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Abstract
TetriSched is a scheduler that works in tandem with a

calendaring reservation system to continuously re-evaluate
the immediate-term scheduling plan for all pending jobs
(including those with reservations and best-effort jobs) on
each scheduling cycle. TetriSched leverages information
supplied by the reservation system about jobs’ deadlines and
estimated runtimes to plan ahead in deciding whether to wait
for a busy preferred resource type (e.g., machine with a GPU)
or fall back to less preferred placement options. Plan-ahead
affords significant flexibility in handling mis-estimates in
job runtimes specified at reservation time. Integrated with
the main reservation system in Hadoop YARN, TetriSched
is experimentally shown to achieve significantly higher SLO
attainment and cluster utilization than the best-configured
YARN reservation and CapacityScheduler stack deployed on
a real 256 node cluster.

1. Introduction
Large clusters serving a mix of business-critical analytics,

long-running services, and ad hoc jobs (e.g., exploratory
analytics and development/test) have become a data center
staple. Many of the analytics jobs have strict time-based
SLOs [7], and services have time-varying but high-priority
resource demands, while ad hoc jobs are generally treated as
best effort with a desire for minimal latency for the waiting
user. Satisfying all of these effectively requires that a cluster
scheduler exploit knowledge about job characteristics to
create effective plans for resource allocation over time.

Fortunately, the business critical activities that dominate
cluster usage also tend to come with a degree of predictabil-
ity. For example, studies consistently confirm that production
jobs consume over 90% of cluster resources [4–6, 35], and
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most of them are workflows submitted periodically by auto-
mated systems [19, 32] to process data feeds, refresh models,
and publish insights. They are often large and long-running,
consuming tens of TBs of data and running for hours, and they
come with strict completion deadlines [7]. Because they are
run regularly, research confirms that the production tools de-
veloped to support them can robustly predict job runtimes as
a function of resource types and quantities [1, 7, 10–12, 38].

A scheduler armed with such information should be able
to make much better decisions regarding current and planned
future resource allocation. Unfortunately, current schedulers
fall far short of ideal, failing to include interfaces for accept-
ing much of the available information and lacking algorithms
for exploiting it. Taking the Hadoop/YARN cluster schedul-
ing framework (used in many production data centers) as a
concrete example, its runtime scheduler is coupled with a
reservation system that supports time-based resource reser-
vations informed by job runtime estimates. But, the runtime
scheduler fails to use that information, enforcing a static
reservation plan instead. As a result, it is unable to lever-
age any resource type or start-time flexibility that may exist.
What is needed is a scheduler that understands per-job re-
quirements, tradeoffs, and runtime estimates and exploits that
information to simultaneously optimize near-term decisions
and the longer-term plan in the face of unknown future job
submissions.

This paper introduces TetriSched, a cluster scheduler that
(a) leverages runtime estimate and deadline information sup-
plied by a deployed reservation system, (b) supports time-
aware allocation of heterogeneous resources to a mixture
of SLO + best effort workloads with placement preferences
ranging from none to combinatorially complex, (c) simulta-
neously evaluates the needs of all pending jobs to make good
global allocation decisions, rather than greedy job-by-job de-
cisions, and (d) re-evaluates its resource space-time plan each
scheduling cycle in order to adapt to job arrivals, changing
cluster conditions, and imperfect job runtime estimates.

TetriSched is integrated into YARN such that it receives
best effort jobs directly and SLO jobs via the user-facing
reservation system built into YARN. TetriSched introduces



an expressive language, which we call Space-Time Request
Language (STRL), for declarative specification of prefer-
ences in resource space-time; the STRL expressions can be
automatically generated for SLO jobs relying on the reserva-
tion system. Each scheduling cycle, TetriSched aggregates
pending resource requests and automatically translates them
to a Mixed Integer Linear Programming (MILP) formulation,
allowing an MILP solver to consider the set as a whole. The
solver runtime can be bounded, with minor loss of optimality,
but we find that it is not necessary even for our 256-node
cluster experiments. The MILP formulation explicitly con-
siders the job runtime estimates, using them to plan ahead
regarding expected future resource availability. Importantly,
this plan-ahead is repeated each scheduling cycle, to avoid
being restricted to previous plans when conditions change
(e.g., new jobs arrive or a job runtime estimate is wrong).

Experiments confirm TetriSched’s effectiveness. For ex-
ample, on a workload derived from production workload
traces, TetriSched outperforms the capacity scheduler cur-
rently used with Rayon in Hadoop/YARN on each of the
success metrics. It satisfies up to 3.5× more SLOs while si-
multaneously lowering average best effort job latency by as
much as 80%. TetriSched provides the largest benefits in the
more difficult situations, such as when dealing with imperfect
runtime estimates, complex forms of resource heterogene-
ity, and high load. Regular re-evaluation of the scheduler
plan, combined with simultaneous consideration of pending
jobs, allows TetriSched to exploit the knowledge of flexibility
in resource and time needs to more fully exploit available
resources at each point.

This paper makes the following primary contributions: (1)
It introduces Space-time request language (STRL), an expres-
sive language for declarative specification of preferences in
resource space-time. (2) It describes how integration with a
reservation system for production jobs with SLOs provides
key information needed to construct STRL expressions. (3)
It describes an algorithm for translating a set of resource
requests to a Mixed Integer Linear Programming (MILP)
formulation that can be efficiently solved. (4) It describes
how using plan-ahead together with regular re-planning lever-
ages runtime estimates to consider future options without
hard-coding a potentially wasteful plan given dynamic condi-
tions. (5) It presents an evaluation of the YARN-integrated
TetriSched implementation on a sizable (up to 256 nodes)
real cluster with a mixture of gridmix-generated workloads
based on traces and other information about production jobs
from Facebook, Yahoo, and Microsoft. The evaluation demon-
strates that TetriSched is more effective than YARN’s default
scheduler and, especially, that TetriSched is much better able
to cope with imperfect information about jobs, deriving sig-
nificant benefit without overly relying on it.

2. Background and Desired Features
We distinguish between three system features in the

scheduling literature: (a) capacity reservation, (b) place-

ment, and (c) ordering. We define reservation as the ability
of a system to reserve and guarantee future resource capac-
ity. Reservation systems promise future access to resources
and serve as admission control frontends. They can also be
used for capacity planning. Reservations should generally
be regarded as longer-term resource planning. Placement
is an act of assigning a set of specific resources to a job. A
job is placed when it is mapped to a node or a set of nodes,
where the local OS will orchestrate the execution of the job’s
individual tasks it’s comprised of. Placement concerns itself
with cluster resource space—their types, sets, quantities,
and topology. Ordering is an act of determining which job
is considered for placement next. A job is ordered when it
is selected for placement next. Ordering concerns itself with
cluster resource time—how much time is allocated to each
job and in what sequence in time resource requests are satis-
fied. Scheduling, then, is the combination of placement and
ordering and should generally be regarded as shorter-term
resource allocation, ultimately deciding who runs where next.
2.1 Reservation vs. scheduling

While reservation systems and scheduling systems sound
similar in nature, they actually solve different, complemen-
tary problems. Reservation systems such as Rayon [7]—the
state-of-the-art YARN reservation system—are designed to
guarantee resource availability in the long term future. It
serves as an admission control system to ensure that resource
guarantees are not overcommitted. By contrast, a scheduling
system, such as TetriSched, is designed to make short-term
job placement and ordering decisions. Scheduling systems
are responsible for optimizing job placement to more effi-
ciently utilize resources. Schedulers are also responsible for
deciding when to run jobs without reservations, while ensur-
ing that jobs with reservations are completed on time. Thus,
scheduling systems, such as TetriSched, address a different,
complementary problem than reservation systems, such as
Rayon, and we run TetriSched in tandem with Rayon.
2.2 Placement considerations

To accommodate the specific needs of diverse distributed
applications [9, 27, 28, 30], cluster resources have become
increasingly heterogeneous, which makes job placement a
much more challenging task. Different types of heterogeneity
exist and should be considered in modern datacenters: static,
dynamic, and combinatorial.

Static heterogeneity refers to diversity rooted in the static
attributes of cluster resources, such as different processors,
different accelerators (e.g., a GPU), faster disks (SSD), par-
ticular software stacks, or special kernel versions [30]. Static
heterogeneity is on the rise and is only expected to in-
crease [17, 20]. Dynamic or runtime heterogeneity refers
to differences between cluster resources induced by the work-
loads themselves. For example, data-intensive computation
frameworks, such as Hadoop MapReduce and Spark, derive
performance benefits from data-locality. From such jobs’ per-
spective, a set of nodes becomes heterogeneous when viewed
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Figure 1. Five potential schedules for 3 jobs. Each grid shows
one potential space-time schedule, with machines along the rows
and time units along the columns. Each job requests 2 servers, and
its allocation is shown by filling in the corresponding grid entries.
The cluster consists of 2 racks each with 2 servers, and rack 1 is
GPU-enabled. The Availability job prefers 1 server per rack. The
MPI job runs faster if both servers are in one rack (2 time units)
than if they are not (3 time units). The GPU job runs faster if both
servers have GPUs (2 time units) than if they don’t (3 time units).

through the lens of data locality. Machines with desired data
become preferred to machines without it. Intereference [9, 10]
is another form of dynamic heterogeneity that affects job per-
formance when ignored. Static and dynamic heterogeneity
intuitively creates a differentiated view of cluster resources
from jobs’ perspective. A given node (or a set of nodes) could
be unsuitable, acceptable, or desirable, depending on how it
fulfills the job’s needs. Expressing these placement options
and associated tradeoffs (known as “soft” constraints) is both
challenging and necessary, as consolidated frameworks com-
pete for the ever-changing landscape of increasingly hetero-
geneous cluster resources. Fig. 1 illustrates the complexity of
supporting soft placement constraints even at the toy cluster
scale.

Furthermore, as exemplified by HPC and Machine Learn-
ing applications with tightly-coupled communicating tasks,
different subsets of machines may influence job execution
differently. Some subsets (e.g., rack-local collections of k
machines [33], data-local samples of data servers [36]) may
speed up the execution or improve application QoS, while
others may degrade it. We refer to such heterogeneity as
combinatorial. Jobs that prefer all k tasks to be simultane-
ously co-located (e.g. MPI job in Fig. 1) in the same locality
domain of the many available exemplify combinatorial con-
straints. Their preference distribution is over a superset of
cluster nodes, in contrast to server-types or server quantities

alone, which is a challenge to express and support. TetriSched
captures all such placement considerations succinctly with
STRL (Sec. 4.1).
2.3 Temporal considerations
2.3.1 Temporal constraints and runtime estimates

In addition to a description of the possible placement
options, job scheduling requests are often associated with
two other pieces of information: Service Level Objectives
(SLOs) and estimated runtimes. SLOs specify user-desired
constraints on job execution timing. Completion-time ori-
ented jobs, for example, may specify that a job must complete
by 5:00PM, or within an hour. For TetriSched to schedule
meaningfully with such constraints, jobs must also have as-
sociated runtime estimates. Prior work [1, 7, 10–12, 38] has
demonstrated the feasibility of generating such estimates;
this paper will demonstrate that TetriSched is resilient to
mis-estimation.
2.3.2 Planning ahead

TetriSched is able to plan ahead by leveraging informa-
tion about estimated runtimes and deadlines provided by a
reservation system. Knowledge of expected completion times
for currently running jobs provides visibility into preferred
resource availability. This makes it possible to make informed
deferral decisions on behalf of pending jobs, if the overall
queueing delay thus incurred is offset by the benefit of bet-
ter performance on preferred resources. Without plan-ahead,
the only options available are (a) to accept a sub-optimal
allocation or (b) to wait indefinitely for desired placements,
hoarding partial allocations, which wastes resources and can
cause deadlocks. With plan-ahead, TetriSched obviates the
need for jobs to hoard resources to achieve their optimal
placement.
2.3.3 Planning ahead adaptively

It is important to emphasize that TetriSched’s plan-ahead
does not lock in future allocation decisions. Instead, they
are re-evaluated on every scheduling cycle for all pending
jobs. This is beneficial for a variety of reasons. First, new
jobs can arrive at any time. More urgent deadlines may be
accommodated if a job initially deferred to start at the next
cycle is delayed further, but still meets its deadline. Not
replanning can easily lead to a violation of that job’s SLO as
it’s forced to wait longer. Second, when job runtimes are mis-
estimated, the future schedule is improved by re-planning. If
the runtimes of any jobs were underestimated, the start times
of later jobs may be delayed as a consequence, running the
risk of subsequent jobs missing their SLOs. If runtimes are
overestimated, available capacity may be wasted. In either
case, adaptive replanning is crucial.
2.4 Global scheduling

Many schedulers consider jobs one at a time in a greedy
fashion. In heterogeneous clusters in particular, this can lead
to sub-optimal decisions (see Sec. 7.2, Fig. 10) as the earlier
scheduled jobs may, unnecessarily, take resources needed for
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Figure 2. TetriSched system architecture

later-arriving jobs. To make better scheduling decisions, it is
important to consider all pending jobs queued in the system.
By simultaneously considering the placement and temporal
preferences of all the jobs, TetriSched is able to make the best
tradeoffs. We refer to this feature as global scheduling.

3. TetriSched
This section describes the architecture and key compo-

nents of TetriSched. It works in tandem with the Rayon [7]
admission control system, but continuously reevaluates its
own space-time schedule separately from the reservation
plan to adapt to system and job specification imperfections.
TetriSched leverages information about expected runtimes
and deadline SLOs supplied to Rayon via reservation requests,
as well as its own heterogeneity-awareness and plan-ahead,
to maximize SLO attainment, while efficiently using avail-
able cluster resources. Instead of the common greedy job
placement in cluster schedulers today, TetriSched makes a
global placement decision for all pending jobs simultaneously,
translating their resource requests to an internal algebraic ex-
pression language that captures heterogeneity considerations
and available time information for each job.
3.1 System Architecture

Fig. 2 shows the major components of our scheduling
system stack and how they interact. Framework Applica-
tionMasters initially submit reservation requests for SLO
jobs. Best-effort jobs can be submitted directly to YARN’s
ResourceManager without a reservation. We implement a
proxy scheduler that plugs into YARN’s ResourceManager
in Fig. 2 and forwards job resource requests asynchronously
to TetriSched. Its first entry-point is the STRL Generator that
uses framework-specific plugins to produce STRL expres-
sions used internally to encode space-time resource requests.
To construct STRL expressions, The STRL Generator com-
bines the framework-specified reservation information, such
as runtime estimates, deadlines, and the priority signal (e.g.,
accepted vs. rejected reservations), with ApplicationMaster-
specified job type to construct STRL expressions.

Resource requests are subsequently managed by TetriSched,
which fires periodically. At each TetriSched cycle, all out-
standing resource requests are aggregated into a single STRL
expression and converted into an MILP formulation by the
STRL Compiler. Solving it produces the job schedule that

maps tasks for satisfied jobs to cluster nodes. This allocation
decision is asynchronously communicated back to the Re-
sourceManager (Sec. 3.3). YARN RM then takes over the
job’s lifecycle management. Specifically, as YARN NodeM-
anagers heartbeat in, they are checked against the allocation
map our proxy scheduler maintains and are assigned to Ap-
plicationMasters to which they were allocated by TetriSched.
Thus, we provide a clear separation of resource allocation
policy from cluster and job state management, leaving the
latter to YARN. We discuss the integration of TetriSched in
the YARN framework in Sec. 3.3.
3.2 Scheduler

The scheduler’s primary function is to produce space-time
schedules for currently queued jobs. On each scheduling
cycle, TetriSched aggregates STRL expressions with the
SUM operator and assigns cluster resources so as to maximize
the aggregated STRL expression value (see Sec. 4). Value
functions are a general mechanism that can be used in a
variety of ways [34], such as to apply job priorities, enforce
budgets, and/or achieve fairness. The configurations in this
paper use them to encode deadline sensitivity and priority
differences (Sec. 6.2.2), producing the desired effects of
(a) prioritizing SLO jobs, while (b) reducing completion times
for best-effort jobs. The aggregated STRL SUM expression is
automatically converted into an MILP problem (Sec. 5) by the
STRL Compiler and solved online by an off-the-shelf IBM
CPLEX solver at each cycle. Solver complexity is discussed
and evaluated in Sec. 7.3.
3.2.1 Plan-ahead

One of TetriSched’s novel features enabled by its support
for space-time soft constraints is its ability to consider and
choose deferred placements when it’s beneficial to do so.
We refer to this ability as “plan-ahead”. Plan-ahead allows
TetriSched a much wider range of scheduling options. This
is particularly important for the scheduler to know whether
it should wait for preferred resources (in contrast to never
waiting [33] or always waiting [41]). Planning to defer
placement too far into the future, however, is computationally
expensive and may provide diminishing returns. Indeed,
an increased plan-ahead interval leads to more job start
time choices (see Fig. 1) and, correspondingly, larger MILP
problem sizes. On each cycle, only the jobs scheduled to
start at the current tick are extracted from the schedule and



launched. The remaining jobs are re-considered at the next
cycle. Thus, placements deferred far into the future are less
likely to hold as decisions are reevaluated on each scheduling
cycle.

To support plan-ahead, no changes to the scheduling
algorithm were needed. Instead, we leverage the expressivity
of STRL expressions and construct them for all possible
job start-times in the plan-ahead window. Since we quantize
time, the resulting size of the algebraic expression is linear
in the size of the plan-ahead window. A job’s per-quantum
replicas are aggregated into a single expression by the STRL
Generator. The STRL Generator performs many possible
optimizations, such as culling the expression growth when
the job’s estimated runtime is expected to exceed its deadline.
3.2.2 MILP Solver

The internal MILP model can be translated to any MILP
backend. We use IBM CPLEX in our current prototype.
Given the complexity and size of MILP models generated
from STRL expressions (hundreds of thousands of decision
variables on a 1000 node cluster with hundreds of jobs), the
solver is configured to return “good enough” solutions within
10% of the optimal after a certain parametrizable period of
time. Furthermore, as the plan-ahead window shifts forward
in time with each cycle, we cache solver results to serve as a
feasible initial solution for the next cycle’s solver invocation.
We find this optimization to be quite effective.
3.3 YARN Integration

For ease of experimentation and adoption, we integrate
TetriSched into the widely popular, active, open source
YARN [35] framework. We add a proxy Scheduler that
interfaces with the TetriSched daemon via Apache Thrift
RPCs. The interface is responsible for (a) adding jobs to
the TetriSched pending queue, (b) communicating allocation
decisions to YARN, and (c) signaling job completion to
TetriSched. TetriSched makes allocation decisions based on
thus provided information and its own view of cluster node
availability it maintains.

4. Space-Time Request Language (STRL)
STRL’s design is governed by the following five require-

ments that capture most practical workload placement prefer-
ences encountered in datacenters [30] and HPC clusters [26]:
[R1] space-time constraints, [R2] soft constraints (prefer-
ence awareness), [R3] combinatorial constraints, [R4] gang
scheduling, and [R5] composability for global scheduling.

Intuitively, we need a language primitive that captures
placement options in terms of the types of resources desired
(encoded with equivalence sets defined in Sec. 4.2), their
quantity, when, and for how long they will be used [R1]. This
is captured by the STRL’s principal language primitive called
“n Choose k” (nCK). This primitive concisely describes re-
source space-time allocations. It eliminates the need to enu-
merate all the

(n
k

)
k-tuples of nodes deemed equivalent by

the job. This primitive alone is also sufficient for expressing

hard constraints. Soft constraints [R2]—enumerating mul-
tiple possible space-time placement options—are enabled
by the MAX operator that combines multiple nCk-described
options. MAX and MIN operators are also used to support
simpler combinatorial constraints [R3] such as rack locality
and anti-affinity. More complex combinatorial constraints can
be achieved with SCALE and BARRIER, such as high avail-
ability service placement with specified tolerance threshold
for correlated failures [34]. Examples include a request to
place up to, but no more than, k′ borgmaster servers in any
given failure domain totaling k servers. The SUM operator
enables global scheduling [R5], batching multiple child ex-
pressions into a single STRL expression. The intuition for
this language is to create composable expression trees, where
leafs initiate the upward flow of value, while intermediate op-
erator nodes modify that flow. They can multiplex it (MAX),
enforce its uniformity (MIN), cap it, or scale it. Thus, a STRL
expression is a function mapping arbitrary resource space-
time shapes to scalar value. Positive value means the STRL
expression is satisfied.

Limitations: STRL can express any constraint that can be
reduced to resource sets and attributes. This includes inter-job
dependencies (e.g. anti-affinity), if one of the jobs is already
running. STRL cannot express inter-job dependencies for
pending jobs, nor does it support end-to-end deadlines for a
pipeline of jobs.
4.1 STRL Specification

This subsection formally defines STRL leaf primitives and
non-leaf operators. A STRL expression can be:

1. an “n Choose k” expression of the form
nCk(equivalence set, k, start, dur, v).
It is the main STRL primitive used to represent a choice of
any k resources out of the specified equivalence set, with the
start time and estimated duration. In Fig. 1, the GPU job’s ask
for k = 2 GPU nodes would be nCk({M1,M2},k = 2,start =
0,dur = 2,v = 4), where v quantifies the value of such an
allocation.

2. a MAX expression of the form max(e1, ...,en). It is
satisfied if at least one of its subexpressions returns a positive
value. MAX carries the semantics of OR, as it chooses one
of its subexpressions (of maximum value). MAX is used
commonly to specify choices. In Fig. 1, the GPU job’s choice
between an exclusively GPU node allocation and any other
2-node allocation is captured as max(e1,e2) where:
e1 = nCk({M1,M2},k = 2,start = 0,dur = 2,v = 4)
e2 = nCk({M1,M2,M3,M4},k = 2,start = 0,dur = 3,v = 3)
Iterating over possible start times in the pictured range(start ∈
[0,4]) adds more placement options along the time dimension
as well. General space-time elasticity of jobs can be expressed
using MAX to select among possible 2D space-time shapes
specified with nCk. Enumeration of options drawn from the
same equivalence set with the same duration, but different k
can be suppressed with the optional “Linear nCk” primitive
(see [34] for complete formal specification).



3. a MIN expression of the form min(e1, ...,en) is sat-
isfied if all subexpressions are satisfied. MIN is particu-
larly useful for specifying anti-affinity. In Fig. 1, the Avail-
ability job’s primary preference (simultaneously running
its 2 tasks on separate racks) is captured with the MIN
expression as follows: min(nCk(rack1,k = 1,s = 0,dur =
3,v),nCk(rack2,k = 1,s = 0,dur = 3,v)). Here, each of the
two subexpressions is satisfied iff one node is chosen from
one of the nodes on the specified rack. The entire MIN ex-
pression is satisfied iff both nCk subexpressions are satisfied.
This results in the allocation of exactly one task per rack.

4. a BARRIER expression of the form barrier(e,v) is
satisfied if the expression e is valued v or more. It returns v
when satisfied.

5. a SCALE expression of the form scale(e,s) is satisfied
if subexpression e is satisfied. It is a unary convenience oper-
ator that serves to amplify the value of its child subexpression
by scalar s.

6. a SUM expression of the form sum(e1,e2...,en) returns
the sum of the values of its subexpressions. It is satisfied if at
least one of the subexpressions is satisfied. The sum operator
is used to aggregate STRL expressions across all pending
jobs into a single STRL expression.
4.2 Equivalence sets

An important notion in TetriSched is that of equivalence
sets, which are equivalent sets of machines from the perspec-
tive of a given job. For example, a job that prefers to run
on k nodes with a GPU may equally value any k-tuple of
GPU nodes, while valuing lower elements outside of that set.
The ability to represent sets of machines that are equivalent,
from a job’s perspective, greatly reduces the complexity of
the scheduling problem, as it obviates the need to enumerate
all combinatorial choices of machines. Equivalence sets are
instrumental to the reduction of combinatorial complexity.
Instead of enumerating all the possible spatial choices (e.g,
any 5 nodes on a 40 node rack), we only have to specify the
set to choose from and how much to choose.
4.3 STRL examples

Suppose a GPU job arrives to run on a 4-node cluster
in Fig. 1. We have 4 nodes, with M1,M2 with a GPU and
M3,M4—without. A GPU job takes 2 time units to complete
on GPU nodes and 3 time units otherwise. The framework
AM supplies a value function vG() that maps completion time
to value. A default internal value function can be used, if not
specified (as done in our experiments). For each start time s
in [S,Deadline]—the interval extracted from the Rayon RDL
expression, we have the following choices:
nCk({M1,M2},k = 2,s,dur = 2,vG(s+2))
nCk({M1,M2,M3,M4},k = 2,s,dur = 3,vG(s+3))

The first choice represents getting 2 GPU-enabled nodes,
and completing in 2 time units with a start time s. The second
choice captures all 2-combinations of nodes and represents
running anywhere with a slower runtime of 3 time units.
The STRL Generator combines these choices with a max

max

nCk({M1,M2},k=2,s,dur=2, vG(s+2))

nCk({M1,M2,M3,M4},k=2,s,dur=3, vG(s+3))

Figure 3. Soft constraint STRL example.
operator, ensuring that the higher-value branch is chosen
during optimization. A choice of {M1,M2}, for instance,
will equate to the selection of the left branch, as visually
represented in Fig. 3, if vG(s+ 2) > vG(s+ 3). TetriSched
subsequently combines such expressions for all pending jobs
with a top-level sum operator to form the global optimization
expression on each scheduling cycle.
4.4 Deriving STRL from YARN jobs

This subsection explains and demonstrates how STRL
is derived from YARN-managed jobs. YARN applications
are written by supplying an ApplicationMaster (AM). It
understands enough about the application structure to request
resource containers at the right time, in the right quantity,
in the right sequence, as well as with the right capabilities.1

It is, therefore, fitting for such frameworks to supply the
finer-granularity near-term information about submitted jobs
to supplement coarser-granularity longer-term reservation
information and trigger the corresponding STRL plugin to
generate STRL expressions for managed job types. The AM
then specifies whether it’s an SLO or a best-effort job.

For example, suppose the GPU job in Sec. 4.3 (Fig. 3)
arrives with a deadline=3 time units (Fig. 1). Then, its AM-
specified RDL [7] expression would be:
Window(s=0, f=3, Atom(b=〈16GB,8c〉, k=2, gang=2, dur=3)),
where the inner Atom() specifies a reservation request for a
gang of 2 b-sized containers for a duration of 3 time units, and
the Window() operator bounds the time range for the Atom()
to [0;3].2 The resulting STRL expression then becomes
max(nCk({M1, M2, M3, M4},k=2, s=0, dur=3, v=1),

max(nCk({M1, M2}, k=2, s=0, dur=2, v=1),
nCk({M1, M2}, k=2, s=1, dur=2, v=1)))

The inner max composes all feasible start-time options for
the job’s preferred placement on GPU-nodes. The outer max
composes all allocation options on preferred resources with
a less preferred allocation anywhere ({M1, M2, M3, M4}).
AM-specified performance slowdown factor is used to deter-
mine dur, while the range of start times comes from RDL-
specified [s; f ]. Estimates for different placement options can
be learned by production cluster systems (e.g., Perforator [1])
over time for recurring production jobs. For some jobs, an-
alytical models show accurate results across varying input
sizes [38], and a number of systems have implemented a
combination of performance modeling and profiling [12, 31].
Runtimes for unknown applications can be inferred from
slowdown factors induced by heterogeneity [9, 10] coupled
with initial estimates learned from clustering similar jobs
(work in progress).

1 MapReduce framework AM is a prime example of this.
2 Please refer to [7] for complete RDL specification.



5. MILP Formulation
TetriSched automatically compiles pending job requests in

the STRL language into a Mixed Integer Linear Programming
(MILP) problem, which it solves using a commercial solver.
The power from using the MILP formalism is twofold. First,
by using the standard MILP problem formulation, we reap
the benefit from years of optimization research that is built
into commercial (and open-source) MILP solvers. Second,
using MILP allows us to simultaneously schedule multiple
queued jobs. Traditional schedulers consider jobs one at a
time, typically in a greedy fashion that optimizes the job’s
placement. However, without any information about what
resources other queued jobs desire, greedy schedulers can
make suboptimal scheduling decisions.

TetriSched makes batch scheduling decisions at periodic
intervals. At each scheduling cycle, it aggregates pending
jobs using a STRL SUM expression, and solves the global
scheduling problem. In our experiments, we aggregate all
pending jobs, but TetriSched has the flexibility of aggregat-
ing a subset of the pending jobs to reduce the scheduling
complexity. Thus, it can support a spectrum of scheduling
batches of jobs from greedy one at a time scheduling to global
scheduling.

Once it has a global STRL expression, TetriSched auto-
matically compiles it into a MILP problem with a single re-
cursive function (Algorithm 1). Recall that STRL expressions
are expression trees composed of STRL operators and leaf
primitives (Sec. 4.1). There are three key ideas underlying
TetriSched’s MILP generation algorithm.

First, we adopt the notion of binary indicator variables I
for each STRL subexpression to indicate whether the solver
assigns resources to a particular subexpression. Thus, our
recursive generation function gen(e, I) takes in an expression
e and indicator variable I that indicates whether resources
should be assigned to e. This makes it easy, for example, to
generate the MILP for the MAX expression, which carries
the semantics of “or”. For a MAX expression, we add a
constraint, where the sum of the indicator variables for its
subexpressions is less than 1,3 since we expect resources to
be assigned to at most one subexpression.

Second, we find that the recursion is straightforward
when the generation function returns the objective of the
expression. At the top level, the return from the global STRL
expression becomes the MILP objective function to maximize.
Within the nested expressions, returning the objective also
helps for certain operators, such as SUM and MIN. When
compiling the SUM expression, the objective returned is
the sum of the objectives returned from its subexpressions.
When recursively compiling the MIN expression, objectives
returned by its subexpressions help create constraints that
implement MIN’s “AND” semantics. We create a variable V ,

3 Since the MAX expression itself may not be assigned any resources,
depending on its indicator variable I, the constraint actually uses I instead of
1.

representing the minimum value, and for each subexpression
we add a constraint that the objective returned is greater
than V . As the overall objective is maximized, this forces all
subexpressions of MIN to be at least V -valued.

Third, the notion of equivalence sets (Sec. 4.2) greatly
simplifies the complexity of the MILP generation as well as
the MILP problem itself. We group resources into equiva-
lence sets and only track the quantity of resources consumed
from each. Thus, we use integer “partition” variables to rep-
resent the number of resources desired in an equivalence
set. We generate these partition variables at the leaf nCk
and LnCk expressions, and use them in two types of con-
straints: demand constraints and supply constraints. Demand
constraints ensure the nCk and LnCk leaf expressions get
their requested number of resources, k. Supply constraints
ensure that TetriSched stays within capacity of each equiva-
lence set at all times. We discretize time and track integral
resource capacity in each equivalence set for each discretized
time slice.
5.1 MILP Example

Suppose 3 jobs arrive to run on a cluster with 3 machines
{M1, M2, M3} (Fig. 4):

1. a short, urgent job requiring 2 machines for 10s with a
deadline of 10s:
nCk({M1, M2, M3}, k=2, start=0, dur=10, v=1)

2. a long, small job requiring 1 machine for 20s with a
deadline of 40s:
max(nCk({M1, M2, M3}, k=1, start=0, dur=20, v=1),

nCk({M1, M2, M3}, k=1, start=10, dur=20, v=1),
nCk({M1, M2, M3}, k=1, start=20, dur=20, v=1))

3. a short, large job requiring 3 machines for 10s with a
deadline of 20s:
max(nCk({M1, M2, M3}, k=3, start=0, dur=10, v=1),

nCk({M1, M2, M3}, k=3, start=10, dur=10, v=1))

In this example, we discretize time in 10s units for simplic-
ity and consider time slices 0, 10, 20, and 30. Note that, the
only way to meet all deadlines is to perform global schedul-
ing with plan-ahead. Without global scheduling, jobs 1 and
2 may run immediately, preventing job 3 from meeting its
deadline. Without plan-ahead, we may either schedule jobs
1 and 2 immediately, making it impossible to meet job 3’s
deadline, or we may schedule job 3 immediately, making it
impossible to meet job 1’s deadline.

TetriSched performs global scheduling by aggregating the
3 jobs with a STRL SUM expression. It then applies our

3

1

2

0 10 20 30 40

M1

M2

M3

Figure 4. Requested job shapes, deadlines, and final order.



MILP generation function to the SUM expression, which
generates 3 indicator variables, I1, I2, and I3, that represent
whether it is able to schedule each of the 3 jobs. It then
recursively generates the variables and constraints for all
jobs in the batch. Note that variables are localized to the
subexpression where they are created, and constraints are
added to a global constraints list. Thus, the algorithm names
variables in the context of a subexpression, but, for clarity,
in this example, we name variables more descriptively with
globally unique names.

For the first job, represented by the above nCk expression,
we create a partition variable P1,s0, representing the amount
of resources consumed by job 1 at time 0. Since there is
only one partition in this example, {M1,M2,M3}, we omit
the partition subscript. This partition variable is used in a
demand constraint P1,s0 = 2I1, indicating that job 1 needs
2 machines if it is scheduled (i.e., I1 = 1). For the second
job, we have a more complicated scenario with 3 options to
choose from. We can start executing the job at time 0, 10,
or 20. This is represented by the max expression, which is
translated into 3 indicator variables corresponding to each of
these options I2,s0, I2,s10, and I2,s20.

Since we only want one of these options, the generation
function adds the constraint I2,s0 + I2,s10 + I2,s20 ≤ I2. We use
I2 rather than 1 since the second job may not be selected to
be run (i.e., I2 = 0). For each of these 3 options, we recur-
sively create partition variables P2,s0, P2,s10, and P2,s20 and
the corresponding constraints P2,s0 = 1I2,s0, P2,s10 = 1I2,s10,
and P2,s20 = 1I2,s20, representing the 1 machine that job 2
consumes in each option. For the third job, we have similar
indicator variables I3,s0 and I3,s10, and partition variables P3,s0
and P3,s10, and constraints P3,s0 = 3I3,s0, P3,s10 = 3I3,s10, and
I3,s0 + I3,s10 ≤ I3. After the recursion, we add supply con-
straints, representing the cluster capacity of 3 machines over
time (see genAndSolve in Algorithm 1). For time 0, we
add the constraint P1,s0 +P2,s0 +P3,s0 ≤ 3. For time 10, we
add the constraint P2,s0 +P2,s10 +P3,s10 ≤ 3. Note that this
constraint contains the term P2,s0 because job 2 has a duration
of 20s, and if it starts at time 0, it needs to continue running at
time 10. For time 20, we add the constraint P2,s10+P2,s20 ≤ 3.
For time 30, we add the constraint P2,s20 ≤ 3. Solving this
MILP produces the optimal solution (Fig. 4) of running job 1
immediately, running job 3 at time 10, and running job 2 at
time 20.

6. Experimental Setup
We conduct a series of full system experiments to evaluate

TetriSched’s ability to schedule homogeneous and hetero-
geneous mixes of SLO and best effort jobs derived from
production traces and from synthetic workloads. TetriSched
is integrated into Hadoop YARN [35]—a popular open source
cluster scheduling framework. We evaluate the performance
of our proposed Rayon/TetriSched stack relative to the main-
line YARN Rayon/CapacityScheduler(CS) stack.

gen: (expr, indicator var)→ objective function
func gen(expr, I):

switch expr :
case nCk(partitions,k,start,dur,v)

foreach x in partitions :
Px := integer variable // Create partition variable
for t := start to start +dur :

// (Supply) Track resource usage
Add Px to used(x, t)

// (Demand) Ensure this node gets k machines
Add constraint ∑x Px = k ∗ I
return v∗ I // Return value (if chosen - i.e., I = 1)

case LnCk(partitions,k,start,dur,v)
foreach x in partitions :

Px := integer variable // Create partition variable
for t := start to start +dur :

Add Px to used(x, t)
Add constraint ∑x Px ≤ k ∗ I
return v∗∑x

Px
k

case sum(e1, ...,en)
for i := 1 to n :

Ii := binary variable // Create indicator variable
fi = gen(ei, Ii)

Add constraint ∑i Ii ≤ n∗ I // Up to n subexpr
return ∑i fi

case max(e1, ...,en)
for i := 1 to n :

Ii := binary variable // Create indicator variable
fi = gen(ei, Ii)

Add constraint ∑i Ii ≤ I // At most 1 subexpr
return ∑i fi

case min(e1, ...,en)
V := continuous variable // Represents min value
for i := 1 to n :

fi = gen(ei, I)
Add constraint V ≤ fi // Ensure V is min

return V
case scale(e,s)

return s * gen(e, I)
case barrier(e,v)

f = gen(e, I)
Add constraint v∗ I ≤ f
return v∗ I

func genAndSolve(expr):
I := binary variable // Create indicator variable
f = gen(expr, I)
foreach x in partitions :

for t := now to now+ plan-ahead :
// (Supply) Ensure usage ≤ avail resources
Add constraint ∑P∈used(x,t) P≤ avail(x, t)

solve( f , constraints)
Algorithm 1: MILP generation algorithm



Workload SLO BE Unconstrained GPU MPI
GR SLO 100% 0% 100% 0% 0%
GR MIX 52% 48% 100% 0% 0%
GS MIX 70% 30% 100% 0% 0%
GS HET 75% 25% 0% 50% 50%

Table 1. Workload compositions used in results section.

6.1 Cluster Configuration
We conduct experiments with two different cluster con-

figurations: a 256-node real cluster (RC256) and an 80-node
real cluster (RC80). For RC256, the experimental testbed [15]
consists of 257 physical nodes (1 master + 256 slaves in 8
equal racks), each equipped with 16GB of RAM and a quad-
core processor. RC80 is a subset of RC256 and is, therefore,
a smaller, but similarly configured, 80-node cluster.

We maintain and use a single copy of YARN throughout
an experiment, changing only the scheduler and workload for
comparison experiments. We configure YARN with default
queue settings and, generally, make YARN CS as informed
and comparable to TetriSched as possible. First, we enable
the Rayon reservation system. Second, we enable container
preemption in CapacityScheduler, so that the scheduler can
preempt running tasks to enforce Rayon capacity guarantees
for reserved jobs. This gives a significant boost in terms of
its ability to meet its capacity guarantees, particularly when
the cluster is heavily loaded.
6.2 Workload Composition

Workloads are often composed of a mixture of job types
as the jobs vary in their preferences and sensitivity to dead-
lines. Table 1 shows the workload compositions used for
experiments reported in this paper.
6.2.1 Heterogeneity

For experiments with heterogeneous workloads, we use a
set of job types that exemplify typical server-type and server-
set preferences in production datacenters [9, 22, 30]. These
preferences are captured with STRL, and corresponding
STRL expressions are generated by the STRL Generator.
For our heterogeneous mixes, we use three fundamentally
different preference types: Unconstrained, GPU, and MPI.

Unconstrained: Unconstrained is the most primitive type
of placement constraint. It has no preference and derives the
same amount of benefit from an allocation of any k servers.
It can be represented with a single “n Choose k” primitive,
choosing k servers from the whole cluster serving as the
equivalence set.

GPU: GPU preference is a simple and common [27, 30]
example of a non-combinatorial constraint. A GPU-type job
prefers to run each of k tasks on GPU-labeled nodes. Any
task placed on a sub-optimal node runs slower (Fig. 3).

MPI: Rack locality is an example of a combinatorial
constraint. Workloads such as MPI are known to run faster
when all tasks are scheduled on the same rack. In our
experiments, an MPI job prefers to run all k tasks on the
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Figure 5. Internal value functions for SLO and BE jobs.

same rack, while it is agnostic to which particular rack they
are scheduled on. If the tasks are spread across different racks,
all tasks are slowed down.
6.2.2 Deadline Sensitivity

Our workloads are composed of 2 classes of jobs: Ser-
vice Level Objective (SLO) jobs with deadlines and Best
Effort (BE) jobs with preference to complete faster. An SLO
job is defined to be accepted iff its reservation requested was
accepted by the Rayon reservation system—used for both
Rayon/CS and Rayon/TetriSched stacks. Otherwise, we refer
to it as an SLO job without reservation (SLO w/o reservation).
A job is defined as a best-effort(BE) job iff it never submitted
a reservation request to Rayon. In our experiments, a value
function v(t) encodes the sensitivity to completion time and
deadlines (Fig. 5). Best-effort v(t) is a linearly decaying func-
tion with a starting value set to the same positive constant
throughout all experiments. SLO v(t) is a constant function
up to a specified deadline, where the constant is 1000x the BE
constant for accepted SLO and 25x for SLO w/o reservation,
prioritizing them accordingly.
6.3 Evaluation metrics, parameters, policies

Throughout this paper, four main metrics of success are
used: (a) accepted SLO attainment, defined as the percentage
of accepted SLO jobs completed before their deadline; (b) to-
tal SLO attainment, defined as the percentage of all SLO jobs
completed before their deadline; (c) SLO attainment for SLO
jobs w/o reservation, defined as the percentage of SLO jobs
w/o reservation completed before their deadline; (d) mean
latency, defined as the arithmetic mean of completion time
for best-effort jobs.

We vary two main experimental parameters: estimate er-
ror and plan-ahead. Estimate error is the amount of mis-
estimation added to the actual runtime of the job. Positive val-
ues correspond to over-estimation, and negative mis-estimate
corresponds to under-estimation. It exposes scheduler robust-
ness to mis-estimation handling. Plan-ahead is the interval
of time in the immediate future considered for deferred place-
ment of pending jobs. Increased plan-ahead translates to in-
creased consideration of scheduling jobs in time and generally
improves space-time bin-packing. TetriSched cycle period is
set to 4s in all experiments.

We experiment with four different TetriSched configura-
tions (Table 2)) to evaluate benefits from (a) soft constraint
awareness, (b) global scheduling, and (c) plan-ahead by hav-
ing each of these features individually disabled (Sec. 7.2).
TetriSched-NG policy derives benefit from TetriSched’s soft
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Figure 6. Rayon/TetriSched outperforms Rayon/CapacityScheduler stack, meeting more deadlines for SLO jobs (with reservations and
otherwise) and providing lower latencies to best effort jobs. Cluster:RC256 Workload:GR MIX

constraint and time-awareness, but considers pending jobs
one at a time. It organizes pending jobs in 3 FIFO queues
in priority-order: top priority queue with accepted SLO jobs,
medium-priority with SLO jobs without a reservation, and
low-priority with best-effort jobs. On each scheduling cy-
cle, TetriSched-NG picks jobs from each queue, in queue
priority order. TetriSched-NH policy disables heterogeneity-
awareness at STRL generation stage by creating STRL ex-
pressions that draw k containers from only one possible equiv-
alence set : the whole cluster. It uses the specified slowdown
to conservatively estimate job’s runtime on a (likely) sub-
optimal allocation.
6.4 Workload Generation

We use a synthetic generator based on Gridmix 3 to
generate MapReduce jobs that respect the runtime parameter
distributions for arrival time, job count, size, deadline, and
task runtime. In all experiments, we adjust the load to utilize
near 100% of the available cluster capacity.

SWIM Project (GR SLO, GR MIX): We derive the
runtime parameter distributions from the SWIM project [4, 5],
which includes workload characterizations from Cloudera,
Facebook, and Yahoo production clusters. We select two job
classes (fb2009 2 and yahoo 1) with sizes that fit on our
RC256 cluster. The GR MIX workload is a mixture of SLO
(fb2009 2) and BE (yahoo 1) jobs. The GR SLO workload
is composed solely from SLO jobs (fb2009 2) to eliminate
interference from best-effort jobs.

Synthetic (GS MIX, GS HET): To isolate and quantify
sources of benefit, we use synthetic workloads to explore a
wider range of parameters. We evaluate our synthetic work-
loads on our smaller RC80 cluster. The GS MIX workload is
a mixture of homogeneous SLO and BE jobs. The GS HET
workload is a mixture of heterogeneous SLO jobs with vary-
ing placement preferences and homogeneous BE jobs.

TetriSched TetriSched with all features
TetriSched-NH TetriSched with No Heterogeneity

(soft constraint awareness)
TetriSched-NG TetriSched with No Global scheduling
TetriSched-NP TetriSched with No Plan-ahead

Table 2. TetriSched configurations with individual features
disabled.

7. Experimental Results
This section evaluates TetriSched, including its robustness

to runtime estimate inaccuracy, the relative contributions of
its primary features, and its scalability. The results show
that TetriSched outperforms the Rayon/CapacityScheduler
stack, especially when imperfect information is given to the
scheduler, in terms of both production job SLO attainment
and best effort job latencies. Each of TetriSched’s primary
features (soft constraints, plan-ahead, and global scheduling)
is important to its success, and it scales well to sizable (e.g.,
1000-node) clusters.
7.1 Sensitivity to runtime estimate error

Fig. 6 compares TetriSched with Rayon/CS on the 256-
node cluster, for different degrees of runtime estimate error.
TetriSched outperforms Rayon/CS at every point, providing
higher SLO attainment and/or lower best effort jobs latencies.
TetriSched is particularly robust for the most important
category—accepted SLO jobs (those with reservations)—
satisfying over 95% of the deadlines even when runtime
estimates are half of their true value.

When job runtimes are under-estimated, the reservation
system will tend to accept more jobs than it would with
better information. This results in reservations terminating
before jobs complete, resulting in transfer of accepted SLO
jobs into the best-effort queue in Rayon/CS. Jobs in the
best-effort queue then consist of a mixture of incomplete
accepted SLO jobs, SLO jobs without reservations, and best-
effort jobs. This contention results in low levels of SLO
attainment and high best effort job latencies. In contrast,
Rayon/TetriSched optimistically allows scheduled jobs to
complete if their deadline has not passed,, adjusting runtime
under-estimates upward when observed to be too low. It
reevaluates the schedule on each TetriSched cycle (configured
to 4s), adapting to mis-estimates by constructing a new
schedule based on the best-known information at the time.

When runtimes are over-estimated, both schedulers do
well for accepted SLO jobs. TetriSched satisfies more SLOs
for jobs without reservations, because it considers those
deadlines explicitly rather than blindly inter-mixing them,
like the CapacityScheduler. Rayon/CS also suffers huge
increases in best effort job latencies, because of increased
pressure on the best-effort queue from two main sources: (1)
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Figure 7. Rayon/TetriSched achieves higher SLO attainment for production-derived SLO-only workload due to robust mis-estimation
handling. Cluster:RC256 Workload:GR SLO.
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Figure 8. Synthetically generated, unconstrained SLO + BE workload mix achieves higher SLO attainment and lower latency with
Rayon/TetriSched. Cluster:RC80 Workload:GS MIX

the number of SLO jobs without reservations increases with
the amount of over-estimation; (2) the deadline information
for any SLO jobs in the best-effort queue is lost, causing
resources to be wasted on SLO jobs that cannot finish by
their deadline. In contrast, TetriSched avoids scheduling such
jobs. Additional resource contention arises from increased
use of preemption. As over-estimate-based reservations are
released early, temporarily available capacity causes more
best-effort jobs to be started. But, these jobs often don’t
complete before the next SLO job with a reservation arises,
triggering preemption that consumes time and resources.

To isolate the behavior of SLO jobs, without interference
from best-effort jobs, we repeated the experiment with only
SLO jobs; Fig. 7 shows the results. Now, the only jobs in
the best-effort queue are (1) SLO jobs without reservations
and (2) accepted SLO jobs with under-estimated runtimes.
The results are similar, with Rayon/TetriSched achieving
higher SLO attainment overall and maintaining ≈100% SLO
attainment for accepted SLO jobs.
7.2 Sources of benefit

This section explores how much benefit TetriSched obtains
from each of its primary features, via synthetically generated
workloads exercising a wider set of parameters on an 80-node
cluster. As a first step, we confirm that the smaller evaluation
testbed produces similar results to those in Sec. 7.1 with
a synthetic workload that is similar (homogeneous mix of

SLO and best-effort jobs). As expected, we observe similar
trends (Fig. 8), with TetriSched outperforming Rayon/CS in
terms of both SLO attainment and best-effort latencies. The
one exception is at 50% under-estimation, where TetriSched
experiences 3x higher mean latency than Rayon/CS. The
cause is that TetriSched schedules 3x more best-effort jobs
(120 vs. 40), expecting to finish them with enough time to
complete SLO jobs on time. Since TetriSched doesn’t use
preemption, best-effort jobs run longer, causing other best-
effort jobs to accumulate queuing time, waiting for 50%-
underestimated jobs to finish.

Soft constraint awareness. TetriSched accepts and lever-
ages job-specific soft constraints. Fig. 9 shows that doing so
allows it to better satisfy SLOs and robustly handle runtime
estimate errors, for a heterogeneous workload mixture of syn-
thetic GPU and MPI jobs combined with unconstrained best-
effort jobs. This can be seen in the comparison of TetriSched
to TetriSched-NH, which is a version of our scheduler with
soft constraint support disabled. The key takeaway is that
the gap between Rayon/TetriSched and TetriSched-NH is
entirely attributed to TetriSched’s support for soft constraints
on heterogeneous resources. The gap is significant: 2-3x the
SLO attainment (Fig. 9(a)). Disabling soft constraint support
can even be seen reducing the performance of TetriSched-NH
below Rayon/CS as over-estimation increases (Figures 9(a)
and 9(b)). While both Rayon/CS and TetriSched-NH are
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Figure 9. TetriSched derives benefit from its soft constraint awareness—a gap between TetriSched and TetriSched-NH. Cluster: RC80,
Workload: GS HET.
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Figure 10. TetriSched benefits from global scheduling—a gap between TetriSched and TetriSched-NG. TetriSched-NG explores the
solution space between Rayon/CS and TetriSched by leveraging soft constraints & plan-ahead, but not global scheduling. Cluster:RC80,
Workload:GS HET.
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Figure 11. TetriSched benefits from adding plan-ahead to its soft constraint awareness and global scheduling. Cluster:RC80 Work-
load:GS HET

equally handicapped by lack of soft constraint awareness,
over-estimation favors Rayon/CS, as the job is started ear-
lier in its reservation interval, increasing the odds of timely
completion. TetriSched-NH on the other hand suffers from
its lack of preemption when small best-effort jobs are sched-
uled at the cost of harder to schedule over-estimated SLO
jobs. (Preemption in a TetriSched-like scheduler is an area
for future work.)

Global scheduling. To evaluate the benefits (here) and
scalability (Sec. 7.3) of TetriSched’s global scheduling, we
introduce TetriSched-NG, our greedy scheduling policy
(Sec. 6.3). It uses TetriSched full MILP formulation, but
invokes the solver with just one job at a time, potentially re-
ducing its time complexity. Fig. 10 compares TetriSched with
a version using the greedy policy, referred to as TetriSched-
NG, finding that global scheduling significantly increases
SLO attainment. Global scheduling accounts for the gap of
up to 36% (at 50% over-estimate) between TetriSched and
TetriSched-NG (Fig. 10(a)). TetriSched’s global scheduling
policy is particularly important for bin-packing heteroge-

neous jobs, as conflicting constraints can be simultaneously
evaluated. We note that even TetriSched-NG outperforms
Rayon/CS in both SLO attainment (Fig. 10(a)) and best-
effort job latency (Fig. 10(d)), showing that greedy policies
using TetriSched’s other features are viable options if global
scheduling latency rises too high.

Plan-ahead. Fig. 11 evaluates TetriSched and TetriSched-
NG (with greedy scheduling instead of global), as a function
of the plan-ahead window. (Note that the X-axis is plan-
ahead window, not estimate error as in previous graphs.)
When plan-ahead = 0 (i.e., plan-ahead is disabled), we see
that, despite having soft constraint awareness and global
scheduling, Rayon/TetriSched performs poorly for this het-
erogeneous workload. We refer to this policy configuration
as TetriSched-NP (Sec. 6.3), which emulates the behavior
of alsched [33]—our previous work. As we increase plan-
ahead, however, SLO attainment increases significantly for
TetriSched, until plan-ahead≈100s.

Summary. Fig. 9–11 collectively show that all three of
TetriSched’s primary features must be combined to achieve
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Figure 12. TetriSched scalability with plan-ahead.

the SLO attainment and best-effort latencies it provides. Re-
moving any one of soft constraint support, global scheduling,
or plan-ahead significantly reduces its effectiveness.
7.3 Scalability

Global re-scheduling can be costly, as bin-packing is
known to be NP-Hard. Because TetriSched reevaluates the
schedule on each cycle, it is important to manage the latency
of its core MILP solver. The solver latency is dictated by the
size of the MILP problem being solved, which is determined
by the number of decision variables and constraints. Partition
variables are the most prominent decision variables (Sec. 5)
for TetriSched, as they are created per partition per cycle for
each time slice of the plan-ahead window. Thus, in Fig. 12,
we focus on the effect of the plan-ahead window size on
the cycle (Fig. 12(b)) and solver (Fig. 12(a)) latencies. The
cycle latency is an indication of how long the scheduler takes
to produce an allocation decision during each cycle. The
solver latency is the fraction of that latency attributed to the
MILP solver alone. For the global policy, the solver latency
is expected to dominate the total cycle latency for complex
bin-packing decisions, as is seen in Fig. 12(c). The difference
between cycle and solver latency is attributed to construction
of the aggregate algebraic expression for pending jobs—
overhead of global scheduling—and translating solver results
into actual resource allocations communicated to YARN.

Fig. 12(b) reveals a surprising result: despite increasing
the MILP problem size, increased plan-ahead can actually
decrease cycle latency for the greedy policy. This occurs
because scheduling decisions improve with higher plan-
ahead (Sec. 7.2), reducing the number of pending jobs to
schedule—another factor contributing to the size of the MILP
problem. As expected, we can clearly see that the greedy
policy (TetriSched-NG) decreases cycle and solver latency
relative to global (TetriSched).

The combination of multiple optimization techniques
proved effective at scaling TetriSched’s MILP implemen-
tation to MILP problem sizes reaching hundreds of thousands
of decision variables [34]. Optimizations include extracting
the best MILP solution after a timeout, seeding MILP with
an initial feasible solution from the previous cycle (Sec. 3.2),

culling STRL expression size based on known deadlines,
culling pending jobs that reached zero value, and most im-
portantly, dynamically partitioning cluster resources at the
beginning of each cycle to minimize the number of partition
variables (Appendix A of [34])—all aimed at minimizing the
resulting MILP problem size. Our companion TR [34] shows
that TetriSched scales effectively to a 1000-node simulated
cluster, across varied cluster loads, inter-arrival burstiness,
slowdown, plan-ahead, and workload mixes. When we scale
a simulation to a 10000-node cluster, running the GS HET
workload scaled to maintain the same level of cluster utiliza-
tion as in Fig. 10), TetriSched exhibits a similar cycle latency
distribution with insignificant degradation in scheduling qual-
ity. Even greater scale and complexity may require exploring
solver heuristics to address the quality-scale tradeoff.

8. Related Work and Discussion
TetriSched extends prior research by addressing schedul-

ing of diverse workloads on heterogeneous clusters via ex-
ploitation of estimated runtimes, plan-ahead with regular
re-planning, and combinatorial placement preferences.

Handling Placement Preferences. The manner in which
cluster schedulers consider placement preferences can be
used to categorize them into four main classes, which may be
termed None, Hard, Soft, and Deferring.

None-class schedulers don’t model or understand place-
ment preferences. Most such schedulers were designed as-
suming homogeneous infrastructures [22], focusing on load
balancing and quantities of resources assigned to each job.
This class includes schedulers using proportional sharing or
random resource allocation for choosing placement candi-
dates [25, 40]. Such schedulers fail to gain advantage from
heterogeneous resources yielding opportunity costs when the
benefits of getting preferred allocations are tangible.
Hard-class schedulers support specifying jobs with

node preferences, but treat those specifications as require-
ments (i.e., as hard constraints). While such schedulers are
heterogeneity-aware, their inflexible handling of placement
preferences can be limiting, particularly when utilization is
high. Based on prior work [30], this limitation contributes to
noticeable performance degradation, increasing queuing de-



lays and causing jobs to unnecessarily wait for their specified
preferences. This causes jobs to miss SLO targets, affects
latency-sensitive jobs, and worsens utilization.

Soft-class schedulers address these issues by treating
placement preferences as soft constraints. Notable examples
include MapReduce [8], KMN [37], Quincy [18], and ABA-
CUS [2]. To date, however, such schedulers have special-
ized for hard-coded types of preferences. Unlike the general-
purpose approach of TetriSched, they hard-code support for
handling specific placement preferences (e.g., data local-
ity in Apollo [3]). Consequently, they lack the flexibility
to adapt to new types of heterogeneity in both hardware
and software. Similarly, CPU-centric observations have led
to approaches based on greedy selection [9, 11, 24], hill-
climbing [21, 23], and market mechanics [16]. An exception
is Google’s Borg [39], which supports soft constraints on
diverse resources, but lacks support for estimated runtimes or
time-based SLOs. Borg’s scoring functions, built to scale, are
bilateral, evaluating a job against a single node at a time. Borg
also uses priorities as the mechanism for resolving contention
rather than value-optimization as TetriSched does. Condor
ClassAds [26] supports preferences, but is fundamentally bi-
lateral, matching a single job to a single machine as Borg
does. Consequently, both lack support for combinatorial con-
straints (generally, considered hard) and plan-ahead, provided
by TetriSched.

Deferring-class schedulers, such as Mesos [17] and
Omega [29], defer the complexity of reasoning about place-
ment tradeoffs to second-level schedulers by exposing cluster
state to pending resource consumers (via resource offers or
shared state). The resource-offer approach (Mesos) has been
shown to suffer livelocks due to hoarding to achieve preferred
allocations (especially combinatorial constraints) [29], and
neither addresses conflict resolution among preferences or
time-based SLOs of different frameworks.

Comprehending space with Alsched. Alsched [33]
sketched the idea of using utility functions to schedule jobs
with soft constraints using a more primitive language to
express them and a custom-coded bin-packing placement
algorithm rather than TetriSched’s general, automatically-
generated MILP formulation. Alsched’s support for soft con-
straints was limited to space only, as it completely ignored
the time dimension. As such, it didn’t support plan-ahead nor
able to accommodate jobs with time-based SLOs. Alsched
corresponds to TetriSched-NP in Sec. 6.3. Lastly, Alsched
evaluation was with synthetic workloads in simulation only.

Comprehending time with Rayon. Rayon [7] supports
SLO and best-effort mixes of complex datacenter workloads
and stands out from most schedulers above in its comprehen-
sion of the time dimension—effected through the introduction
of a rich language for resource capacity reservation. However,
Rayon treats space as a scalar capacity (or multi-dimensional
capacity); hence, TetriSched and Rayon are complementary
as shown in this paper.

Fair Scheduling. Fairness has been a popular choice as
an arbiter of resource contention, especially for academic
clusters and federated resource pools with specified resource
ownership proportions. However, mounting evidence from
production clusters suggests that efficiency of scheduling
significantly outweighs fairness considerations, which are
only possible for omniscient observers. Further, a complete
model for fairness in heterogeneous clusters and for work-
loads with soft constraints is an open problem. Max-min
fairness assumes identical resources, DRF [13] considers ca-
pacity heterogeneity only, and the state-of-the-art constrained
max-min fair (CMMF) scheduler [14] models only hard con-
straints, not the more expressive and, therefore, more complex
space-time soft constraints.

9. Conclusion
TetriSched exploits time- and space-flexibility to sched-

ule SLO and best-effort jobs on heterogeneous datacenter
resources effectively. Job-specific resource preferences and
temporal constraints are specified, together with reservation
system-supplied deadlines and job runtime estimates, via its
space-time request language (STRL). This information is
leveraged to construct higher quality schedules by assigning
the right resources to the right jobs, planning ahead which
jobs to defer, and continuously re-evaluating to address new
job arrivals and runtime mis-estimates. TetriSched performs
global scheduling by batching multiple pending jobs and
considering them for placement simultaneously, since con-
straints on diverse resources can arbitrarily conflict. Experi-
ments with production-derived SLO and best-effort job mixes
show higher SLO attainment and lower best-effort job latency,
when compared to the state-of-the-art Hadoop YARN reserva-
tion and scheduling stack. Overall, TetriSched combines the
features of general support for soft constraints in dynamically
heterogeneous cluster space-time, combinatorial constraints,
and plan-ahead in a scheduler that scales to hundreds of nodes.
Integrated with the YARN reservation system, TetriSched is
an appealing scheduling solution for heterogeneous clusters
and cloud infrastructures.
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