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Abstract

As database application performance depends on the utilization of the disk and memory hierarchy, and the speed
gap between the processor and memory components widens, smart data placement plays a central role in increasing
locality and in improving memory utilization. Existing techniques, however, do not optimize accesses to all levels of
memory hierarchy and for all the different workloads, because each storage level uses different technology (cache,
memory, disks) and each application accesses data using different (often conflicting) patterns. This paper introduces
Clotho, a new buffer pool and storage management architecture. Clotho decouples in-memory page layout from data
organization on non-volatile storage devices, enabling independent data layout design at each level of the storage
hierarchy. Using Clotho, a DBMS can maximize cache and memory utilization by (a) transparently using appropriate
data layouts on memory and non-volatile storage, and (b) dynamically synthesizing data pages to follow application
access patterns at each level as needed. Clotho enables (a) independently-tailored page layouts for dynamically
changing as well as compound workloads, and (b) use of alternative technologies at each level (e.g., disk arrays or
MEMS-based storage devices). We describe the Clotho design and implementation using disk array logical volumes
and simulated MEMS-based storage devices, and we evaluate performance under a variety of workloads.



1 Introduction

Page structure and storage organization have been the subject of numerous studies [1, 3, 6, 10, 11],
because they play a central role in database system performance. Research continues as no single
data organization serves all needs within all systems. In particular, the access patterns resulting
from queries posed by different workloads can vary significantly. One query, for instance, might
access all the attributes in a table (full-record access), while another accesses only a subset of
them (partial-record access). Full-record accesses are typical in transactional (OLTP) applications
where insert and delete statements require the entire record to be read or written, whereas partial
accesses are often met in decision-support system (DSS) queries. Moreover, when executing com-
pound workloads, one query may access records sequentially while others access the same records
“randomly” (e.g., via non-clustered index). Currently, database storage managers implement a
single page layout and storage organization scheme, which is utilized by all applications running
thereafter. As a result, in an environment using a variety of workloads, only a subset of query types
can be serviced well.

Several data page layout techniques have been proposed in the literature, each targeting dif-
ferent query types. Notably, the N-ary Storage Model (NSM) [13] stores records consecutively,
optimizing for full-record accesses, while penalizing partial-record sequential scans. By contrast,
the Decomposition Storage Model (DSM) [7] stores values of each attribute in a separate table,
optimizing for partial-record accesses, while penalizing queries that need the entire record. More
recently, PAX [1] optimizes cache performance, but not memory utilization. Fractured mirrors [14]
reduce DSM’s record reconstruction cost by using an optimized structure and scan operators, but
need to keep an NSM-organized copy of the database as well to support queries that access full
records. None of the previously proposed schemes provides a universally efficient solution, how-
ever, because they all make a fundamental assumption that the pages used in main memory must
have the same contents as those stored on disk.

This paper proposes Clotho, a buffer pool and storage management architecture that decouples
the memory page layout from the non-volatile storage data organization, allowing memory page
contents to be determined dynamically according to queries being served. This decoupling offers
two significant advantages. First, it allows storage access and memory utilization to be optimized
by fetching from storage only the data accessed by a given query. Second, it allows new two-
dimensional storage mechanisms to be exploited to mitigate the trade-off between the NSM and
DSM storage models. We experiment with Clotho using the Atropos disk array architecture [17]
and choosing data layouts at each level of the memory hierarchy to match NSM where it performs
best, match DSM where it performs best, and outperform both for access types in between (and
for query mixes). Likewise, Clotho provides the same benefits for systems exploiting the internal
parallelism of MEMS-based storage devices (MEMStores) [19, 22].

This paper also describes and evaluates a prototype implementation of Clotho within the Shore
database storage manager [4]. Experiments with disk arrays show that, with only a single storage
organization, performance of DSS and OLTP workloads is comparable to the page layouts best
suited for the respective workload (i.e., DSM and PAX, respectively). Experiments with a simulated
MEMStore confirm that similar benefits will be realized with these future devices as well.

The remainder of this paper is organized as follows. Section 2 gives background and related
work. Section 3 describes the architecture of a database system that enables decoupling of the in-
memory and storage layouts. Section 4 describes the design of a buffer pool manager that supports
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query-specific in-memory page layout. Section 5 describes the design of a volume manager that
allows efficient access when an arbitrary subset of table attributes are needed by a query. Sec-
tion 6 describes our initial implementation, and Section 7 evaluates this implementation for several
database workloads using both a disk array logical volume and a simulated MEMStore.

2 Background and related work

Conventional relational database systems such as Oracle or IBM DB2 store data in fixed-size pages
(typically 4 to 64 KB). To access individual records of a relation (table) requested by a query, a scan
operator of a database system accesses main memory. Before accessing data, a page must first be
fetched from non-volatile storage (e.g., a logical volume of a disk array) into main memory. Hence,
a page is the basic allocation and access unit for non-volatile storage. This access is facilitated by
the database’s storage manager, which sends a request to a storage device logical volume manager
to fetch the necessary blocks.

A single database page contains a header describing what records are contained within and
how they are laid out. In order to retrieve data requested by a query, a scan operator must under-
stand the page layout, (a.k.a. storage model). Since the page layout determines what records and
which attributes of a relation are stored in a single page, the storage model employed by a database
system has far reaching implications on the query performance of a particular workload [2].

The page layout prevalent in commercial database systems, called N-ary storage model (NSM),
is optimized for queries with full-record access common in an on-line transaction processing
(OLTP) workload. NSM stores all attributes of a relation in a single page [13] and full records
are stored within a page one after another. Accessing a full record is accomplished by accessing
a particular record from consecutive memory locations. Using an unwritten rule that access to
consecutive logical blocks (LBNs) in the storage device is more efficient than random access, a
storage manager maps single page to consecutive LBNs. Thus, an entire page can be accessed by
a single I/O request.

An alternative page layout, called the Decomposition Storage Model (DSM) [7], is optimized
for decision support systems (DSS) workloads. Since DSS queries typically access a small number
of attributes and most of the data in the page is touched in memory by the scan operator, DSM stores
only one attribute per page. To ensure efficient storage device access, a storage manager maps DSM
pages with consecutive records containing the same attribute into extents of contiguous LBNs. In
anticipation of a sequential scan through records stored in multiple pages, a storage manager can
prefetch all pages in one extent with a single large I/O, which is more efficient than accessing each
page individually by a separate I/O.

A page layout optimized for CPU cache performance, called PAX [1], offers good CPU-
memory performance for both individual attribute scans of DSS queries and full-record accesses
in OLTP workloads. The PAX layout partitions data across into separate minipages. A single mini-
page contains data of only one attribute and occupies consecutive memory locations. Collectively,
a single page contains all attributes for a given set of records. Scanning individual attributes in PAX
accesses consecutive memory locations and thus can take advantage of cache-line prefetch logic.
With proper alignment to cache-line sizes, a single cache miss can effectively prefetch data for sev-
eral records, amortizing the high latency of memory access compared to cache access. However,
PAX does not address memory-storage performance.
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All of the described storage models share the same characteristics. They (i) are highly opti-
mized for one workload type, (ii) focus predominantly on one level of the memory hierarchy, (iii)
use a static data layout that is determined a priori when the relation is created, and (iv) apply the
same layout across all levels of the memory hierarchy, even though each level has unique (and
very different) characteristics. As a consequence, there are inherent performance trade-offs for
each layout that arise when a workload changes. For example, NSM or PAX layouts waste memory
capacity and storage device bandwidth for DSS workloads, since most data within a page is never
touched. Similarly, a DSM layout is inefficient for OLTP queries accessing random full records.
To reconstruct a full record with n attributes, n pages must be fetched and n� 1 joins on record
identifiers performed to assemble the full record. In addition to wasting memory capacity and stor-
age bandwidth, this access is inefficient at the storage device level; accessing these pages results
in random one-page I/Os. In summary, each page layout exhibits good performance for a specific
type of access at a specific level of memory hierarchy.

Several researchers have proposed solutions to address these performance trade offs. Rama-
murthy et al. proposed fractured mirrors that store data in both NSM and DSM layouts [14] to
eliminate the need to reload and reorganize data when access patterns change. Based on the work-
load type, a database system can choose the appropriate data organization. Unfortunately, this
approach doubles the required storage space and complicates data management; two physically
different layouts must be maintained in synchrony to preserve data integrity. Hankins and Pa-
tel [10] proposed data morphing as a technique to reorganize data within individual pages based
on the needs of workloads that change over time. Since morphing takes place within memory
pages that are then stored in that format on the storage device, these fine-grained changes cannot
address the trade-offs involved in accessing non-volatile storage. The Lachesis database storage
manager [15] exploits unique disk drive characteristics to improve performance of DSS workloads
and compound workloads that consist of DSS and OLTP queries competing for the same storage
device. It matches page allocation and access policies to leverage these characteristics, but the
storage model itself is not different; Lachesis stores transparently the in-memory NSM pages to the
storage device’s logical blocks.

MEMStore [5] is a promising new technology for on-line storage that has been shown to
provide efficient accesses to two-dimensional data. Schlosser et al. proposed data layout for
MEMStores that exploits their inherent access parallelism [19]. Yu et al. devised an efficient
mapping of database tables to this layout that takes advantage of MEMStore’s unique characteris-
tics [22] to improve query performance. Similarly, Gorbatenko and Lilja [9] proposed data organi-
zation for two-dimensional access to database tables mapped to individual disk drives. However,
these initial works did not explore the implications of this new data organization on in-memory
access performance.

In summary, these solutions either address only some of the performance trade-offs or are
applicable to only one level of the memory hierarchy. Clotho builds on the previous work and
uses a decoupled data layout that can adapt to dynamic changes in workloads without the need to
maintain multiple copies of data, reorganize data layout, or to compromise between memory and
I/O access efficiency.
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Figure 1: Decoupled storage device and in-memory layouts.

3 Decoupling data layouts

From the discussion in the previous section, it is clear that designing a static scheme for data
placement in memory and non-volatile storage that performs well across different workloads and
different device types and technologies is difficult. Instead of accepting the trade-offs inherent to a
particular page layout that affects all levels of the memory hierarchy, we propose a new approach.

As the technology used at each storage level exhibits vastly different performance character-
istics, the data organization at each level should be different. Clotho decouples the in-memory
data layout from the storage organization and implements the most appropriate data layout tailored
to each level of the memory hierarchy, without compromising performance at the other levels.
The challenge is to ensure that this decoupling works seamlessly within the framework of current
DBMS architectures. This section introduces the different data organizations Clotho employs at
each level of the storage hierarchy, outlines the benefits from using this architecture, and describes
its key components.

3.1 Data organization in Clotho

Clotho allows for decoupled data layouts and different representations of the same table at the
memory and storage levels. Figure 1 depicts an example table, R, with three attributes: ��, ����,
and ���. At the storage level, the data is organized into A-pages. An A-page contains all attributes
of the records; only one A-page needs to be fetched to retrieve a full record. Exploiting the idea
used in PAX [1], an A-page organizes data into minipages that group values from the same at-
tribute for efficient predicate evaluation, while the rest of the attributes are in the same A-page.
To ensure that the record reconstruction cost is minimized regardless of the size of the A-page,
Clotho allows the device to use optimized methods for placing the contents of the A-page onto
the storage medium. Therefore, not only does Clotho fully exploit sequential scan for evaluating
predicates, but it also places A-pages carefully on the device to ensure near-sequential (or semi-
sequential [17]) access when reconstructing a record. The placement of A-pages on the disk is
further explained in Section 5.1.

The rightmost part of Figure 1 depicts a C-page, which is the in-memory representation of a
page. The page frame is sized by the buffer pool manager and is on the order of 8 KB. A C-page
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Figure 2: Clotho architecture.

is similar to an A-page in that it also contains attribute values grouped in minipages, to maximize
processor cache performance. Unlike an A-page, however, a C-page only contains values for the
attributes the query accesses. Since, the query in the example only uses the �� and ���, the C-page
only includes these two attributes, maximizing memory utilization. Note that the C-page uses data
from two A-pages to fill up the space “saved” from omitting ����. In the rest of this paper, we
refer to the C-page layout as the Clotho storage model (CSM).

3.2 System architecture

The difficulty in building a database system that can decouple in-memory page layout from stor-
age organization lies in implementing the necessary changes without undue increase in system
and code complexity. To allow decoupled data layouts, Clotho changes parts of three database
system components, namely the buffer pool and the device manager. The changes span limited
areas in these components, and do not alter the query processing interface. Each component can
independently take advantage of enabling hardware/OS technologies at each level of the memory
hierarchy, while hiding the details from the rest of the system. Figure 2 shows the basic archi-
tecture of Clotho. This section outlines the changes to a standard database system, which are
further explained in Sections 4 and 5.1. Specific prototype implementation details are provided in
Section 6.
The operators are essentially predicated scan and store procedures that access data from in-
memory pages stored in a common buffer pool. They take advantage of the query-specific page
layout of C-pages that leverages the L1/L2 CPU cache characteristics and cache prefetch logic for
efficient access to data.
The buffer pool manager manages C-pages in the buffer pool and enables sharing across different
queries that need the same data. In traditional buffer pool managers, a buffer page is assumed to
have the same schema and contents as the corresponding relation. In Clotho, however, this page
may contain a subset of the table schema attributes. To ensure sharing, correctness during updates,
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and high memory utilization, the Clotho buffer pool manager maintains a page-specific schema
that denotes which attributes are stored within each buffered page (i.e., the page schema). The
challenge of this approach is to ensure minimal I/O by determining sharing and partial overlapping
across concurrent queries with minimal book-keeping overhead. Section 4 details the buffer pool
manager operation in detail.
The storage manager maps A-pages to specific logical volume’s logical blocks, called LBNs.
Since the A-page format is different from the in-memory layout, the storage manager rearranges A-
page data on-the-fly into C-pages using the query-specific CSM layout. Unlike traditional storage
managers where pages are also the smallest access units, the Clotho storage manager selectively
retrieves a portion of a single A-page. With scatter/gather I/O and hardware direct memory access
(DMA), the pieces of individual A-pages can be delivered directly into the proper memory frame(s)
in the buffer pool as they arrive from the logical volume. The storage manager simply sets up the
appropriate I/O vectors with the destination address ranges for the requested LBNs. The data
is placed directly to its destinations without the storage manager’s involvement or the need for
data shuffling and extraneous memory copies. To efficiently access data under a variety of access
patterns, Clotho storage manager relies on explicit hints provided by the logical volume manager
that convey which LBNs can be accessed together efficiently and uses them to allocate A-pages.
The logical volume manager (LVM) maps volume LBNs to the physical blocks of the underlying
storage device(s). It leverages device-specific characteristics to create mappings that yield efficient
access to a collection of LBNs. The LVM exposes the information about these LBN collections
through an interface that, while abstracting away the device specifics, allows the Clotho storage
manager to employ allocation policies for efficient access. In particular, the storage interface
exports two functions that establish explicit relationships between individual LBNs of the logical
volume and enable the storage manager to effectively map A-pages to individual LBNs. One
function returns the set of consecutive LBNs that yield efficient access (e.g., all blocks mapped
onto one disk track). Another function returns a set of non-contiguous LBNs that can be efficiently
accessed together (e.g., parallel-accessible LBNs mapped to different disks of logical volume). The
LVM is briefly described in Section 5.1 and detailed elsewhere [17, 19].

3.3 Benefits of decoupled data layouts

The concept of decoupling data layouts at different levels of the memory hierarchy offers several
benefits.
Leveraging unique device characteristics. At the volatile (main-memory) level, Clotho uses
CSM, a data layout that maximizes processor cache utilization by minimizing unnecessary accesses
to memory. CSM organizes data in C-pages and also groups attribute values to ensure that only
useful information is brought into the processor caches [1, 10]. At the storage-device level, the
granularity of accesses is naturally much coarser. The objective is to maximize memory utilization
for all types of queries by only bringing into the buffer pool data that the query needs.
Query-specific memory layout. With memory organization decoupled from storage layout, Clotho
can decide what data is needed by a particular query, request only the needed data from a storage
device, and arrange the data on-the-fly to an organization that is best suited for the particular query
needs. This fine-grained control over what data is fetched and stored also puts less pressure on
buffer pool and storage system resources. By not requesting data that will not be needed, a storage
device can devote more time to servicing requests for other queries executing concurrently and
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Figure 3: C-page layout.

hence speed up their execution.
Dynamic adaptation to changing workloads. A system with flexible data organization does
not experience performance degradation when query access patterns change over time. Unlike
systems with static page layouts, where the binding of data representation to workload occurs
during table creation, this binding is done in Clotho only during query execution. Thus, a system
with decoupled data organizations can easily adapt to changing workloads and also fine-tune the
use of available resources when they are under contention.

4 The Clotho buffer pool manager

As explained in Section 3.1, the Clotho buffer pool manager organizes data in C-pages using the
CSM data layout. CSM is a query-optimized in-memory page layout that stores only the subset
of attributes needed by a query. Consequently, a C-page can contain a single attribute (similar to
DSM), a few attributes, or all attributes of a given set of records (similar to PAX) depending on
query needs. This section describes how the buffer pool manager constructs and maintains C-pages
and ensures data sharing and consistency in the buffer pool.

4.1 In-memory C-page layout

Figure 3 depicts two examples of C-pages for a table with four attributes. In our design, C-pages
only contain fixed-size attributes. Variable-size attributes are stored separately in other page lay-
outs (see Section 6.2). A C-page contains a page header and a set of minipages, each containing
data for one attribute and collectively holding all attributes needed by queries. In a minipage, a
single attribute’s values are stored in consecutive memory locations, to maximize processor cache
performance. The current number of records and presence bits are distributed across the minipages.
Because the C-page only handles fixed-size attributes, the size of each minipage is determined at
the time of table creation.
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The page header stores the following information: page id of the first A-page, the number of
partial A-pages contained, the starting address of each A-page, a bit vector indicating the schema
of the C-page’s contents, and the maximal number of records that can fit in an A-page.

Figure 3(a) and Figure 3(b) depict C-pages with complete and partial records, respectively.
The leftmost C-page is created for queries that access full records, whereas the rightmost C-page
is customized for queries touching only the first two attributes. The space for minipages 3 and
4 on the left are used to store more partial records from additional A-pages on the right. In this
example, a single C-page can hold the requested attributes from three A-pages, increasing memory
utilization by a factor of three.

On the right side of the C-page we list the number of storage device blocks each minipage
occupies. In our example each block is 512 bytes. Depending on the relative attribute sizes, as
we fill up the C-page using data from more A-pages there may be some unused space. Instead of
performing costly operations to fill up that space, we choose to leave it unused. Our experiments
show that, with the right page size and aggressive prefetching, this unused space does not cause a
detectable performance deterioration (details about space utilization are in Section 7.6).

4.2 Data sharing in buffer pool

Concurrent queries do not necessarily access the same sets of attributes; concurrent sets of accessed
attributes may be disjoint, inclusive, or otherwise overlapping. The Clotho buffer pool manager
must (a) maximize sharing, ensuring memory space efficiency, (b) minimize book-keeping to keep
the buffer pool operations light-weight, and (c) maintain consistency in the presence of updates.

As an example, query Q1 asks for attributes a1 and a2 while query Q2 asks for attributes a2

and a3. Using a simple approach, the buffer manager could create two separate C-pages tailored
to each query. This approach ignores the sharing possibilities in case these queries scan the table
concurrently. To achieve better memory utilization, the buffer manager can instead dynamically
reorganize the minipages of a1 and a2 inside the two C-pages, fetching only the needed values and
keeping track of the progress of each query, dynamically creating new C-pages for Q1 and Q2.
However, this approach incurs too much book-keeping overhead, and is inefficient in practice.

The Clotho buffer pool manager balances memory utilization and management complexity.
Each frame in the buffer pool stores a C-page which conforms to a page schema, a bitvector that
describes which attributes the C-page holds. For each active table, we keep a list of the different
page schemas for C-pages that belong to the table and are currently in the buffer pool. Finally, each
active query keeps a query schema, a bitvector that describes which attributes the query needs for
each accessed table. Whenever a query starts executing, the buffer pool manager notes the query
schema and inspects the other, already active, page schemas. If the new query schema accesses
a disjoint set of attributes from the over active queries, if any, the buffer pool manager creates a
new C-page. Otherwise, it merges the new schema with the most-efficient overlapping one already
in memory. The algorithm in Figure 4 modifies the page schema list (p sch), which is initially
empty, based on the query schema (q sch). Once the query is complete, the system removes the
corresponding query schema from the list and adjusts the page schema list accordingly using the
currently active query schemas.

During query execution the page schema list dynamically adapts to changing workloads de-
pending on the concurrency degree and the overlaps among attribute sets accessed by queries. This
list ensures that queries having common attributes can share data in the buffer pool while queries

8



if read-only query then
if �p sch � q sch then

Do nothing
else if q sch� allp sch �� then

Add q sch to the schema list
else

New p sch = ��q sch, �p sch � p sch�q sch �����
Add the new p sch to the list

end if
else if it is a write query (update/delete/insert) then

Use full schema as the q sch
Modify the list: only one full p sch now

end if

Figure 4: Buffer pool manager algorithm.

with disjoint attributes will not affect each other. In the above example, Q1 first comes along, the
buffer pool manager creates C-pages with a1 and a2. When Q2 arrives, the buffer pool manager
will create a C-page with a1, a2, and a3 for these two queries. After Q1 finishes, C-pages with only
a2 and a3 will be created for Q2.

4.3 Maintaining data consistency

With the algorithm in Figure 4, the buffer pool may still have multiple copies of the same minipage.
To ensure data consistency, if a transaction modifies a C-page, other queries should be able to get
the latest copy if it is still resident in memory.

When looking for a record, a traditional database buffer manager looks for the corresponding
page id in the page table, and determines whether the record is in memory. To support record
lookup in the query-specific C-page in Clotho, the page table of the buffer pool manager contains
the page ids of all the A-pages used to construct the active C-pages, and is augmented with the
page schema bitvectors. To perform a record lookup, we use a key consisting of the page id and
the page schema requested. A hit means that the page id matches one of the A-page page ids, and
the schema of the C-page subsumes the schema of the requested record as described in the key.

For writes (insert, delete, and update operations), we use full-schema C-pages for two reasons:
(a) inserts and deletes need full-record access and modify all respective minipages, whereas (b) for
updates, full schema is convenient for maintaining the data consistency in the buffer pool with
nearly no additional cost. Queries asking for modified records can automatically obtain the correct
dirty page from the buffer pool.

When a write query is looking up a C-page, it invalidates all of the other buffered C-pages
that contain the parts of the same A-page. Thus, there is only one valid copy of the modified data.
Since the C-page with updated data has a full schema, the updated page subsumes all other queries
asking for records in this page, which will use it until it is flushed to the disk.
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5 Logical volume manager

This section briefly describes the storage device-specific data organization and the mechanisms
exploited by the LVM in creating logical volumes that consist of either disk drives or a single
MEMStore. Much of this work builds upon our previous work on Atropos disk array logical
volume manager [17] and MEMStore [19]. Due to space constraints, this section describes the
high-level points for each device type.

5.1 Atropos disk array LVM

The standard interface of disk drives and disk arrays uses a simple linear abstraction, meaning that
any two dimensional data structure that is to be stored on disk needs to be serialized. For example,
NSM serializes along full records (row-major) and DSM serializes along single attributes (column-
major). Once the table is stored, access along the dimension of serialization is sequential and
efficient. However, access along the other dimension is random and inefficient. Atropos uses the
same linear abstraction as before, but solves this problem by using a new internal data organization
and exposing a few key parameters to the higher-level software.

By exposing enough information about its data organization, the database’s storage manager
can achieve efficient access along either dimension. Atropos exploits the request scheduler built
into the disk’s firmware and automatically-extracted knowledge of track switch delays to support
semi-sequential access: diagonal access to ranges of blocks (one range per track) across multiple
adjacent disk tracks. This second dimension of access enables two dimensional data structures
to be accessed efficiently. To improve sequential access, Atropos exploits automatically-extracted
knowledge of disk track boundaries, using them as its stripe unit boundaries for achieving efficient
sequential access. By also exposing these boundaries explicitly, it allows a storage manager like
Lachesis [15] to use previously proposed “track-aligned extents” (traxtents), which provide sub-
stantial benefits for streaming patterns interleaved with other I/O activity [16]. Finally, as other
striped logical volume managers, it delivers aggregate bandwidth of all of the disks in the volume
and offers the same reliability/performance tradeoffs of traditional RAID schemes [12].

5.2 Semi-sequential access

To understand semi-sequential access, imagine sending two requests to a disk: one request for the
first LBN on the first track, and one for the second LBN on the second track. These two adjacent
tracks are in the same cylinder, but different heads are used to access them. First, the disk heads will
seek to the cylinder, then there will be some initial rotational latency before the first LBN is read.
Next, the disk will switch heads, which takes some fixed amount of time (typically around 1 ms),
and access the second LBN. With properly chosen LBNs, the Atropos layout guarantees that the
second LBN is accessible after only a head switch, with no additional seek or rotational latency
incurred. Requesting more LBNs on successive tracks laid out in this fashion allows further semi-
sequential access, with only a single head switch between each access.

Atropos limits the number of LBNs that are semi-sequentially mapped to a single disk before
mapping them to the next disk. Requests to the semi-sequential LBNs on a single disk are all
issued in a batch. The disk’s internal scheduler then chooses a request that will incur the smallest
positioning cost and service it first. Servicing all other requests will incur only a head switch
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Figure 5: Mapping of a database table with 12 attributes onto Atropos logical volume with 4 disks. The
numbers to the left of disk 0 are the LBNs mapped to the gray disk locations connected by the arrow and not the first
block of each row. The arrow illustrates efficient semi-sequential access fetching single A-page with 63 records. A
single sequential I/O for 16 LBNs can efficiently fetch one attribute from 1008 records striped across four disks.

to the adjacent track, while bounding the response time to a single rotation. When more LBNs
are requested, they can be accessed in parallel from multiple disks, each disk accessing semi-
sequentially a subset of the requested LBNs. Naturally, the sustained bandwidth of semi-sequential
access is less than that of sequential access. However, semi-sequential access is more efficient than
reading randomly chosen LBNs spread across adjacent tracks, as would be the case when accessing
data along the secondary dimension of a table stored in a normal striped disk array. Accessing
random LBNs would incur an additional rotational latency equal to half a revolution, on average.

5.3 Efficient database organization

Atropos allows database tables to be laid out onto the disks such that access to one dimension
of the table is sequential, and access to the other dimension is semi-sequential. Figure 5 shows a
simple table consisting of 1008 records, each with 12 attributes stored in an Atropos logical volume
comprised of four disks. In the figure, the primary dimension is along the columns of the table.
Accessing one attribute of all records in the table is done with four track-sized, track-aligned reads.
For example, a sequential scan of attribute A1 for all records in the table results in a read starting at
LBN 0 through LBN 15. Accessing all attributes of a single record results in three semi-sequential
accesses, one to each disk. For example, accessing attributes A1 through A12 of record 0 requires
three semi-sequential reads, each proceeding in parallel on different disks, starting at LBNs 0, 64,
and 128. In this case, access along the columns of the table is sequential and access along the rows
of the table is semi-sequential. A single A-page is mapped to a set of semi-sequential LBNs to
allow efficient access.
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Figure 6: Data layout with parallel-accessible LBNs highlighted. The LBNs marked with ovals are at the same
location within each square and, thus, comprise an equivalence class. That is, they can potentially be accessed in
parallel.

5.4 MEMS-based storage devices

Two groups have evaluated the use of internal access parallelism in MEMStores to efficiently
access database tables [19, 22]. Clotho shows the benefit of using these techniques in the context
of a complete database management system. As these devices are not yet available, we simulate
their behavior using the DiskSim simulator combined with the Atropos logical volume manager.

Most MEMStore designs [5, 21] consist of a media sled and an array of several thousand probe
tips. Actuators position the spring-mounted media sled in the X-Y plane, and the stationary probe
tips access data as the sled is moved in the Y dimension. Each read/write tip accesses its own
small portion of the media, which naturally divides the media into squares and reduces the range
of motion required of the media sled.

When a seek occurs, the media is positioned to a specific offset relative to the entire read/write
tip array. As a result, at any point in time, all of the tips access the same locations within their
squares. An example of this is shown in Figure 6 in which LBNs at the same location within each
square are identified with ovals. Realistic MEMStores are expected to have enough read/write tips
to potentially access 100 LBNs in parallel. However, because of power and shared-component
constraints, only about 10 to 20 of those LBNs could be actually accessed in parallel.

Given the simple device in Figure 6, if one third of the read/write tips can be active in parallel,
a system could access together up to 3 LBNs out of the 9 shown with ovals. The three LBNs chosen
could be sequential (e.g., 33, 34, and 35), or could be disjoint (e.g., 33, 36, and 51). In each case,
all of those LBNs would be transferred to or from the media in parallel with the same efficiency. A-
pages are arranged onto the rows and columns of read/write tips, much as they are across sequential
and semi-sequential LBNs on a disk drive. By activating the appropriate read/write tips, parallel
access to either the rows or columns of the table is possible. In contrast to a disk drive, access along
the rows access along the columns are equally efficient. This differs from disk drives in which
access to one dimension is less efficient than access to the other (semi-sequential vs. sequential).
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6 Clotho implementation

Clotho is implemented within the Shore database storage manager [4]. This section describes the
implementation of C-pages and scan operators, as well as variable-sized attributes and the LVM.

6.1 Creating and scanning C-pages

We implemented CSM as a new page layout in Shore, according to the format described in Sec-
tion 4.1. The only significant change in the internal Shore page structure is that the page header is
aligned to occupy one block (512 B in our experiments). As described in Section 4, the original
buffer pool manager is augmented with schema management information to control and reuse C-
page contents. These modifications were minor and limited to the buffer pool module. To access a
set of records, a scan operator issues a request to the buffer pool manager to return a pointer to the
the C-page with the (first of the) records requested. This pointer consists of the first A-page id in
the C-page plus the page schema id.

If there is no appropriate C-page in the buffer pool to serve the request, the buffer pool man-
ager allocates a new frame that will hold the requested page. It then fills the page header with
schema information that allows the storage manager to determine which data is needed and issue
the appropriate commands to the LVM. The partially-filled frame is called a skeleton. The storage
manager completes the creation of the skeleton by determining how many and which minipages
will be requested as well as their boundaries. This decision depends on the number of attributes
in the payload and on their relative sizes. Based on the skeleton, the storage manager constructs a
batch of I/O requests for the individual minipages and, upon completion, the requested blocks are
“scattered” to their appropriate locations.

Two scan operators were implemented: S-scan is similar to a scan operator on NSM pages,
with the only difference that it only scans the attributes accessed by the query. (in the predicate and
in the payload). Clotho invokes S-scan to read tuples containing the attributes in the predicate and
those in the payload, reads the predicate attributes, and if the condition is true returns the payload.
The second scan operator, SI-scan, works similarly to an index scan. SI-scan first fetches and
evaluates only the attributes in the predicates, then makes a list of the qualifying record ids, and
finally retrieves the projected attribute values directly. Section 7.2.1 evaluates these two operators.
To implement the above changes, we wrote about 2000 lines of C++ code.

6.2 Storing variable-sized attributes

Our current implementation stores fixed-sized and variable-sized attributes in separate A-pages.
Fixed-sized attributes are stored in A-pages as described in Section 3.1. Each variable-sized at-
tribute is stored in a separate A-page whose format is similar to a DSM page. To fetch the full
record of a table with variable-sized attributes, the storage manager must issue one A-page-sized
I/O to fetch the A-page containing all of the fixed-size attributes, and additional ones for each
variable-sized attribute in the table. As future work, we plan to design storage of variable-sized
attributes in the same A-pages as fixed-sized attributes using attribute size estimations [1] and
overflow pages whenever needed.
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Figure 7: Microbenchmark performance for different layouts. The graphs show the total microbenchmark query
run time relative to NSM. The performance of S-scan and SI-scan is shown for CSM layout running on Atropos disk
array.

6.3 Logical volume manager

The Atropos logical volume manager is implemented as a standalone C++ application that com-
municates with Shore through a socket (control path) and shared memory (data path) to avoid data
copies. Atropos determines how I/O requests are broken into individual disk I/Os. It issues indi-
vidual disk I/Os directly to the attached SCSI disks using the Linux raw SCSI device �	�
���.
With an SMP host, the process can run on a separate CPU of the same host with minimal impact
on Shore execution.

Since real MEMStores do not exist yet, the MEMStore LVM implementation relies on simu-
lation. It uses an existing model of MEMS-based storage devices [18] integrated into the DiskSim
storage subsystem simulator [8]. The LVM process runs the I/O timings through DiskSim and uses
main memory for storing data.

7 Evaluation

This section evaluates the benefits of decoupling in-memory data layout from storage device orga-
nization using our Clotho prototype. The evaluation is presented in two parts. The first part uses
representative microbenchmarks [20] to perform a sensitivity analysis by varying several parame-
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ters such as the query payload (projectivity) and the selectivity in the predicate. The microbench-
marks include queries (sequential and random access), point updates, and bulk insert operations.
Microbenchmarks are useful to understand the behavior of the system and evaluate worst- and
best-case scenarios. The second part of the section presents experimental results from running
DSS and OLTP workloads, demonstrating the efficiency of Clotho when running these workloads
with only one common storage organization.

7.1 Experimental setup

The experiments are conducted on a two-way 1.7 GHz Pentium 4 Xeon workstation running Linux
kernel v. 2.4.24 and RedHat 7.1 distribution. The machine for the disk array experiment has
1024 MB memory and is equipped with two Adaptec Ultra160 Wide SCSI adapters, each control-
ling two 36 GB Seagate Cheetah 36ES disks (ST336706LC). The Atropos LVM exports a single
35 GB logical volume created from the four disks in the experimental setup and maps it to the
blocks on the disks’ outermost zone.

An identical machine configuration is used for the MEMStore experiments; it has 2 GB of
memory, with half used as data store. The emulated MEMStore parameters are based on the G2
MEMStore [18] that includes 6400 probe tips that can simultaneously access 16 LBNs, each of
size 512 bytes; the total capacity is 3.46 GB.

All experiments compare CSM to the NSM, DSM, and PAX implementations in Shore. NSM
and PAX are implemented as described in [1], whereas DSM is implemented in a tight, space-
efficient form as described in [14]. For CSM, the Atropos LVM uses its default configuration [17].
The NSM, DSM, or PAX page layouts don’t take advantage of the semi-sequential access that At-
ropos provides. However, they still run over the logical volume which is effectively a conventional
striped logical volume with the stripe unit size equal to individual disks’ track size to ensure ef-
ficient sequential access. Unless otherwise stated, the buffer pool size in all experiments is set to
128 MB and page sizes for NSM, PAX and DSM are 8 KB. For CSM, both the A-page and C-page
sizes are also set to 8 KB.

7.2 Microbenchmark performance

To establish Clotho baseline performance, we first run a range query of the form �
�
�� ��������

�������� ��� ���� � ��
�
 ��  ��  �!. R has 15 attributes of type �����, and is popu-
lated with 8 million records (roughly 1 GB of data). All attribute values are uniformly distributed.
We show the results of varying the query’s payload by increasing the number of attributes in the
select clause from one up to the entire record, and the selectivity by changing the values of Lo and
Hi. We first run the query using sequential scan, and then using a non-clustered index to simulate
random access.

7.2.1 Queries using sequential scan

Varying query payload. Figure 7 shows the performance of the microbenchmark query with vary-
ing projectivity for four data layouts. The data are shown for a query with 10% selectivity; using
100% selectivity exhibits the same trends. For the projectivity analysis, we use S-scan operator on
CSM pages.
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Figure 8: Microbenchmark performance for Atropos LVM.

Clotho shows the best performance at both low and high projectivities. At low projectivity,
CSM achieves comparable performance to DSM, which is the best page layout when accessing
a small fraction of the record. The slightly lower runtime of DSM for the one attribute value in
Figure 7(a) is caused by a limitation of the Linux operating system that prevents us from using
DMA-supported scatter/gather I/O for large transfers1. As a result, it must read all data into a
contiguous memory region and do an extra memory copy to “scatter” data to their final destinations.
DSM does not experience this extra memory copy; its pages can be put verbatim to the proper
memory frames. Like DSM, CSM effectively pushes the project to the I/O level. Attributes not
involved in the query will not be fetched from the storage, saving I/O bandwidth, memory space,
and accelerating query execution.

With increasing projectivity, CSM performance is better than or equal to the best case at the
other end of the spectrum, i.e., NSM and PAX, when selecting the full record. DSM’s suboptimal
performance at high projectivities is due to the additional joins needed between the table fragments
spread out across the logical volume. Clotho, on the other hand, fetches the requested data in lock-
step from the disk and places it in memory using CSM, maximizing spatial locality and eliminating
the need for a join. Clotho performs a full-record scan over 3	 faster when compared to DSM. As
shown in Figure 7(b), the MEMStore performance shows the same results.
Comparison of S-scan and SI-scan. Figure 7(c) compares the performance of the above query
for the S-scan and SI-scan operators described in Section 6.1. We vary selectivity from 0.0001%
to 20% with the above query using a payload of four attributes (the trend continues for higher se-
lectivities). As expected, SI-scan exhibits better performance at low selectivities, whereas S-scan
wins as the selectivity increases. The performance gain comes from the fact that only pages con-
taining qualified records are processed. The performance deterioration of SI-scan with increasing
selectivity is due to two factors. First, SI-scan must process a higher number of pages than S-scan.
Because of the uniform distribution, at selectivity equal to 1.6%, all pages will have qualifying
records. Second, for each qualifying record, SI-scan must first locate the page, then calculate the
record address, while S-scan uses a much simpler same-page record locator. The optimizer can use
SI-scan or S-scan depending on which one will perform best given the estimated selectivity.

1The size of an I/O vector for scatter/gather I/O in Linux is limited to 16 elements, while commercial UNIX-es
support up to 1024 elements.
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7.2.2 Point queries using random access

The worst-case scenario for Clotho data placement schemes is random point tuple access (access to
a single record in the relation through a non-clustered index). As only a single record is accessed,
sequential scan is never used; on the contrary, as the payload increases Clotho is penalized more
by the semi-sequential scan through the disk to obtain all the attributes in the record. Figure 8(a)
shows that, when the payload is only a few attributes, Clotho performs closely to NSM and PAX. As
the payload increases the performance of Clotho becomes slightly worse (although it deteriorates
much less that the performance of DSM).

7.2.3 Updates

Bulk updates (i.e., updates to multiple records using sequential scan) exhibit similar performance
to queries using sequential scan, when varying either selectivity or payload. Similarly, point up-
dates (i.e., updates to a single record) exhibit comparable performance across all data placement
methods as point queries. Clotho updates single records using full-schema C-pages, therefore its
performance is always 22% worse than NSM, regardless of payload. To alleviate this behavior, we
are currently investigating efficient ways to use partial–record C-pages for updates as we do for
queries. As with point queries, the performance of DSM deteriorates much faster.

7.2.4 Full table scans and bulk inserts

When scanning the full table (full-record, 100% selectivity) or when populating tables through bulk
insertions, Clotho exhibits comparable performance to NSM and PAX, whereas DSM performance
is much worse, which corroborates previous results [1]. Figure 8(b) shows the total runtime when
scanning table R and accessing full records. The results are similar when doing bulk inserts. Our
optimized algorithm issues track-aligned I/O requests and uses aggressive prefetching for all data
placement methods. Because bulk loading is an I/O intensive operation, space efficiency is the
only factor that will affect the relative bulk-loading performance across different layouts. The
experiment is designed so that each layout is as space-efficient as possible (i.e., table occupies
the minimum number of pages possible). CSM exhibits similar space efficiency and the same
performance as NSM and PAX.

7.3 DSS workload performance

To quantify the benefits of decoupled layout for database workloads, we run the TPC-H decision
support benchmark on our Shore prototype. The TPC-H dataset is 1 GB and the buffer pool size is
128 MB.

Figure 9 shows execution times relative to NSM for four representative TPC-H queries (two
sequential scans and two joins). The leftmost group of bars represents TPC-H execution on At-
ropos, whereas the rightmost group represents queries run on a simulated MEMStore. NSM and
PAX perform the worst by a factor of 1.24	 – 2.0	 (except for DSM in Q1) because they must
access all attributes. The performance of DSM is better for all queries except Q1 because of the
benchmark’s projectivity. CSM performs best because it benefits from projectivity and avoids the
cost of the joins that DSM must do to reconstruct records. Again, results on MEMStore exhibit the
same trends.

17



Atropos disk array MEMS device

TPC-H Benchmark 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q1 Q6 Q12 Q14 Q1 Q6 Q12 Q14
Query #

R
un

tim
e 

re
la

tiv
e 

to
 N

S
M

NSM DSM PAX CSM

Figure 9: TPC-H performance for different layouts. The performance is shown relative to NSM.

7.4 OLTP workload performance

The queries in a typical OLTP workload access a small number of records spread across the entire
database. In addition, OLTP applications have several insert and delete statements as well as point
updates. With NSM or PAX page layouts, the entire record can be retrieved by a single-page
random I/O, because these layouts map a single page to consecutive LBNs. Clotho spreads a single
A-page across non-consecutive LBNs of the logical volume, enabling efficient sequential access
when scanning a single attribute across multiple records and less efficient semi-sequential scan
when accessing full records.

The TPC-C benchmark approximates an OLTP workload on our Shore prototype with all four
data layouts using 8 KB page size. TPC-C is configured with 10 warehouses, 100 users, no think
time, and 60 seconds warm-up time. The buffer pool size if 128 KB, so it only caches 10% of the
database. The completed transactions per minute (TpmC) throughput is repeatedly measured over
a period of 120 seconds.

Table 1 shows the results of running the TPC-C benchmark. As expected, NSM and PAX
have comparable performance, while DSM yields much lower throughput. Despite the less effi-
cient semi-sequential access, CSM observes only 6% lower throughput than NSM and PAX. CSM
achieves this performance by taking advantage of the decoupled layouts to construct C-pages that
are shared by the queries accessing only partial records. On the other hand, the frequent point
updates penalize CSM’s performance: the semi-sequential access to retrieve full records. This
penalty is in part compensated by the buffer pool manager’s ability to create and share pages con-
taining only the needed data. Note to reviewers: In the next version (still being implemented) the
updates will also use partial C-pages and Clotho should be able to recover this penalty.
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Layout NSM DSM PAX CSM
TpmC 1063 140 1090 1002

Table 1: TPC-C benchmark results with Atropos disk array LVM.
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Figure 10: Compound workload performance for different layouts. This figure shows the slowdown off TPC-H
query 1 runtime when run with TPC-C benchmark relative to the case when runs in isolation and the impact on TPC-C
performance.

7.5 Compound OLTP/DSS workload

Benchmarks involving compound workloads are important in order to measure the impact on per-
formance when different queries access the same logical volume concurrently. With Clotho, the
performance degradation may be potentially worse than in other page layouts. The originally
efficient semi-sequential access to disjoint LBNs (i.e., for OLTP queries) could be disrupted by
competing I/Os from the other workload creating inefficient access. This problem does not occur
for other layouts that map the entire page to consecutive LBNs that can be fetched in a single media
access.

We simulate a compound workload with a single-user DSS (TPC-H) workload running con-
currently with a multi-user OLTP workload (TPC-C) against our Atropos disk LVM and measure
the differences in performance relative to the isolated workloads. The respective TPC workloads
are configured as described earlier. In previous work [15], we demonstrated the effectiveness of
track-aligned disk accesses on compound workloads; here, we compare all of the page layouts
using these efficient I/Os to achieve comparable results for TPC-H.

As shown in Figure 10, undue performance degradation does not occur: CSM exhibits the
same or lesser relative performance degradation than the other three layouts. The figure shows
indicative performance results for TPC-H query 1 (others exhibit similar behavior) and for TPC-
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Figure 11: Space efficiencies with CSM page layout.

C, relative to the base case when OLTP and DSS queries run separately. The larger performance
impact of compound workloads on DSS with DSM shows that small random I/O traffic aggravates
the impact of seeks necessary to reconstruct a DSM page. Comparing CSM and PAX, the 1%
lesser impact of PAX on TPC-H query is offset by 2% bigger impact on the TPC-C benchmark
performance.

7.6 Space utilization

Since the CSM A-page partitions attributes into minipages whose minimal size is equal to the size
of a single LBN, CSM is more susceptible to the negative effects of internal fragmentation than
NSM or PAX. Consequently, a significant amount of space may potentially be wasted, resulting
in diminished access efficiency. When using PAX, minipage boundaries can be aligned on word
boundaries (i.e., 32 or 64 bits) to easily accommodate schemas with high variance in attribute
sizes. Clotho, on the other hand, restricts minipage size to a multiple of the LBN size. In this case,
CSM must use large A-page sizes to accommodate all the attributes without undue loss in access
efficiency due to fragmented space.

To measure the space efficiency of the CSM A-page, we compare the space efficiency of NSM
and CSM layouts for the TPC-C and TPC-H schemas. NSM exhibits the best possible efficiency
among all four page layouts. Figure 11 shows the space efficiency of CSM relative to NSM for all
tables of TPC-C and TPC-H as a function of total page size. Space efficiency is defined as the ratio
between the maximum number of records that can be packed into a CSM page and the number of
records that fit into an NSM page.

A 16 KB A-page suffices to achieve over 90% space utilization for all but the customer and
stock tables of the TPC-C benchmark. A 32 KB A-page size achieves over 90% space efficiency for
the remaining two tables. Both customer and stock tables include an attribute that is much larger
than all other attributes. The customer table includes a 500 byte long � ���� attribute containing
“miscellaneous information”, while the next largest attribute has a size of 20 bytes. The stock
table includes a 50 byte � ���� attribute, while the next largest attribute is 24 bytes. Both of these
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attributes are rarely used in the TPC-C benchmark.

8 Conclusions

Clotho decouples in-memory page layout from in-storage data organization, enabling independent
data layout design at each level of the storage hierarchy. Doing so allows Clotho to optimize I/O
performance and memory utilization by only fetching the data desired for queries that access par-
tial records, while mitigating the trade-off between NSM and DSM. Experiments with our Clotho
implementation show substantial performance improvements across a spectrum of query types, for
both a real disk array and future MEMS-based storage devices.
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