
Principled work÷ow-centric tracing of distributed systems
Raja R. Sambasivan⋆ Ilari Shafer◇ Jonathan Mace‡ Benjamin H. Sigelman†

Rodrigo Fonseca‡ Gregory R. Ganger⋆
⋆Carnegie Mellon University, ◇Microso�, ‡Brown University, †LightStep

Abstract
Work�ow-centric tracing captures the work�ow of causally-

related events (e.g., work done to process a request) within

and among the components of a distributed system. As dis-

tributed systems grow in scale and complexity, such tracing is

becoming a critical tool for understanding distributed system

behavior. Yet, there is a fundamental lack of clarity about how

such infrastructures should be designed to provide maximum

bene�t for important management tasks, such as resource ac-

counting and diagnosis. Without research into this important

issue, there is a danger that work�ow-centric tracing will not

reach its full potential. To help, this paper distills the design

space of work�ow-centric tracing and describes key design

choices that can help or hinder a tracing infrastructure’s utility

for important tasks. Our design space and the design choices

we suggest are based on our experiences developing several

previous work�ow-centric tracing infrastructures.

Categories and Subject Descriptors C.4 [Performance of
systems]: Measurement techniques

1 Introduction
Modern distributed services running in cloud environments

are large, complex, and depend on other similarly complex

distributed services to accomplish their goals. For example,

user-facing services at Google o�en comprise 100s to 1000s of

nodes (e.g., machines) that interact with each other and with

other services (e.g., a spell-checking service, a table-store [6],

a distributed �lesystem [21], and a lock service [6]) to ser-

vice user requests. Today, even “simple” web applications con-

tain multiple scalable and distributed tiers that interact with

each other. In these environments,machine-centricmonitor-
ing and tracing mechanisms (e.g., performance counters [36]

and strace [49]) are insu�cient to inform important man-
agement tasks, such as diagnosis, because they cannot provide

a coherent view of the work done among a distributed system’s

nodes and dependencies.

To address this issue, recent research has developed

work�ow-centric tracing techniques [8, 9, 18, 19, 22, 29, 33,
34, 41, 44, 45, 51], which provide the necessary coherent view.

Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components of

this work must be honored. For all other uses, contact the owner/author(s).

SoCC ’16 October 05-07, 2016, Santa Clara, CA, USA.
Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-4525-5/16/10.

DOI: http://dx.doi.org/10.1145/2987550.2987568

App server
Table store

Distributed
filesystem

Client Server

Request workflows

Boundary 2ms 3ms3ms

2ms 2ms1ms

Trace points

Sto
rag

e
 n

o
d

e
s

Figure 1: Work�ows of two read requests.

�ese techniques identify the work�ow of causally-related

events within and among the nodes of a distributed system

and its dependencies. As an example, the work�ow-centric

traces in Figure 1 show the work�ows of the events involved in

processing two read requests in a three-tier distributed system.

�e �rst request (blue) hits in the table store’s client cache,

whereas the second (orange) requires a �le system access. �e

work�ow of causally-related events (e.g., a request) includes

their order of execution and, optionally, their structure (i.e.,

concurrency and synchronization) and detailed performance

information (e.g., per-function or per-trace-point latencies).

To date, work�ow-centric tracing has been shown to be

su�ciently e�cient to be enabled continuously (e.g., Dap-

per incurs less than a 1% runtime overhead [45]). It has also

proven useful for many important management tasks, includ-

ing diagnosing anomalies and steady-state performance prob-

lems, resource-usage attribution, and dynamic monitoring

(see Section 2.1). �ere are a growing number of industry im-

plementations, including Apache’s HTrace [4], Zipkin [56],

Google’s Census [22], Google’s Dapper [45], LightStep [32],

and others [7, 12, 13, 52].Many of the industry implementations

follow Dapper’s model. Looking forward, work�ow-centric

tracing has the potential to become the fundamental substrate

for understanding and analyzing many, if not all, aspects of

distributed-system behavior.

But, despite the strong interest in work�ow-centric trac-

ing infrastructures, there is very little clarity about how they

should be designed to provide maximum bene�t. New re-

search papers that advocate slightly di�erent tracing infrastruc-

ture designs are published every few years—e.g., Pinpoint [9],

Magpie [5], Pip [41], Stardust and Stardust-revised [44, 51],

Mace [29], Whodunit [8], Dapper [45], X-Trace and X-Trace-

revised [18, 19], Retro [33], and Pivot Tracing [34]—but there

exists little insight about which designs should be preferred



under di�erent circumstances. Without research into this im-

portant question, there is a danger that future tracing im-

plementations will not live up to expectations and that the

potential of work�ow-centric tracing will be squandered.�is

question is especially relevant today because of practitioners’

emerging interest in creating a common high-level API for

work�ow-centric tracing within open-source so�ware [38].

Understanding the breadth of tracing designs and why they

di�er can help in designing APIs that don’t arti�cially limit

work�ow-centric tracing’s utility for important tasks.

In this paper, we answer the following question: “What

design decisions within a work�ow-centric tracing infrastruc-

ture dictate its utility for important management tasks?” We

do this via a systematic analysis of the key design axes of

work�ow-centric tracing. We distill these axes, identify com-

monly used options for each, and identify design points across

them that will increase (or hurt) a tracing infrastructure’s util-

ity for various tasks.

Our design axes and choices for them are motivated by our

experiences designing some of of themost well-known tracing

infrastructures (Stardust [44, 51], X-Trace [18, 19], Dapper [45],

Retro [33], and Pivot Tracing [34]) and working in a startup

that instruments production code to enable work�ow-centric

tracing (LightStep [32]). We o�en draw on our experiences

building and using Spectroscope [43, 44], a tool that uses

work�ow-centric tracing to automatically localize the root

cause of performance regressions in distributed systems. Our

initial design re-used a tracing infrastructure (Stardust [51])

that had previously been used for resource attribution, but

it proved ine�ective and expensive when used for diagnosis

tasks. Our experiences revising the original tracing infrastruc-

ture helped inform several of the insights in this paper.

Overall, we �nd that resource attribution and performance-

related management tasks bene�t from di�erent design de-

cisions. We also �nd that using a tracing infrastructure best

suited for one management task for another type of task will

not only yield poor results, but can also result in in�ated trac-

ing overheads. �ough our design axes and options are not

comprehensive, they are su�cient to distinguish existing trac-

ing infrastructures and the management tasks for which they

are best suited.

In summary, we present the following contributions:

1) We distill �ve key design axes that dictate work�ow-centric
tracing’s utility for important management tasks.

2) We identify potential choices for each axis based on our
experiences and a systematic analysis of previous literature.

Using scenarios drawn from our experiences, we describe

which options are best suited for which management tasks

and which will lead to poor outcomes.

3) We contrast existing tracing infrastructures’ choices to our
suggestions to understand reasons for any di�erences.

�e remainder of this paper is organized as follows. Sec-

tion 2 introduces work�ow-centric tracing and the manage-

ment tasks we consider. Sections 3–5 describe various design

axes and their tradeo�s. Section 6 suggests speci�c design

choices for the management tasks and compares our sugges-

tions to existing infrastructures’ choices. Section 7 discusses

promising future research avenues. Section 8 concludes.

2 Anatomy
Figure 2 illustrates the anatomy of how work�ow-centric trac-

ing infrastructures are used for management tasks. �ere are

two levels. At the top level, there are applications that execute

management tasks by using the data exposed by the tracing

infrastructure. �ese applications typically execute tasks out-

of-band of (i.e., separately from) the tracing infrastructure.

Some more recent infrastructures allow applications to stati-

cally [8] or dynamically [34] con�gure aspects of the tracing

infrastructure at runtime.�is creates the potential to execute

tasks in-band (i.e., at least partially within) the infrastructure.

At the lower level, there is a work�ow-centric tracing in-

frastructure, which exposes di�erent types of information

about the work�ows it observes. It propagates metadata (e.g.,

an ID) with causally-related events to distinguish them from

other concurrent, yet unrelated, events in the distributed sys-

tem. Doing so requires mostly white-box distributed systems
whose components can be modi�ed to propagate metadata.

Less intrusive methods exist for inferring causally-related

events—e.g., correlating network messages [2, 30, 42, 46], cor-

relating pre-existing logs [5, 27, 48, 55], or using models to

identify expected causal relationships [48])—but they gener-

ate less accurate data and cannot execute management tasks

in-band (see Section 2.3). As such, metadata propagation has

emerged as the preferred method in many production envi-

ronments [4, 7, 12, 22, 38, 45, 56] and is the focus of this paper.

Section 2.1 describes the management tasks most com-

monly associated with work�ow-centric tracing. Sections 2.2

through 2.4 describe the components of most work�ow-

centric tracing architectures. We distinguish between concep-

tual design choices, core so�ware components, and additional

ones. �e conceptual choices dictate the fundamental capa-

bilities of a work�ow-centric tracing architecture. �e core

so�ware components work to implement these choices. �e

App server

Table store

Distributed
filesystem

Client Server

Trace storage

Trace construction

Tr
ac

in
g

 a
rc

h
it

e
ct

u
re

Management tasks (§2.1)

Overhead reduction
Workflow

Storage / construction

Value-added trace points

Additional components (§2.4)

Propagational trace points

Metadata

Core components (§2.3)

Conceptual design choices (§2.2)

Figure 2: Anatomy of work�ow-centric tracing.



additional components work to limit overhead so that tracing

can be used in production and to enrich the infrastructure’s

utility for speci�c management tasks.

2.1 Management tasks
Table 1 summarizes work�ow-centric tracing’s key manage-

ment tasks and lists tracing implementations best suited for

them. Some of the listed infrastructures were initially thought

to be useful for more tasks than those attributed to them in

the table. For example, we initially thought that the original

Stardust [51] would be useful for both resource attribution and

diagnosis. Similarly, Google’s Dapper has proven less useful

than initially thought because it cannot detect anomalies [39].

One goal of this paper is to help future tracing developers

avoid such mismatches between expectation and reality.

Identifying anomalous work�ows: �is task involves pre-
senting rare work�ows that are extremely di�erent from other

work�ows to diagnosis teams so that they can analyze why

they occur.�ey fall in the tail (e.g., 99.9th percentile) of some

important distribution (e.g., response times). �ey may occur

as a result of correctness problems (e.g., component timeouts

or failures) or performance issues (e.g., a slow function or

waiting for a slow thread).1�ey usually exhibit uncommon

structures—i.e., causal order of work executed, amount of

concurrency, or locations of forks and joins—latencies, or re-

source usages. Pinpoint [9] and Pip [41] are suited to identify

anomalies. �e Mace programming framework [29] embeds

a work�ow-centric tracing infrastructure into distributed sys-

tems that provides functionality similar to Pip.

Identifying work�ows w/steady-state problems: �is
task involves presenting work�ows that negatively a�ect the

mean ormedian of some important performance distribution—

e.g., the 50th or 75th percentile of request response times—to

diagnosis teams so that they can understand why they occur.

Unlike anomalies, they are not rare. �e problems they repre-

sent manifest in work�ows’ structures, latencies, or resource

usages. One example we have seen is a con�guration change

that modi�es the storage nodes accessed by a large set of

requests and increases their response times [44]. Dapper [45],

Mace [29], Pip [41], Pinpoint [9], the revised version of Star-

dust (Stardust‡ [44]), and both versions of X-Trace [18, 19] are

all useful for identifying steady-state problems.

Distributed pro�ling: �is task involves identifying slow
functions or nodes. Since the execution time of a function

o�en depends on how it is invoked, tracing infrastructures

explicitly designed for this purpose, such as Whodunit [8],

present functions’ latencies as histograms in which bins repre-

sent unique calling stacks or backtraces; work�ow structures

are not preserved. Tracing implementations suited for identi-

fying anomalies or steady-state problems can also be used for

pro�ling. We list Dapper [45] in Table 1 as an example.

1 In most distributed systems, correctness problems are o�en masked by

retries and fail-overs, so they initially appear to be performance problems [23,

41]. As such, we do not distinguish between the two in this paper.

Type Management task Implementations

Perf. Identifying

anomalous work�ows

Mace [29], Pinpoint [9],

Pip [41]

Identifying work�ows

w/steady-state problems

Dapper [45], Mace [29],

Pinpoint [9], Pip [41],

Stardust
‡
[44], X-Trace [19],

X-Trace
‡
[18]

Distributed pro�ling Dapper [45], Whodunit [8]

Meeting SLOs Retro [33]

Resource attribution Retro [33], Stardust [51],

Quanto [17]

Multiple Dynamic monitoring Pivot Tracing [34]

Table 1: Management tasks most commonly associated with
work�ow-centric tracing. �is table lists work�ow-centric tracing’s
key management tasks and tracing implementations suited for them.
Some implementations appear for multiple tasks. �e revised ver-
sions of Stardust and X-Trace are denoted by Stardust‡ and X-Trace‡ .

Meeting SLOs: �is task involves adjusting work�ows’
resource allocations to guarantee that jobs meet service-level

objectives. Resource allocations are dynamically changed

during runtime. Retro [33] is suited for this task.

Resource attribution:�e task involves tying work done at
an arbitrary component of the distributed system to the client

or request that originally submitted it, perhaps for billing [53]

or to guarantee fair resource usage [33]. Retro [33], the original

version of Stardust [51], andQuanto [17] are suited for this task.

Retro and Stardust attribute per-component resource usage

(e.g., CPU time) to clients in distributed storage systems or

databases. Quanto ties per-device energy usage to high-level

activities (e.g., routing) in distributed-embedded systems.

Dynamic monitoring: �e task involves monitoring activ-
ity (e.g., bytes read) at a distributed component only if that

activity is causally-related to pre-conditions met at other com-

ponents. Both the activity to monitor and the pre-conditions

are dynamically chosen at runtime. For example, one might

choose tomonitor bytes read at a database only by users whose

requests originate in China. Pivot Tracing [34] is currently the

only infrastructure suited for this task. Tracing implementa-

tions that fall in this category have the potential to, but cannot

necessarily, support some of the other tasks listed above (e.g.,

resource attribution).�is is because more than what is instru-

mented needs to be dynamically changed to support them.

2.2 Conceptual design choices
What causal relationships should be preserved?: �e

most fundamental goal of a work�ow-centric tracing infras-

tructure is to identify and preserve causal relationships. How-

ever, preserving all causal relationships can result in too much

overhead, whereas preserving the wrong ones can result in a

tracing infrastructure that is not useful for its intended man-

agement tasks. For example, our initial e�orts in developing

Spectroscope [44] were hampered because the original ver-

sion of Stardust [51] preserved causal relationships that turned



out not to be useful for diagnosis tasks. Section 3 describes

various causality choices we have identi�ed in the past and

the management tasks for which they are suited.

What model should be used to express causal relation-
ships?:�ere are two kinds: specialized and expressivemodels.
Specialized ones can only represent a few types of relation-

ships, but admit e�cient storage, retrieval, and computation;

expressive onesmake the opposite tradeo�. Paths and directed

trees are the most popular specialized models. �e most pop-

ular expressive model is a directed acyclic graph (DAG).

Paths, used by Pinpoint [9], are su�cient to represent

synchronous behavior, event-based processing, or to associate

important data (e.g., a client ID) withmultiple causally-related

events. Directed trees are su�cient for expressing sequential,

concurrent, or recursive call/reply patterns (e.g., as seen in

RPCs). Concurrency (i.e., multiple events that depend on a

single event) is represented by branches. �ey are used by the

original X-Trace [19], Dapper [45], and Whodunit [8].

Trees cannot represent events that depend on multiple

other events. Examples include synchronization (i.e., a single

event that depends onmultiple concurrent previous ones) and

inter-request dependencies. Since preserving synchronization

is important for diagnosis tasks (see Section 3.2), Pip [41], Pivot

Tracing [34], and the revised versions of Stardust [44] and X-

Trace [18] use DAGs instead of directed trees. Retro [33] and

the original Stardust [51] use DAGs to preserve inter-request

dependencies due to aggregation (see Section 5.1).

2.3 Core software components
Metadata:�ese are �elds that are propagatedwith causally-

related events to identify their work�ows. �ey are typically

carried within thread- or context-local variables.�ey are also

carried within network messages to identify causally-related

events across nodes.

To execute management tasks out-of-band, tracing in-

frastructures need only propagate unique IDs and logical

clocks, such as single logical timestamps [31] or interval-tree

clocks [3], as metadata. Such metadata is persisted to disk and

used to construct traces of work�ows asynchronously from

the tracing infrastructure. �e traces are then used to execute

tasks. Single timestamps are small, but result in lost traces in

the face of failures. Interval-tree clocks take up space propor-

tional to the amount of concurrent threads in the system, but

are resilient to failures. Many tracing infrastructures support

only out-of-band execution [8, 9, 18, 19, 41, 44, 45, 51].

To execute tasks in-band, data relevant to them must be

propagated as metadata. �is may include logical clocks. In

contrast to out-of-band execution, in-band execution reduces

the amount of data persisted by work�ow-centric tracing. It

also makes it easier for management tasks to be executed

online, hence resulting in fresher information being used.

Several new tracing infrastructures support in-band execu-

tion [8, 22, 33, 34].

Propagational trace points: Trace points indicate events
executed by individual work�ows. �ey must be added by

developers to important areas of the distributed system’s so�-

ware. Propagational trace points are fundamental to work�ow-

centric tracing as they are needed to propagate metadata

across various boundaries (e.g., network) to identify work-

�ows. For example, they are needed to insert metadata in

RPCs to identify causally-related events across nodes. �ey

are also needed to identify the start of concurrent activity (fork

points in the code) and synchronization (join points).

When executing management tasks out-of-band, trace-
point records of propagational trace points accessed by work-
�ows are persisted to disk along with relevant metadata and

used to construct traces. Trace-point records contain the trace-

point name and other relevant information captured at that

trace point (e.g., a timestamp, variable values, etc.) For in-

band execution, propagational trace points simply transfer

metadata across boundaries. Trace points, both propagational

and value-added (see Section 2.4), must be added to a dis-

tributed system before the value of work�ow-centric tracing

can be realized. But, doing so can be challenging. Section 4.1

describes our experiences with adding propagational trace

points and methods to mitigate the e�ort.

2.4 Additional tracing components
Value-added trace points: �ese trace points are optional

and the choice of what trace points to include depends on

the management task(s) for which the tracing infrastructure

will be used. For example, distributed pro�ling requires value-

added trace points within individual functions so that func-

tion latencies can be recorded. Trace-point records of value-

added trace points are either written to disk (for out-of-band

execution) or carried as metadata (for in-band execution).

Section 4.2 describes our experiences with adding them.

Overhead-reduction mechanism: To make work�ow-
centric tracing practical, techniques must be used to reduce

its overhead. For example, using overhead reduction, Dap-

per incurs less than a 1% overhead, allowing it to be used

in production. Section 5 further describes methods to limit

overhead and scenarios that will result in in�ated overheads.

Storage & reconstruction component:�is component is
relevant only for out-of-band execution. �e storage compo-

nent asynchronously persists trace-point records. �e trace

re-construction code joins trace-point records using the meta-

data embedded in them.

3 Preserving causal relationships
Since the goal of work�ow-centric tracing is to identify and

preserve the work�ow of causally-related events, the ideal trac-

ing infrastructure would preserve all true causal relationships,

and only those. For example, it would preserve the work�ow

of servicing individual requests and background activities,

read-a�er-write accesses to memory, caches, �les, and regis-

ters, data provenance, inter-request causal relationships due

to resource contention or built-up state, and so on.

Unfortunately, it is hard to know what activities are truly

causally related. So, tracing infrastructures resort to preserving



Lamport’s happens-before relation (→) instead. It states that

if a and b are events and a→ b, then a may have in�uenced b,
and thus, b might be causally dependent on a [31]. But, this
relation is only an approximation of true causality: it can be

both too indiscriminate and incomplete at the same time. It

can be incomplete because it is impossible to know all channels

of in�uence, which can be outside of the system [10]. It can

be too indiscriminate because it captures irrelevant causality,

asmay have in�uenced does not mean has in�uenced.
Tracing infrastructures limit indiscriminateness by using

knowledge of the system being traced and the environment

to capture only the slices (i.e., cuts) of the general happens-
before graph that are most likely to contain true causal rela-

tionships. First, most tracing infrastructures make assump-

tions about boundaries of in�uence among events. For ex-

ample, by assuming a memory-protection model, the tracing

infrastructure may exclude happens-before edges between

activities in di�erent processes, or even between di�erent

activities in a single-threaded event-based system (see Sec-

tion 4.1 formechanisms bywhich spurious edges are removed).

Second, they may require developers to explicitly add trace

points in areas of the distributed system’s so�ware they deem

important and only track relationships between those trace

points [9, 18, 19, 33, 34, 41, 44, 45, 51].

Di�erent slices are useful for di�erent management tasks,

but preserving all of them would incur too much overhead

(even the most e�cient so�ware taint-tracking mechanisms

yield a 2x to 8x slowdown [28]). As such, tracing infrastruc-

tures work to preserve only the slices that are most useful for

how their outputs will be used.

�e rest of this section describes slices that we have found

useful and describes which of them existing tracing implemen-

tations likely used. Table 2 illustrates the basic slices that are

most suited for work�ow-centric tracing’s key management

tasks. To our knowledge, none of the existing literature on

work�ow-centric tracing explicitly considers this critical de-

sign axis. As such, the slices we associate with existing tracing

implementations that we did not develop or use is a best guess

based on what we could glean from relevant literature.

3.1 Intra-request slices: basic options

One of the most fundamental decisions developers face when

developing a tracing infrastructure involves choosing a slice of

the happens-before graph that de�nes the work�ow of a single

request. We have observed that there are two basic options,

which di�er in the treatment of latent work—e.g., data le�

in a write-back cache that must be sent to disk eventually.

Speci�cally, latent work can be assigned to either the work�ow

of the request that originally submitted it or to the work�ow

of the request that triggers its execution. �ese options, the

submitter preserving slice and trigger preserving slice, have
di�erent tradeo�s and are described below.

�esubmitter-preserving slice: Preserving this slicemeans
that individual work�ows will show causality between the

Type Management task Slice Preserve
structure

Perf.
Diagnosing

anomalous work�ows

Trigger Y

Diagnosing work�ows

w/steady-state problems

” ”

Distributed pro�ling Either N

Meeting SLOs Trigger Yes

Resource attribution Submitter ”

Mult. Dynamic monitoring Depends Depends

Table 2: Intra-request causality slices best suited for various tasks.
�e slices preserved for dynamic monitoring depend on whether it

will be used for performance-related tasks or resource attribution.

original submitter of a request and work done to process it

through every component of the system. Latent work is at-

tributed to the original submitter even if it is executed on the

critical path of a di�erent request. �is slice is most useful for

resource attribution, since this usage mode requires tying the

work done at a component several levels deep in the system

to the client, workload, or request responsible for originally

submitting it. Retro [33], the original version of Stardust [51],

Quanto [17], and Whodunit [8] preserve this slice of causality.

�e two le�most diagrams in Figure 3 show submitter-

preserving work�ows for two write requests in a distributed

storage system. Request one writes data to the system’s cache

and immediately replies. Sometime later, request two enters

the system andmust evict request one’s data to place its data in

the cache. To preserve submitter causality, the tracing infras-

tructure attributes the work done for the eviction to request

one, not request two. Request two’s work�ow only shows the

latency of the eviction. Note that the tracing infrastructure

would attribute work the same way if request two were a back-

ground cleaner thread instead of a client request that causes

an on-demand eviction.

�e trigger-preserving slice: Preserving this slice means
that individual work�ows will show all work that must be

performed to process a request before a response is sent to the

client. Other requests or clients’ latent work will be attributed

to the request if it occurs on the request’s critical path. Since

it always shows all work done on requests’ critical paths, this

slice must be preserved for most performance-related tasks as

it provides guidance about why certain requests are slow.
Switching from preserving submitter causality to preserv-

ing trigger causality was perhaps the most important change

we made to the original version of Stardust [51] (useful for

resource attribution) to make it useful for identifying and di-

agnosing problematic work�ows [44]. Retro [33], Pivot Trac-

ing [34] and X-Trace [18] preserve this slice of causality, as do

many other tracing implementations implicitly [9, 29, 41, 45].

�e two rightmost diagrams in Figure 3 show the same

two requests as in the submitter-preserving example, with

trigger causality preserved instead. In this case, the tracing



Tr
ig

g
e

r-
p

re
se

rv
in

ginsert block

write

evict
10µs

10µs

cache write

block
persisted

write reply

1min

insert block

write

cache write

write reply

Request one

Request two

disk write

10µs

10µs

30µs

10µs

10µs

10µs

Su
b

m
it

te
r-

p
re

se
rv

in
g

Request one

Request two

5µs

5µs

insert block

write

cache write

write reply

10µs

10µs

10µs write

cache write

evict
10µs

10µs
block

persisted

disk write

insert block

write reply

10µs

10µs

Figure 3: Di�erences between how latent work is attributed when
preserving submitter causality vs. trigger causality.

infrastructure attributes the work done to evict request one’s

data to request two because it occurs in request two’s critical

path, helping diagnosis teams understand why request two’s

latency is high (i.e., that it performed an on-demand eviction).

3.2 Intra-request slices: structure
For both submitter-preserving causality and trigger-preserving

causality, preserving work�ow structure—concurrent behav-

ior, forks, and joins—is optional. It must be preserved for

most performance-related tasks to identify problems due to

excessive parallelism, too little parallelism, and excessive wait-

ing at synchronization points. It also enables critical paths

to be easily identi�ed in the face of concurrency. Distributed

pro�ling is the only performance-related task that does not

require preserving work�ow structure as only the order of

causally-related events (e.g., backtraces) need to be preserved

to distinguish how functions are invoked.

�e original version of X-Trace [19] used trees to model

causal relationships and so could not preserve joins. �e

original version of Stardust [51] used DAGs, but did not

instrument joins. To become more useful for diagnosis tasks,

in their revised versions [18, 44], X-Trace evolved to use DAGs

and both evolved to include join instrumentation APIs.

3.3 Inter-request slice options
In addition to choosing what slices to preserve to de�ne the

work�ow of a single request, developers may want to preserve

causal relationships between requests as well. For example,

preserving trigger and submitter causality, would allow trac-
ing infrastructures to answer questions, such as, “who was

responsible for evicting this client’s cached data?” Retro [33]

preserves both of these slices because it serves two functions:

guaranteeing fairness, which requires accurate resource at-

tribution, and meeting SLOs, which requires knowing why

requests are slow. By preserving the lock-contention-preserving
slice, tracing infrastructures could identify which requests
compete for generic shared resources.

4 Adding trace points
Instrumentation, in the form of trace points embedded

throughout the source code for the distributed system, is

a critical component of work�ow-centric tracing. However,

correct instrumentation is o�en subtle, and developers spend

signi�cant amounts their valuable time adding it before the

full bene�t of the tracing infrastructure can be realized. De-

spite the well-documented bene�ts of tracing, the amount of

up-front e�ort required to instrument systems is the most

signi�cant barrier to tracing adoption today [14, 15].

Organizations whose distributed systems’ components ex-

hibit some amount of homogeneity �nd it easier to adopt

tracing than those whose systems are very heterogeneous.

Examples from systems with which we have experience and

which we have observed in the literature are listed below.

First, homogeneity can be enforced through a common

programming framework that is used to develop all of the

distributed systems’ components, such as Mace [29]. �is

framework can also be written (or modi�ed) to automati-

cally insert trace points. Second, pattern-matching can be

used to automatically insert code (e.g., trace points) at arbi-

trary locations that match pre-de�ned search criteria. Simi-

larly, code can be dynamically inserted at arbitrary locations

of the distributed system. �e former is provided by aspect-

oriented programming [24] and the latter by Windows Hot-

patching [54]. Retro [33], Pivot Tracing [34], and Facebook [16]

use similar features in Java applications to add trace points

with minimal developer e�ort. �ird, common libraries, such

as RPC libraries, can be instrumented once to enable tracing

across all of the components of the system that share them.

At LightStep [32], we have observed that organizations’ sys-

tems infrastructures may exhibit some homogeneity (most

commonly in the form of libraries that are shared among

a distributed systems’ components). �at said, extreme het-

erogeneity is common. For example, production systems are

usually written in a variety of programming languages and

share libraries only among subsets of components. �is het-

erogeneity stems from a need to accommodate components

of varying age, as well as the de-centralized nature of most

large-scale organizations, which results in di�erent teams be-

ing responsible for di�erent components andmaking di�erent

design decisions for them.

Regardless of whether or not homogeneity can be leveraged,

organizations’ developers add trace points in similar ways. Our

conversations with customers at LightStep indicate that trace

points are o�en added on a component-by-component basis

instead of in one set of sweeping changes. �is is because a

desire to add tracing is o�en initiated by individual teams that

would like to understand the work�ow of requests entering

their components. Since work�ow-centric tracing is rarely in-

teresting when only a single component is involved, the team

adding trace points involves adjacent components’ developers

to add trace points in those services as well. When developers

are focused on end-to-end latency, they begin by instrument-

ing near the top of their stack (e.g., a mobile app or web client)

and proceed downward along the critical path of the most

important work�ows. When developers are interested in the

context of errors in backend services, they will start with the

a�ected service and work up or down into adjacent services:



up when the circumstances of the error are unclear, and down

when the root cause of the error is unclear.

�e rest of this section describes various approaches and

tradeo�s to adding trace points. Note that trace points cannot

be added to black-box components for which source code is
not available. As such, work�ow-centric traces that involve

block-box components can only show the clients’ calls to them

and replies received from them.

4.1 Trace points for metadata propagation
Propagational trace points are needed in order to propagate

metadata across boundaries (e.g., process, network) to pre-

serve the desired causality slices. �ey represent the bare min-

imum instrumentation needed for work�ow-centric tracing.

�ey are o�en extremely challenging to add correctly because

doing so requires developers to be intimately familiar with the

(possiblymany) design patterns used by the distributed system

being instrumented. For example, developersmust be aware of

which components use synchronous thread-based processing,

asynchronous thread-based processing, event-based process-

ing, or closures that run on arbitrary threads. In our experi-

ences developing both versions of Stardust [44, 51], we found

that adding these trace points always required a fair amount

of trial and error and iteration. At LightStep, customers have

approached us about odd-looking work�ows only to �nd that

they are a result of improper metadata propagation.

Table 3a describes tradeo�s to various approaches for

adding propagational trace points. �e choices that can be

used and the amount of e�ort required to add trace points

depends on the homogeneity of the system. In some homo-

geneous systems, metadata can be propagated for free. For

example, systems written using uni�ed programming frame-

works, which constrain design patterns to ones to ones the

compiler knows about, can leverage the compiler to automat-

ically add propagational trace points [29]. However, some

developer e�ort may still be needed to preserve the desired

causality slice(s), not the ones dictated by the compiler.

Similarly, homogeneous systems written in languages that

support aspect-oriented extensions [24] can use its pattern

matching functionality to �nd code locations that use com-

mondesign patterns.�ese can be automatically instrumented

with propagational trace points before runtime [16, 33, 34]. In

the Java-based systems we instrumented using Retro [33] and

Pivot Tracing [34] (i.e., MapReduce, HDFS, YARN, HBase,

ZooKeeper, Spark, and Tez), we only needed to modify 50–

300 lines of code per system to manually add propagational

trace points in areas of the system that could not be pattern

matched. �is was because they used uncommon patterns.

In moderately homogeneous systems, a good starting point

is to manually embed trace points within commonly-used li-

braries (e.g., RPC libraries) if available so that the e�ort of

adding them is incurred only once. System calls (e.g., forks,

which start concurrent activity, and joins, which synchronize

them) can be encapsulated by wrappers that add the necessary

trace points. In extremely heterogeneous systems, purely cus-

tom (i.e., manually added) instrumentation may be required,

but should be avoided if at all possible.

A promisingmethod that avoids developer e�ort in �nding

and instrumenting complex design patterns involves learn-

ing them directly from partially-ordered work�ows [12, 35].

�ough this approach has the potential to completely elim-

inate developer e�ort in heterogeneous (or homogeneous)

systems, the learned models learned may have a short shelf

life due to the fast-changing nature of production code.

4.2 Value-added trace points
Value-added trace points decorate work�ows with informa-

tion relevant to various management tasks. �ey are optional.

Examples include those embedded within individual func-

tions to allow for �ne-grained performance diagnosis or pro-

�ling and those embedded within various resource centers

(e.g., CPU, disk) to enable resource attribution. Adding value-

added trace points is o�en less challenging than adding propa-

gational trace points. �is is because adding them incorrectly

does not a�ect the basic correctness of generated work�ows

(i.e., what activity is deemed causally related and work�ow

structure). Table 3b describes the tradeo�s among approaches

to adding value-added instrumentation. Once again, usable

options depend upon the homogeneity of the system.

Dynamic instrumentation, which allows trace points to be

added at near arbitrary locations during runtime, is the most

powerful approach, as it would enable a wide range of man-

agement tasks without the need for the tracing infrastructure

to be manually modi�ed. However, it requires homogeneous

systems that are capable of this feature (e.g., those that sup-

port Hotpatching [54]). Programming frameworks can add

�ne-grained trace points during compile time.

In moderately homogeneous systems, the most widely ap-

Applicability Added via Allows Avoids
re-use dev. e�ort

Hom. Prog. framework 3 —
” Auto pattern match 3 —
Moderately Hom. Libraries 3
Extremely Het. Custom inst.

* Big-data analyses — 3

(a) Propagational trace points.

Applicability Added via Allows Avoids
re-use dev. e�ort

Hom. Dynamic 3 3
” Prog. framework 3 3
Moderately Hom. Existing logs 3 —
Extremely Het. Custom inst.

(b) Value-added trace points.
Table 3: Tradeo�s between adding propagational and value-
added trace points. �e mark (3) means the corresponding col-
umn’s goal is met. �e mark (—) means that it is somewhat satis�ed.
A blank space indicates that it is not met. �e mark * is a wildcard.



plicable method is to adapt existing machine-centric logging

infrastructures to provide value-added trace points. However,

at LightStep, we have observed that production logging in-

frastructures typically capture information at a coarser gran-

ularity than work�ow-centric infrastructures. For example,

at Google, work�ow-centric traces for Bigtable compaction

and streaming queries are far more detailed than the logs that

are captured for them [40]. We postulate this is because sep-

arating value-added trace points by work�ows increases the

signal-to-noise ratio of the generated data compared to logs,

allowing more trace points to be added.

5 Limiting overhead
Tracing infrastructures increase CPU, network, memory, and

disk usage. CPU usage increases because metadata and trace-

point records must be serialized and de-serialized (e.g., for

sendingmetadata with RPCs or persisting records to disk) and

because of the memory copies needed to propagate metadata

across boundaries. Over-the-wire message sizes increase as a

result of adding metadata to network messages (e.g., RPCs).

Memory usage increases with metadata size. Disk usage in-

creases if trace-point records must be persisted to storage.

Out-of-band execution and in-band execution of manage-

ments tasks a�ect resource usage di�erently and, as such, re-

quire di�erent techniques to reduce overhead. All of them

try to limit the number of trace-point records that must be

considered by the tracing infrastructure (i.e., persisted to disk

or propagated as metadata). While developing the revised ver-

sion of Stardust [44], we learned that a very common feature

in distributed systems—aggregation of work—can curtail the

e�cacy of some of these techniques and drastically in�ate

overheads when submitter causality is preserved. Aggregation

is commonly used to amortize the cost of using various re-

sources in a system by combining individual pieces of work

into a larger set that can be operated on as a unit. For example,

individual writes to disk are o�en aggregated into a larger set

to amortize the cost of disk accesses. Similarly, network pack-

ets are o�en aggregated into a single larger packet to reduce

the overhead of each network transmission.

�e rest of this section describes why aggregation can

stymie overhead-reduction techniques. It also describes com-

mon techniques for limiting overhead for out-of-band and

in-band execution and which ones are a�ected by aggregation.

5.1 Aggregation & submitter causality
Figure 4 illustrates why aggregation can severely limit the

ability of tracing infrastructures to reduce the number of trace

points that must be considered. It shows a simple example

of aggregating cached data to amortize the cost of a disk

write. In this example, a number of requests have written

data asynchronously to the distributed system, all of which

are stored in cache as latent work. At some point in time,

another request (shown as the “Trigger request”) enters the

system and must perform an on-demand eviction of a cached

item in order to insert the new request’s data (this could also

be a cleaner thread). �is request that triggers the eviction

aggregates many other cached items and evicts them at the

same time to amortize the cost of the necessary disk access.

When preserving submitter causality, all of the work done

to evict the aggregated items (shown as trace points with dot-

ted outlines) must be attributed to each of the original sub-

mitters. If the overhead-reduction mechanism has already

committed to preserving at least one of those original sub-

mitters’ work�ows (shown with circled trace points at their

top), all trace points below the aggregation point must be con-

sidered by the tracing infrastructure. Since many distributed

systems contain many levels of aggregation, the e�ect of aggre-

gation in limiting what trace points need to be considered can

compound quickly. In many systems, aggregation will result

in tracing infrastructures having to consider almost all trace

points deep in the system. In contrast, trigger causality is not

suspect to these e�ects as trace points below the aggregation

point need only be considered if the overhead-reduction tech-

nique has committed to preserving the work�ow that triggers

the eviction.

5.2 Out-of-band execution
Tracing infrastructures that execute management tasks out-of-

band primarily a�ect CPU, memory, and disk usage. Network

overhead is typically not a concern because metadata need

only increase RPC sizes by the size of a logical clock (as

small as 32 or 64 bits). To a �rst order approximation, the

overhead is a result of the work that must be done to persist

trace-point records. As such, these tracing infrastructures use

coherent sampling techniques to limit the number of trace-

point records they must persist to disk. Coherent sampling
means that either all or none of a work�ow’s trace points are

persisted. For example, Dapper incurs a 1.5% throughput and

16% response time overhead when sampling all trace points.

But, when sampling is used to persist just 0.01% of all trace

points, the slowdown in response times is reduced to 0.20%

and in throughput to 0.06% [45]. �ere are three options for

deciding what trace points to sample: head-based sampling,

tail-based sampling, and hybrid sampling.

Head-based coherent sampling: With this method, a ran-
dom sampling decision is made for entire work�ows at their

start (i.e., when requests enter the system) and metadata is

propagated alongwithwork�ows indicatingwhether to persist

their trace points.�e percentage of work�ows randomly sam-

Submitter-preserving

Considered
trace points

Trigger-preserving

Aggregating
component
(e.g., cache)

On-demand
eviction

Considered
workflow

Trigger
request

Figure 4: Trace points that must be considered as a result of pre-
serving di�erent causality slices.



pled is controlled by setting the work�ow-sampling percentage.
When used in tracing infrastructures that preserve trigger

causality, the work�ow-sampling percentage and the trace-

point-sampling percentage (i.e., the percentage of trace points

executed that are sampled by the tracing infrastructure) will be

the same. Due to its simplicity, head-based coherent sampling

is used by many existing tracing implementations [18, 44, 45].

Because of aggregation, head-based coherent sampling will

result in drastically in�ated overheads for tracing infrastruc-

tures that preserve submitter causality. In such scenarios, the

e�ective trace-point sampling percentage will be much higher

than the work�ow-sampling percentage set by developers.

�is is because trace points below the aggregation point must

be sampled if any work�ow whose data is aggregated is sam-

pled. For example, if head-based sampling is used to sample

only 0.1% of work�ows, the probability of sampling an indi-

vidual trace point will also be 0.1% before any aggregations.

However, a�er aggregating 32 items, this probability will in-

crease to 3.2% and a�er two such levels of aggregation, the

trace-point-sampling percentage will increase to 65%.

When developing the revised version of Stardust [44], we

learned of how head-based sampling can in�ate overhead

the hard way. Head-based sampling was the �rst feature we

added to the original Stardust [51], which previously did not

use sampling and preserved submitter causality. But, at the

time, we did not know about causality slices or how they

interact with di�erent sampling techniques. So, when we

applied the sampling-enabled Stardust to our test distributed

system, Ursa Minor [1], we were very confused as to why the

tracing overheads did not decrease. Of course, the root cause

was that Ursa Minor contained a cache near the entry point

to the system, which aggregated 32 items at a time. We were

using a sampling rate of 10%,meaning that 97% all trace points

executed a�er this aggregation were always sampled.

Tail-based sampling: �is method is similar to the previ-
ous one, except that the work�ow-sampling decision is made

at the end of work�ows, instead of at their start. Doing so al-

lows formore intelligent sampling that persists only work�ows

that are important to the relevant management task. Most im-

portantly, anomalies can be explicitly preserved, whereas most

of themwould be lost by the indiscriminateness of head-based

sampling. Tail-based sampling does not in�ate the trace-point

sampling percentage a�er aggregation events because it does

not commit to a sampling decision upfront. However, it can

incur high memory overheads because it must cache all trace

points for concurrent work�ows until they complete. Within

Ursa Minor [1], we observed that the largest work�ows can

contained around 500 trace points and were several hundred

kilobytes in size. Of course, large distributed systems can ser-

vice tens to hundreds of thousands of concurrent requests.

Hybrid sampling:With thismethod, head-based sampling
is nominally used, but records of all unsampled trace points

are also cached for a pre-set (small) amount of time. �is

allows the infrastructure to backtrack to collect trace-point

records for work�ows that experience correctness anomalies,

as they will appear immediately problematic. However, it is

not su�cient for performance anomalies, as their response

times can have a long tail.

In addition to deciding how to sample work�ows, develop-

ers must decide how many of them to sample. Many infras-

tructures choose to randomly sample a small, set percentage—

o�en between 0.01% and 10%—of work�ows [18, 44, 45]. How-

ever, this approach will capture only a few work�ows for small

workloads, limiting its use for them. An alternate approach

is an adaptive scheme, in which the tracing infrastructure dy-

namically adjusts the sampling percentage to always capture a

set rate of work�ows (e.g., 500 work�ows/second).

5.3 In-band execution
Tracing infrastructures that execute management tasks in-

band primarily increase CPU, memory, and network usage.

Disk is not a concern because these infrastructures do not per-

sist trace-point records. To a �rst-order approximation, over-

head is a function of the size of the metadata (logical clocks

and trace-point records) that must be carried as metadata. As

such, developers’ primary means of reducing overhead for

these infrastructures involves limiting metadata size.

One common-sense method for limiting metadata sizes

is to take extreme care to include as metadata only the trace-

point records most relevant to the management task at hand.

For example, Google’s Census [22] limits both the size and

number of �elds that can be propagated with a request, with a

worst-case upper limit of 64kB. By design, �eldsmay be readily

discarded by components in order to keep metadata within

allowable size limits. Pivot Tracing [34] leverages dynamic

instrumentation to include only trace-point records relevant

to user-speci�ed management tasks as metadata.

In addition to careful inclusion, tracing infrastructures

that execute tasks in-band use lossy compression and partial

execution to further reduce the size of metadata. Head-based

sampling could also be used.

Lossy compression: �is involves compressing the trace-
point records carried within metadata to make them smaller

with (perhaps) some loss in �delity. For example, Whodunit

compresses nested loops so that only one iteration of the outer-

most loop is carried as metadata [8].

Partial execution:�is involves greedily executing tasks as
soon as some minimum amount of data is available. Doing so

can reduce the amount of information that must be carried as

metadata. For example, Pivot Tracing [34] evaluates functions,

such as sum and multiply, within metadata as soon as possible

in the work�ow, so that only the result needs to be carried.

Regardless of which of the above techniques is used to

limit overhead, infrastructures that execute tasks in-band

will su�er from in�ated overheads due to aggregation when

preserving submitter causality. �is is because trace-point

records relevant to all submitters’ work�ows must be included

as metadata a�er the aggregation point. One technique that

can be used to limit metadata in�ation for some management



tasks is to map all submitters’ metadata to a single “aggregated

ID” and only carry this ID as metadata a�er aggregation. A

separate mapping must be kept between the aggregated ID

and submitters’ original metadata. Since more trace points

may be added as metadata a�er the aggregation event, partial

executions must operate both on the external map and post-

aggregation metadata.

6 Putting it all together
Based on the tradeo�s described in previous sections and our

experiences, this section lists the design choices we recom-

mend for work�ow-centric tracing’s key management tasks.

Our choices represent the minimum necessary for a tracing

infrastructure to be suited for a given task. Developers should

feel free to exceed our recommendations if they see �t. Also,

di�erent choicesmay be needed to accommodate (or leverage)

custom features of the distributed systems to which a tracing

implementation is to be applied. To provide guidance for such

scenarios, this section also shows previous implementations’

choices and speculates on reasons for divergences.

6.1 Suggested choices
�e italicized rows of Table 4 show our suggested design

choices for the key management tasks. �e table does not

include the causal model (e.g., trees or DAGs) because it can

be mostly be inferred from other design axes.

In general, we recommend that tracing infrastructures use

out-of-band execution whenever tasks require full work�ows

to be presented. �is avoids drastically in�ating RPC sizes.

We recommend tracing infrastructures use in-band execution

for tasks that do not require presenting full work�ows, as

various overhead-reduction techniques can be used to keep

metadata sizes small (e.g., lossy compression). Doing someans

management tasks are more easily executed online (i.e., close

to real time) and reduces the amount of data needed to

execute management tasks. In all of the cases in which we

recommend in-band execution, out-of-band execution could

be used instead. Doing so would allow work�ow-centric

tracing to be used with distributed systems that are extremely

sensitive to in�ated metadata sizes.

For instrumentation,we conservatively recommend adding

trace points within libraries and re-using logging infrastruc-

tures. Of the choices that mitigate developer e�ort, these two

are likely to be the most widely applicable.

Identifying anomalous work�ows: �is task involves
identifying rare work�ows that are extremely di�erent from

others so that diagnosis teams can analyze them. Since entire

work�ows must be preserved, we recommend out-of-band

execution. To help diagnose performance-related problems,

trigger causality must be preserved as they show all work done

on requests’ critical paths. Work�ow structure (i.e., forks, con-

currency, and joins) should also be preserved to identify

problems that result from excessive concurrency, insu�cient

concurrency, or excessive waiting for one of many concur-

rent operations to �nish. Tail-based sampling should be used

so that anomalies are not lost. In addition to the minimally-

necessary choices listed above, developers may �nd it useful

to preserve submitter causality and the contention-preserving

slice. Doing so would increase overhead, but would provide

insight into whether observed anomalies are a result of poor

interactions with another client or request.

Identifying work�ows w/steady-state problems: �is
task involves identifying and presenting work�ows that neg-

atively impact the mean or median of some distribution to

diagnosis teams. Such problematic work�ows are o�en per-

formance related. Design choices for it are similar to anomaly

detection, except that head-based sampling can be used, since,

even with low sampling rates, it is unlikely that problems will

go unnoticed. Note that if developers choose to additionally

preserve submitter causality or the contention-preserving

slice, tail-based sampling must be used. �is is necessary to

avoid in�ated overheads due to aggregation and to guarantee

that poorly interacting work�ows will be sampled.

Distributed pro�ling: �is task involves identifying slow
functions and binning function execution time by context (i.e.,

by unique calling stack). Since call stacks can be carried com-

pactly in metadata using lossy compression techniques [8],

we recommend in-band execution. Either submitter or trigger

causality can be preserved as bothwill create unique call stacks,

but we recommend the latter to avoid in�ating metadata sizes

due to aggregation. Call stacks do not preserve work�ow struc-

ture. We conservatively recommend custom instrumentation

for value-added trace points because existing logs may not

exhibit the per-function resolution needed for this task.

Meeting SLOs: �is task involves adjusting work�ows’ re-
source allocations so that jobs meet SLOs. Trigger causality

is necessary to identify work done on requests’ critical paths.

�is provides guidance about what resource allocations to

modify to increase their performance. Work�ow structure

should be preserved so that critical paths can be identi�ed in

the face of concurrency. We recommend in-band execution

since only critical paths (not full work�ows) need to be con-

sidered. Partial execution can be used to prune all concurrent

paths but the critical one at join points.

Resource attribution: �is task involves attributing work
done at arbitrary levels of the system to the original submitter.

It requires carrying client IDs or request IDs as metadata,

which can be done in-band, and preserving submitter causality.

Aggregation might result in extremely large metadata sizes

because many IDs might need to be carried as metadata. As

such, we recommend replacing individual client or request

IDs with an “aggregate ID” a�er aggregation events. A DAG

must be used as the causality model to capture aggregation

events when preserving submitter causality.

Dynamicmonitoring:�is task involvesmonitoring some
activity only if that activity is causally related to pre-conditions

at other components. Both the activity to monitor and the pre-

conditions are dynamically chosen at runtime.�is task is best



Design axes

Use case/name Execution support Causality slices Structure Trace points: P / V Overhead reduction

Identifying
anomalous work�ows

Out-of-band Trigger Yes Libs / Logs Sampling (T)

Pip [41] ” ” ” ” / Cust. None

Pinpoint [9] ” ” No ” / None ”

Mace [29] ” ” ” PF / PF ”

Identifying work�ows
w/steady-state problems

Out-of-band Trigger Yes Libs / Logs Sampling (H)

Stardust
‡
[44] ” ” ” ” / Cust. ”

X-Trace
‡
[18] ” ” ” ” / ” ”

Dapper [45] ” ” Forks / Conc. ” / ” ”

Pip [41] ” ” Yes ” / ” None

X-Trace [19] ” Trigger & TCP layers Forks / Conc. ” / ” ”

Pinpoint [9] ” Trigger No ” / None ”

Mace [29] ” ” ” PF / PF ”

Distributed pro�ling In-band Trigger No Libs / Cust. Lossy comp.

Whodunit [8] ” Submitter ” Taint tracking ”

Dapper [45] Out-of-band Trigger Forks / Conc. Libs / Cust. Sampling (H)

Meeting SLOs In-band Trigger Yes Libs / Cust. Partial exec. (prune)

Retro [33] ” Trigger + Submitter No Auto. / Dyn. Aggregate IDs

Resource attribution In-band Submitter No Libs / Cust. Aggregate IDs

Retro [33] ” Trigger + Submitter ” Auto. / Dyn. ”

Quanto [17] ” Submitter ” Cust. / N/A None

Stardust [51] Out-of-band ” Forks / Conc. Libs / Cust. ”

Dynamic monitoring In-band Depends Depends Libs / Dyn. Partial exec. (e.g., sum)

Pivot Tracing [34] ” Trigger Yes Auto / ” ”

Table 4: Suggested design choices for variousmanagement tasks and choicesmade by existing tracing implementations. Suggested choices
are shown in italics. Existing implementations’ design choices are qualitatively ordered according to similarity with our suggested choices. �e

choices indicated for tracing infrastructures we did not develop are based on a literature survey. Stardust‡ and X-Trace‡ denote the revised
versions of Stardust and X-Trace. P and V respectively denote propagational trace points and value-added ones. A ” indicates that the entry is the
same as the preceding row. PF refers to a uni�ed programming framework in which distributed systems’ components can be written and compiled.
Auto refers to automatically adding propagational trace points via pattern matching (e.g., as enabled by aspect-oriented programming [24]).
Dyn. refers to dynamically inserting value-added trace points (e.g., as enabled by aspect-oriented programming or Windows Hotpatching [54]).

served by in-band execution, to execute tasks online and limit

the data collected to that which is to be monitored.�e choice

of submitter or trigger causality depends on whether this task

will be used for resource attribution or performance purposes.

Dynamic instrumentation for value-added trace points allows

maximum �exibility to choose arbitrary pre-conditions and

activity to monitor. Existing logging infrastructures or custom

instrumentation could also be used at the cost of reduced �ex-

ibility; in this case, guidance on the what instrumentation to

use as pre-conditions and what to monitor could be provided

as a bitmap propagated as metadata.

6.2 Existing implementations’ choices

Table 4 lists how existing tracing infrastructures �t into the

design axes suggested in this paper. Tracing implementations

are grouped by the management task for which they are

most suited (a tracing implementation may be well suited

for multiple tasks). For a given management task, tracing

implementations are ordered according to similarity in design

choices to our suggestions. In general, implementations suited

for a particular management task tend to make similar design

decisions to our suggestions for that task. �e rest of this

section describes cases where our suggestions di�er from

existing implementations’ choices.

Identifying anomalous work�ows: We recommend pre-
serving full work�ow structure (forks, joins, and concurrency),

but Pinpoint [9] and Mace [29] cannot do so because they

use paths as their model for expressing causal relationships.

Pinpoint does not preserve work�ow structure because it is

mainly concerned with correctness anomalies. We also recom-

mend using tail-based sampling, but none of these infrastruc-

tures use any sampling techniques whatsoever. We speculate

this is because theywere not designed to be used in production

or to support large-scale distributed systems.



Identifying work�ows with steady-state problems: We
suggest that work�ow structure be preserved, but Dapper [45]

and X-Trace [19] cannot preserve joins because they use use

trees to express causal relationships. Dapper chose to use trees

(a specialized model) because many of their initial use cases

involved distributed systems that exhibited large amounts of

concurrency with comparatively little synchronization. For

broader use cases, recent work by Google and others [12,

35] focuses on learning join-point locations by comparing

large volumes of traces. �is allows tree-based traces to be

reformatted into DAGs that show the learned join points.

Both the revised version of Stardust [44] and the revised

version of X-Trace [18] were created as a result of modifying

their original versions [19, 51] to bemore useful for identifying

work�ows with steady-state-problems. Both revised versions

independently converged to use the same design. We initially

tried to re-use the original Stardust [51], which was designed

with resource attribution in mind, but its inadequacy for

diagnosis motivated the revised version. �e original X-Trace

was designed for diagnosis tasks, but we evolved our design

choices to those listed for the revised version as a result of

experiences applying X-Trace tomore distributed systems [18].

Meeting SLOs: We suggest preserving trigger causality
and work�ow structure, and using partial execution to prune

non-critical paths. Retro [33] preserves trigger and submitter

causality because it can be used to both help meet SLOs and

guarantee fairness. It does not preserve structure, as this was

not necessary for the SLO-violation causes we considered. It

uses aggregate IDs to limit overhead due to aggregation events.

Distributedpro�ling, resource attribution, anddynamic
monitoring: Most existing implementations either meet or
exceed our suggestions.We believeWhodunit [8] does not use

techniques to limit overhead due to aggregation because the

systems it was applied to did not have many such events. For

resource attribution, we suggest in-band execution, but the

original version of Stardust [51] is designed for out-of-band

execution and does not sample.�is mismatch occurs because

Stardust was also used for generic workload modeling, which

required constructing full work�ows [50], and because it was

not designed to support large-scale distributed systems.

We note that Pivot Tracing [34] and Retro [33] have the

potential to be used for all of the tasks that do not require

preserving full work�ows. �is is because they are used in ho-

mogeneous distributed systems that support aspect-oriented

extensions, which allow many design choices to be modi�ed

easily. Speci�cally, they can leverage aspects’ pattern matching

functionality to change the causality slice that is preserved

before runtime. �ey can also leverage aspects to dynamically

change what is instrumented during runtime—e.g., resources

for resource attribution or functions for distributed pro�ling—

and what mechanism is used for overhead reduction.

In Table 4, we do not include Pivot Tracing and Retro for

management tasks that would require them to be modi�ed.

Modifying Pivot Tracing and Retro to support out-of-band

analyses would require additional modi�cations, such as in-

clusion of a storage & re-construction component. Similar

�exibility could be provided by modifying Mace [29] and re-

compiling distributed systems written using it.

7 Future research avenues
We have only explored the tip of the iceberg of the ways in

which tracing can inform distributed-system design and man-

agement. One promising research direction involves creating

a single tracing infrastructure that can be dynamically con-

�gured to support all of the management tasks described in

this paper. Pivot Tracing [34] is an initial step in this direction.

�is section surveys other promising research avenues.

Reducing the di�culty of instrumentation: Many real-
world distributed systems are extremely heterogeneous, mak-

ing instrumentation extremely challenging. To help, black-box

and white-box systems must be pre-instrumented by vendors

to support tracing. Standards, such as OpenTracing [38], are

needed to ensure compatibility across the multiple tracing

infrastructures that will undoubtedly be used in large-scale

organizations. We need to explore ways to automatically con-

vert today’s prevalent machine-centric logging infrastructures

into work�ow-centric ones that propagate metadata.

Exploring new out-of-band analyses and dealing with
scale:�ese avenues include exploring adaptation of constraint-
based replay [11, 25] for use with work�ow-centric tracing and

exploring ways to semantically label, intelligently compress,

automatically compare, and visualize extremely large traces.

�e �rst could help reduce the amount of trace data that needs

to be collected for management tasks. �e second is needed

because users of tracing cannot understand large traces. Guid-

ance can be drawn from the HPC community, which has

developed sophisticated tracing and visualization tools for

very homogeneous distributed systems [20, 26, 37, 47].

Pushing in-band analyses to the limit: In-band execution
of tasks o�ers key advantages over out-of-band execution. As

such, we need to fully explore the breadth of tasks that can

be executed in-band, including ways to execute out-of-band

tasks in-band instead without greatly in�ating metadata sizes.

8 Summary
Key design decisions dictate work�ow-centric tracing’s utility

for di�erent management tasks. Based on our experiences

developing work�ow-centric tracing infrastructures, this pa-

per identi�es these design decisions and provides guidance to

developers of such infrastructures.

Acknowledgements: We thank our shepherd (Alvin Cheung), Michelle
Mazurek, Michael De Rosa, and GabeWishnie for their insights and feedback.

We thank LightStep and the members and companies of the PDL Consortium

(including Broadcom, Citadel, EMC, Facebook, Google, HP Labs, Hitachi,

Intel, Microso� Research, MongoDB, NetApp, Oracle, Samsung, Seagate,

Tintri, Two Sigma, Uber, Veritas, and Western Digital) for their interest,

insights, feedback, and support. �is research was sponsored in part by two

Google research awards, NSF grants #CNS-1117567 and #CNS-1452712, and by

Intel via the ISTC-CC. While at Carnegie Mellon, Ilari Shafer was supported

in part by a NSF Graduate Research Fellowship.



References
[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R. Ganger,

J. Hendricks, A. J. Klosterman,M.Mesnier,M. Prasad, B. Salmon,

R. R. Sambasivan, S. Sinnamohideen, J. Strunk, E. �ereska,

M. Wachs, and J. Wylie. Ursa Minor: versatile cluster-based

storage. FAST ’05.
[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed

systems of black boxes. SOSP ’03.
[3] P. S. Almeida, C. Baquero, and V. Fonte. Interval tree clocks: a

logical clock for dynamic systems. OPODIS ’08.
[4] Apache HTrace. http://htrace.incubator.apache.

org/.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. UsingMagpie

for request extraction and workload modelling. OSDI ’04.
[6] M. Burrows. �e Chubby lock service for loosely-coupled

distributed systems. OSDI ’06.
[7] Cassandra tracing. https://issues.apache.org/jira/

browse/CASSANDRA-10392.

[8] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit: transac-

tional pro�ling for multi-tier applications. EuroSys ’07.
[9] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,

and E. Brewer. Path-based failure and evolution management.

NSDI ’04.
[10] D. R. Cheriton and D. Skeen. Understanding the limitations of

causally and totally ordered communication. SOSP ’93.
[11] A. Cheung, A. Solar-Lezama, and S. Madden. Partial replay of

long-running applications. FSE ’11.
[12] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. �e

mystery machine: end-to-end performance analysis of large-

scale internet services. OSDI ’14.
[13] Compuware dynaTrace PurePath. http://www.compuware.

com.

[14] Distributed tracing workshop meeting, October 2015.

https://groups.google.com/forum/#!forum/
distributed-tracing.

[15] Distributed tracing workshop meeting, July 2016.

https://groups.google.com/forum/#!forum/
distributed-tracing.

[16] Performance instrumentation for Android apps. https:
//code.facebook.com/posts/747457662026706/
performance-instrumentation-for-android-apps/.

[17] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto: tracking

energy in networked embedded systems. OSDI ’08.
[18] R. Fonseca, M. J. Freedman, and G. Porter. Experiences with

tracing causality in networked services. INM/WREN ’10.
[19] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-

Trace: a pervasive network tracing framework. NSDI ’07.
[20] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and

B. Mohr. �e Scalasca performance toolset architecture. Concur-
rency and Computation: Practice and Experience, 22(6):702–719,
2010.

[21] S. Ghemawat, H. Gobio�, and S.-T. Leung. �e Google �le

system. SOSP ’03.

[22] Google Census. https://github.com/grpc/grpc/tree/
master/src/core/ext/census.

[23] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo,

T. Bergan, M. Musuvathi, Z. Zhang, and L. Zhou. Failure

Recovery: when the cure is worse than the disease. HotOS
’13.

[24] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. AOSD
’04.

[25] J. Huang, C. Zhang, J. Dolby, J. Huang, C. Zhang, and J. Dolby.

CLAP: recording local executions to reproduce concurrency

failures. PLDI ’13.
[26] K. E. Isaacs, A. Bhatle, J. Li�ander, D. Böhme, T. Gamblin,

M. Schulz, B. Hamann, and P.-T. Beremer. Recovering logical

structure from Charm++ event traces. SC ’15.
[27] S. P. Kavulya, S. Daniels, K. Joshi, M. Hultunen, R. Gandhi, and

P. Narasimhan. Draco: statistical diagnosis of chronic problems

in distributed systems. DSN ’12.
[28] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis.

libd�: practical dynamic data �ow tracking for commodity

systems. VEE ’12.
[29] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M.

Vahdat. Mace: language support for building distributed systems.

PLDI ’07.
[30] E. Koskinen and J. Jannotti. BorderPatrol: isolating events for

black-box tracing. EuroSys ’08.
[31] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM, 21(7), 1978.
[32] LightStep. http://lightstep.com/.

[33] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. Retro: Tar-

geted resource management in multi-tenant distributed systems.

NSDI ’15.
[34] J. Mace, R. Roelke, and R. Fonseca. Pivot Tracing: dynamic

causal monitoring for distributed systems.

[35] G.Mann,M. Sandler, D. Krushevskaja, S. Guha, and E. Even-dar.

Modeling the parallel execution of black-box services. HotCloud
’11.

[36] M. L. Massie, B. N. Chun, and D. E. Culler. �e Ganglia

distributed monitoring system: design, implementation, and

experience. Parallel Computing, 30(7), 2004.
[37] M. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez, J. Hendricks,

G. R. Ganger, and D. O’Hallaron. //Trace: Parallel trace replay

with approximate causal events.

[38] OpenTracing website. http://opentracing.io/.

[39] Personal communication with Google engineers (Sambasivan),

2011.

[40] Personal conversations with Google engineers (Sigelman), 2003-

2012.

[41] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. Shah, and

A. Vahdat. Pip: detecting the unexpected in distributed systems.

NSDI ’06.
[42] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and

A. Vahdat. WAP5: black-box performance debugging for wide-

area systems. WWW ’06.

http://htrace.incubator.apache.org/
http://htrace.incubator.apache.org/
https://issues.apache.org/jira/browse/CASSANDRA-10392
https://issues.apache.org/jira/browse/CASSANDRA-10392
http://www.compuware.com
http://www.compuware.com
https://groups.google.com/forum/#!forum/distributed-tracing
https://groups.google.com/forum/#!forum/distributed-tracing
https://groups.google.com/forum/#!forum/distributed-tracing
https://groups.google.com/forum/#!forum/distributed-tracing
https://code.facebook.com/posts/747457662026706/performance-instrumentation-for-android-apps/
https://code.facebook.com/posts/747457662026706/performance-instrumentation-for-android-apps/
https://code.facebook.com/posts/747457662026706/performance-instrumentation-for-android-apps/
https://github.com/grpc/grpc/tree/master/src/core/ext/census
https://github.com/grpc/grpc/tree/master/src/core/ext/census
http://lightstep.com/
http://opentracing.io/


[43] R. R. Sambasivan, I. Shafer, M. L. Mazurek, and G. R. Ganger.

Visualizing request-�ow comparison to aid performance diag-

nosis in distributed systems. IEEE Transactions on Visualization
and Computer Graphics (Proceedings Information Visualization
2013), 19(12), 2013.

[44] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whit-

man, M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diag-

nosing performance changes by comparing request �ows. NSDI
’11.

[45] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,

M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure. dapper-
2010-1. 2010.

[46] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and

R. N. Chang. vPath: precise discovery of request processing

paths from black-box observations of thread and network activ-

ities. USENIX ’09.
[47] N. R. Tallent, J. Mellor-Crummey, M. Franco, R. Landrum, and

L. Adhianto. Scalable �ne-grained call path tracing. ISC ’11.
[48] J. Tan, S. P. Kavulya, R. Gandhi, and P. Narasimhan. Visual, log-

based causal tracing for performance debugging of mapreduce

systems. ICDCS ’10.
[49] �e strace system call tracer. http://sourceforge.net/

projects/strace/.

[50] E. �ereska and G. R. Ganger. Ironmodel: robust performance

models in the wild. SIGMETRICS ’08.
[51] E. �ereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek,

J. Lopez, and G. R. Ganger. Stardust: tracking activity in a

distributed storage system. SIGMETRICS ’06/Performance ’06.
[52] Tracelytics. http://www.tracelytics.com.

[53] M.Wachs, L. Xu, A. Kanevsky, andG. R. Ganger. Exertion-based

billing for cloud storage access. HotCloud ’11.
[54] Introduction to Hotpatching. https://technet.

microsoft.com/en-us/library/cc781109(v=ws.10)
.aspx.

[55] W. Xu, L. Huang, A. Fox, D. Patterson, andM. Jordan. Detecting

large-scale system problems by mining console logs. SOSP ’09.
[56] Zipkin. http://zipkin.io/.

http://sourceforge.net/projects/strace/
http://sourceforge.net/projects/strace/
http://www.tracelytics.com
https://technet.microsoft.com/en-us/library/cc781109(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc781109(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc781109(v=ws.10).aspx
http://zipkin.io/

	Introduction
	Anatomy
	Management tasks
	Conceptual design choices
	Core software components
	Additional tracing components

	Preserving causal relationships
	Intra-request slices: basic options
	Intra-request slices: structure
	Inter-request slice options

	Adding trace points
	Trace points for metadata propagation
	Value-added trace points

	Limiting overhead
	Aggregation & submitter causality
	Out-of-band execution
	In-band execution

	Putting it all together
	Suggested choices
	Existing implementations' choices

	Future research avenues
	Summary

