical cost model and the detailed cost estimation

provided by the database system’s query optimizer. The

model for the cost of a query on a partitioned schema is

presented in Figure 6. It captures only the parameters nec-

essary for partitioning, like the I/O cost of scanning a table

and the cost of joining two or more fragments to recon-

struct a portion of the original data. In our model the I/O

cost of scanning a fragment F is proportional to the num-

ber of its attributes (Step 4.a), since the number of rows in

the fragments of the same relation is constant. The scaling

factor SR accounts for differences in relation sizes. The

cost of joining two fragments is for simplicity considered

constant and equal to J. The value of J must be carefully

chosen to reflect the relative cost of joining compared to

performing I/O. We computed the value of J by observing

the query plans generated by the query optimizer, for vari-

ous partitioned schemas.

An alternative to analytical models is the system’s

query optimizer. Modern optimizers utilize detailed

knowledge of the query execution engine internals and of

the data distributions to provide realistic cost estimates.

The use of the query optimizer accounts for all the factors

involved in query execution that our simple model

ignores, like those affecting the joining costs. The use of

the optimizer removes the constant join cost assumption of

our model and takes into account factors like the existence

of different join algorithms and the influence of predicate

selectivities.The main disadvantage of using the query

optimizer compared to an analytical cost model is that

query optimization, applied repetitively, increases the run-

ning time of our tool.

4.6 Use of randomized algorithms

The fragment selection module (Section 4.5) uses a greedy

approach to decide which fragments to add to the schema

at each step. Similar algorithms have been proposed for

the selection of indexes or materialized views [1][5]. The

advantage of a greedy algorithm is its simplicity and low

complexity. 

Randomized search algorithms differ from greedy

search in that they do not require that the lowest-cost alter-

native is chosen at each step. They follow multiple random

paths through the search space and therefore are less likely

procedure add_fragment (schema S, fragment F)

for each fragment F1 S

if (F1 F) then remove F1 from S

S := S  F}

return S

FIGURE 5: Procedure to add new fragments

procedure cost (workload Q, schema S)

1.repeat for each query q in Q

2. Let R = a relation referenced in q

/* compute the set of partitions Q will access */

3. P := plan (Q,S)

4. for each fragment f in P

4.a scan_cost := scan_cost + SR * | F|

5. join_cost = (|P|-1) * J

6. costR := scan_cost + join_cost

7. repeat steps 2-6 for every relation referenced in q

8. costQ := sum of costR + count(R) * J’

9. return the total cost for all queries

FIGURE 6: The model used for cost estimation



to be “trapped” in a local minimum. We experimented

with Simulated Annealing and Iterative Improvement [12]

versions of the composite fragment selection module with

very similar to those obtained using greedy selection. It

part of our future work to determine when a randomized

algorithm is preferable.

4.7 Pairwise merging

The final part of the algorithm (Figure 7) is intended to

improve the solution obtained by the greedy fragment

selection through a process of pairwise merges. The algo-

rithm merges pairs of fragments from the solution

obtained so far and evaluates the impact of the merge on

the workload. Merges that improve workload cost are

incorporated in the solution. The loop in steps 1-5 termi-

nates when the solution cannot be further improved. Note

that merging does not increase the size of the solution. We

use the pair-wise merging process to capture the most

important of those composite fragments that were not con-

sidered by the algorithm, because they were omitted by the

fragment selection process. 

5 System Architecture

This section describes the functional blocks of the auto-

mated schema partitioning tool, depicted in Figure 8. The

system implementation was done using Java (JDK 1.4)

and JDBC and the DBMS is SQL Server 2000.

QUERY PARSER. This module receives as input the

original queries (Q) and the tables to partition ({R}). Its

output is the queries in a parsed representation (QP)

TABLE DESIGNER.The Table Designer module is the

heart of the schema design tool. It receives as input the set

of parsed queries (QP) and the original schema definition

(WORIG), and applies the vertical partitioning algorithms

of Section 4. Its output is a set of candidate partitioned

schemas ({WPART} ) to be evaluated by the query opti-

mizer.

QUERY REWRITER. The rewriter uses each parti-

tioned schema definition (WPART) and the set of parsed

queries (QP) to produce a set of equivalent rewritten que-

ries (QR) that can access the fragments in WPART.

DBMS INTERFACE. This is a JDBC interface to the

database currently hosted by the SQL Server. The inter-

face executes table and statistics creation statements

according to WPART. To accurately estimate query costs,

our tool provides the query optimizer with the correct table

sizes and statistics for the partitioned schema. Since it is

impractical to populate the tables for each candidate

schema, we estimate table sizes and copy the estimates to

the appropriate system catalog tables, for the optimizer to

access. In addition, we compute statistics for each column

in the original, unpartitioned tables and reuse that informa-

tion for the evaluated partitions. To test our virtual table

generation method, we actually implement the partitions

recommended by our tool and find that the cost estimates

obtained by it match those obtained from the real database.

We found that in order for the virtual and real cost

estimates to agree, the statistics must be generated using

full data scans and not by random sampling. 

SYSTEM CATALOG. The DBMS catalog stores infor-

mation like table sizes, row sizes and statistics. To facili-

procedure pairwise (queries Q, schema S)

1. for each pair Fi, Fj in S

1.a Fij := merge (Fi,Fj)

1.b Sij := S - Fi -Fj
1.c Sij:= Sij Fij

2. find imin, jmin such that cost(Q,Sij) is the minimal

3. if cost not improved then goto 6 /*exit*/

4. S := s imin, jmin
5. repeat steps 1-5

6. return S

FIGURE 7: The pairwise merging procedure

FIGURE 8: Partitioning tool architecture.
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tate query cost estimation, we update the system catalog

tables with information reflecting the new schemas.

OPTIMIZER INTERFACE. This JDBC interface

receives as input the rewritten queries (QR) and uses the

query optimizer to obtain query plan information and cost

estimates.

We deployed our partitioning tool as a web applica-

tion, that runs independently of the database server com-

ponent. We provide the input (query workload and tables

to be partitioned) through a simple web interface. Our tool

can (through standard JDBC) access remote databases to

obtain the original schemas, modify their structure and

obtain cost estimates for alternative solutions 

6 Experimental Evaluation

We present experimental results on (a) the perfor-

mance of AutoPart without indexes and (b) the benefits of

partitioning in the presence of indexes and updates.

6.1 Experimental setup

Our experiments use the Sloan Digital Sky Survey (SDSS)

database [18][9], running on SQL Server 2000. The

machine we use for the experiments is a workstation with

a single 1-GHz Athlon CPU, 512 MB of main memory

and two 120-GB IDE disks. 

The SDSS database comprises 39 tables. The central

“catalog” table, PHOTOOBJ (22GB), describes each

astronomical object using 369 mostly numerical attributes.

The second largest table is NEIGHBORS (5GB), which is

used to store spatial relationships between neighboring

objects. It essentially contains pairs of references to neigh-

boring PHOTOOBJ objects and additional attributes, such

as distance. Both tables are clustered on their primary key,

which consists of application-specific object identifiers.

We use AutoPart on PHOTOOBJ and NEIGHBORS, since

they are exclusively responsible for the workload’s I/O

cost.

The SDSS workload consists of 35 representative

SQL queries, reflecting the kind of processing that is use-

ful for astronomers. Most queries are sequential scans that

process PHOTOOBJ and apply predicates to identify col-

lections of astronomical objects of interest. 6 queries have

a spatial flavor, joining PHOTOOBJ with NEIGHBORS.

Only 68 of the 369 attributes in the PHOTOOBJ table and

5 out of the 8 attributes in NEIGHBORS are actually refer-

enced in the workload. For a fair comparison, we modified

the database tables before our experiments, so that they

only contain the attributes actually referenced in the work-

load. We present our performance results in terms of the

estimated execution time provided by the query optimizer.

The speedup of a query is defined as 

s = 1 - (query_cost_optimized)/ (query_cost_original). 

To realistically evaluate the full impact of data parti-

tioning in the presence of indexes we include an update

workload (SDSS_U). SDSS_U consists of two insertion

statements (SQL INSERT), that simulate the insertion of

new data in the system’s two largest tables. The statements

in SDSS_U simply append 800,000 and 5,000,000 tuples

in the PHOTOOBJ and NEIGHBORS tables respectively,

corresponding to 6% and 4.5% of their current contents. 

6.2 Experimental results

6.2.1  Evaluation of partitioning

This section demonstrates that AutoPart significantly

improves query execution without the use of any indexes.

We derive two partitioned schemas, CVP_x0 and

CVP_x0.5, through categorical and vertical partitioning,

without and with replication respectively. In the attribute

replication case, we set a storage upper bound for the rep-

lication columns equal to 1/2 the original database size.

For our discussion, we categorize the SDSS queries

into two groups. The join-bound group (SDSS_J) consists

of four queries, whose execution is bounded by expensive

joins among several instances of PHOTOOBJ and

NEIGHBORS. SDSS_J queries account for 47% of the

total workload cost. The scan-bound group (SDSS_S)

includes 31 queries, dominated by table scans. Partitioning

improves SDSS_S queries, since it significantly reduces

their I/O requirements. SDSS_J queries benefit less , since

the joins are their dominant operators. 

Figure 9 shows the estimated workload performance

distinguishing between the two query groups, SDSS_S

and SDSS_J. The schema with replication (CVP_x0.5)

performs better than the schema without (CVP_x0). The
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overall performance improvement is 47% and 43% respec-

tively. Queries in the SDSS_J group benefit less, 19% and

24% respectively, while the improvements for the

SDSS_S queries are 69% and 72%. Overall, replication

improved partitioning performance by 10%.

Figure 10 shows normalized optimizer estimates for

queries in the SDSS_S (left) and in the SDSS_J (right)

groups. The performance improvement for most of the

queries in the SDSS_S group is an order of magnitude.

Query performance in the SDSS_J group improves from

2% (Q17, CVP_x0) to more than 2x (Q17, CVP_x0.5)..

Partitioning improved the performance of all the SDSS

queries, by significantly reducing their I/O costs. The

schema with attribute replication offers better perfor-

mance, at the expense of additional space

6.2.2  Indexing a partitioned schema

This section shows the benefits of partitioning even com-

pared to an unpartitioned schema with indexes. We design

indexes using the Index Tuning Wizard in SQL Server

2000. We allow unlimited storage for indexes, but add

updates (SDSS_U) to the input workload. The cost of the

SDSS_U workload increases considerably with every new

index built, since each new index requires the updated data

to be properly ordered. Since the partitioned schemas are

already optimized for the particular workload, they will

require much less indexing effort, offering better perfor-

mance for both retrieval and update statements.

Figure 11 shows the total workload cost when using

the indexed original (I_ORIG) and partitioned schemas

(I_CVP_x0.5 and I_CVP_x0) for all statement groups.

Due to the effectiveness of partitioning the partitioned

schemas use fewer and smaller indexes. Because of the

reduced. indexing requirements, workload (SDSS_U)

shows a dramatic 5x improvement. Despite the fewer

indexes, queries in the SDSS_S class improve by 20%,

because of the combined effect of partitioning and index-

ing. The performance improvement is similar for the repli-

cation and the no-replication case, because indexes

mitigate any performance differences. Overall, partition-

ing improves query execution performance even in the

presence of indexes, by approximately 45%.

Figure 12 shows the total amount of storage allocated

for the I_ORIG and the two partitioned schemas, broken
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down into the storage required to index the two main

tables. The ‘covering’ indexes (Section 2.2) built on the

un-partitioned schema requre additional space equal to the

original dataset sizeThe partitioned schemas require about

half the space. According to Figure 12, the original

schema relies on heavily indexing PHOTOOBJ for perfor-

mance. In comparison, because of the performance bene-

fits of partitioning PHOTOOBJ, the partitioned schemas

require 7 and 4 times less storage to index PHOTOOBJ.

Instead of heavily indexing PHOTOOBJ, the partitioned

schemas allocate some more space for the efficient index-

ing of NEIGHBORS.

The experimental results in this section demonstrate

that partitioning has a performance impact even when

compared to an indexed schema. The reason is that heavily

indexing the database tables has a detrimental effect on

update performance. Partitioning reduces the indexing

requirements of the resulting schema, resulting in

improvements in both update and query execution perfor-

mance.

7 Conclusions

Database applications that use multi-terabyte datasets are

becoming increasingly important for scientific fields such

as astronomy and biology. In such environments, physical

database design is a challenge. We propose AutoPart, an

algorithm that automatically partitions database tables uti-

lizing prior knowledge of a representative workload.

AutoPart suggests an alternative, high-performance

schema that executes queries faster than the original one

and can be indexed using a fraction of the space required

for indexing the original schema. To evaluate AutoPart,

we build an automated schema design tool that interfaces

to commercial database systems. The paper describes our

algorithm, the system architecture, and experimental

results using the Sloan Digital Sky Survey database.
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