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ABSTRACT
To better understand the challenges in developing effective cloud-
based resource schedulers, we analyze the first publicly available
trace data from a sizable multi-purpose cluster. The most notable
workload characteristic is heterogeneity: in resource types (e.g.,
cores:RAM per machine) and their usage (e.g., duration and re-
sources needed). Such heterogeneity reduces the effectiveness of
traditional slot- and core-based scheduling. Furthermore, some
tasks are constrained as to the kind of machine types they can use,
increasing the complexity of resource assignment and complicat-
ing task migration. The workload is also highly dynamic, varying
over time and most workload features, and is driven by many short
jobs that demand quick scheduling decisions. While few simplify-
ing assumptions apply, we find that many longer-running jobs have
relatively stable resource utilizations, which can help adaptive re-
source schedulers.

Categories and Subject Descriptors
D.4.7 [Operating systems]: Organization and design—Distributed
systems

General Terms
Measurement

1. INTRODUCTION
Consolidation of differing tenants’ processing demands into a

common shared infrastructure plays a central role in cloud comput-
ing. This has the advantages of statistical multiplexing of phys-
ical resource use and centralized asset management, as well as
workload-specific benefits, such as sharing of common datasets and
intermediate computational results. Nevertheless, consolidated en-
vironments present new resource management challenges. In par-
ticular, unlike traditional scientific and supercomputing environ-
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ments, cloud computing represents much higher diversity in work-
load profiles, spanning the patterns of scientific computing, elastic
long-running Internet services, data analytics of many scales, soft-
ware development and test, engineering optimization, and others.

Although there have been many proposals for new resource man-
agement approaches for cloud infrastructures [1, 12, 23, 25], and
effective resource management is a major challenge for the leading
cloud infrastructure operators (e.g., Google, Microsoft, Amazon),
little is understood about the details of the underlying workloads
and their real-world operational demands. To facilitate this un-
derstanding, Google recently released a substantial cluster usage
dataset to give researchers some visibility into real workloads [24].

We analyze this trace to reveal several insights that we believe
are important for designers of new resource scheduling systems in-
tended for multi-purpose clouds. Our analysis exposes and charac-
terizes a number of useful, and sometimes surprising, issues to be
faced by such schedulers, including:

Machine and workload heterogeneity and variability. Un-
like more traditional application and organization-specific clusters,
consolidated cloud environments are likely to be constructed from a
variety of machine classes, representing different points in the con-
figuration space of processing to memory to storage ratios. Several
generations of machines, with different specifications, are likely
to be encountered, as the underlying machine types evolve over
time with respect to economically attractive price-performance. A
subset of machines with specialized accelerators, such as graphics
processors, may also be available in limited numbers. Finally, as
the workload spans multiple organizations, it is likely to be inher-
ently more diverse in its resource demands than one from any sin-
gle organization. Should such a high degree of heterogeneity and
variability in workload demand be encountered, it will significantly
complicate the method by which units of resources are allocated to
achieve good utilization without excessive waiting for resources.

Highly dynamic resource demand and availability. The greater
the number of organizational entities that share a common comput-
ing infrastructure, each executing its own particular mix of tasks,
the more dynamic their aggregated demand and arrival patterns are
likely to be. Such an environment may be characterized by a large
dynamic range of resource demands with high variation over short
time intervals. This would have several scheduling consequences,
including rapid task scheduling decision making, revision of pre-
vious assignment decisions, and accommodation of dynamic re-
source requests from longer-running jobs that experience difficult
to predict interference for resources over time.



Predictable, but poorly predicted, resource needs. Because of
the high degree of heterogeneity and dynamism in the workloads,
one would expect that it would be difficult to achieve accurate vis-
ibility into future resource demands, thus further complicating the
resource allocation problem. Nevertheless, deeper patterns of re-
source usage may exist, for example, if long running tasks with
resource consumption patterns that can be learned form a signifi-
cant portion of the workload. This places a demand on resource
schedulers to maintain more sophisticated time-based models of
resource usage, at least for some tasks that can be characterized as
long running.

Resource class preferences and constraints. Task specifica-
tions may include constraints or preferences for particular classes
of machines on which they may run, to obtain machines with spe-
cific configurations or with specialized accelerators. Thus, the un-
derlying machines are not fully fungible, and there may be utiliza-
tion and task latency consequences when allocating a machine with
specialized capabilities to a task that does not need it (and con-
versely, when allocating a task able to exploit specialized capabili-
ties to a machine without them). Such preferences and constraints
further complicate the scheduling decisions.

As we shall see the remainder of the paper, these hypotheses hold
true for our analyzed Google trace. Section 2 introduces the termi-
nology of cloud resource allocation and related work. The analysis
of the trace along dimensions of heterogeneity and dynamicity are
addressed in Sections 3 and 4, respectively. We show that the trace
has a wider variety of scheduling requirements than are likely to
be handled by common schedulers. Section 5 focuses on what the
trace tells us about the predictability of resource usage. The im-
plications of resource preferences and constraints are addressed in
Section 6. Section 7 discusses our conclusions and future work.

2. BACKGROUND
Trace studies play an extensive role in understanding systems

challenges, including those facing schedulers. Since most previous
clusters have not been faced with the diverse workloads of multi-
purpose clouds, most cluster trace analyses report on more homo-
geneous workloads [20]. This section overviews prior work and the
Google trace analyzed in this paper.

Previous work. Most studied cluster workloads have fallen into
one of three broad categories:

• long-running services (example analyses: [2, 3, 16]): servers
(such as web servers) that require a certain amount of re-
sources (usually CPU time) to achieve acceptable performance
and run indefinitely;

• DAG-of-task systems (example analyses: [4, 11, 5]):
MapReduce[7]- or Dryad[10]-like systems that run many in-
dependent short (seconds to minutes) tasks that are assumed
to be CPU-bound or I/O-bound; and

• high-performance (or throughput) computing (example anal-
yses: [14, 27, 9, 15]): batch queuing systems that typically
run CPU-bound programs, can usually tolerate substantial
wait times, and often require many machines simultaneously
for a long period of time (hours to days).

This paper examines a workload that is a mix of these types; con-
sequently, it has a mix of their quirks. Other analyses of the same
workload include [13, 8, 26], which were conducted in parallel with
this work.

Each of these categories brings different challenges to a clus-
ter scheduler. For example, long-running interactive services have
external client loads, which they distribute among their instances

independently from the cluster scheduler, and are concerned with
metrics like instantaneous availability and tail request response times.
Though it may continuously monitor such applications, scheduler
activity is rare: demand is usually stable, and when it is not, the
necessary configuration changes do not require rescheduling most
instances of the service. The scheduler has plenty of time to mea-
sure the behavior of its long-running applications and few kinds of
behavior to understand. DAG-of-task systems, on the other hand,
may involve frequent cluster scheduler interactions, as interactive
data analyses are now common, making scheduler latency impor-
tant. Used primarily for data-parallel computation, such systems
are often scheduled assuming that each task will have similar re-
source needs, enabling approaches based on fixed-sized slots for
each machine and not bothering with on-line monitoring or migra-
tion. HPC-like environments often have infrequent cluster schedul-
ing, where the scheduler only acts as long-lived jobs start, but with
a focus on job runtimes and overall cluster utilization.

Existing cluster schedulers are not designed to cope with a large-
scale mixture of these and other application needs, let alone with
the additional challenges (e.g., extensive use of constraints [21])
not found in most current environments. Of course, Google must
have a scheduler for the system from which the Google trace data
was collected, but their ongoing effort to create a new scheduler [23]
suggests that new approaches are needed.

Google trace. The Google cluster trace captures a range of be-
haviors that includes all of the above categories, among others. The
“trace” consists of what could be considered several concurrent
traces for a month of activity in a single ∼12K machine cluster.
It includes a trace of all cluster scheduler requests and actions, a
trace of per-task resource usage over time, and a trace of machine
availability. The trace describes hundreds of thousands of jobs,
submitted by users. Each job is composed of one to tens of thou-
sands of tasks, which are programs to be executed on an available
machine. These tasks are not gang-scheduled, but are usually exe-
cuted simultaneously.

Each task is specified with various parameters, including prior-
ity, resource request (estimated maximum RAM and CPU needed),
and, sometimes, constraints (e.g., do not run on a machine without
an external IP address). These parameters span a wider range than
seen in traditional cluster workloads; we examine them in more de-
tail in later sections. For each task, the trace also indicates each
time it is submitted, assigned to a machine, or descheduled; these
records allow us to examine task and job durations and identify
unusual task and scheduler behavior. The trace also includes per-
assigned-task resource usage information every five minutes from
every machine.

The trace lacks precise information about the purpose of jobs and
configuration of machines. The trace does include identifiers for
jobs, user names, machine platforms, and configurations; however,
these identifiers have been obfuscated by the trace providers, so we
are only able to identify the distributions of job and user names
and machine characteristics across the trace. Thus, we cannot use
application or user names to infer what’s running. Instead, we will
determine application types from tasks’ scheduling parameters and
resource usage. Similarly, resource (RAM and CPU) information is
provided in normalized units, so we are able to accurately compare
resource usage, request and capacity measurements, but we cannot
report the exact number of cores or amount of memory available or
used on any machine.

Analysis of the Google cluster trace has also been conducted
independently by three other groups of researchers. Di et al. [8]
focus their analysis on comparing the Google trace characteristics
to those of Grid/HPC systems. Liu and Cho [13] study machine



Number of machines Platform CPUs Memory
6732 B 0.50 0.50
3863 B 0.50 0.25
1001 B 0.50 0.75

795 C 1.00 1.00
126 A 0.25 0.25

52 B 0.50 0.12
5 B 0.50 0.03
5 B 0.50 0.97
3 C 1.00 0.50
1 B 0.50 0.06

Table 1: Configurations of machines in the cluster. CPU and
memory units are linearly scaled so that the maximum machine
is 1. Machines may change configuration during the trace; we
show their first configuration.

properties and their lifecycle management, workload behavior, and
resource utilization. Zhang et al. [26] study the trace from the per-
spective of energy-aware provisioning and energy-cost minimiza-
tion, using it to motivate dynamic capacity provisioning and the
challenges associated with it.

3. HETEROGENEITY
The traced ‘cloud computing’ workload is much less homoge-

neous than researchers often assume. It appears to be a mix of
latency-sensitive tasks, with characteristics similar to web site serv-
ing, and less latency-sensitive programs, with characteristics sim-
ilar to high-performance computing and MapReduce workloads.
This heterogeneity will break many scheduling strategies that might
target more specific environments. Assumptions that machines or
tasks can be treated equally are broken; for example, no schedul-
ing strategy that uses fixed-sized ‘slots’ or uniform randomization
among tasks or machines is likely to perform well.

3.1 Machine types and attributes
The cluster machines are not homogeneous; they consist of three

different platforms (the trace providers distinguish them by indi-
cating “the microarchitecture and chipset version” [18]) and a va-
riety of memory/compute ratios. The configurations are shown in
Table 1. Exact numbers of CPU cores and bytes of memory are
unavailable; instead, CPU and memory size measurements are nor-
malized to the configuration of the largest machines. We will use
these units throughout this paper. Most of the machines have half
of the memory and half the CPU of the largest machines.

This variety of configurations is unlike the fully homogeneous
clusters usually assumed by prior work. It is also distinct from
prior work that focuses on clusters where some machines have fun-
damentally different types of computing hardware, like GPUs, FP-
GAs, or very low-power CPUs. The machines here differ in ways
that can be explained by the machines being acquired over time
using whatever configuration was most cost-effective then, rather
than any deliberate decision to use heterogeneous hardware.

In addition to the CPU and memory capacity and microarchi-
tecture of the machines, a substantial fraction of machine hetero-
geneity, from the scheduler’s perspective, comes from “machine
attributes”. They are obfuscated <key,value> pairs, with a total
of 67 unique machine attribute keys in the cell. The majority of
those attributes have fewer than 10 unique values ever used by any
machine. That is consistent with [21], where the only machine at-
tributes with possible values exceeding 10 were number of disks
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Figure 1: Normal production (top) and lower (bottom) priority
CPU usage by hour of day. The dark line is the median and the
grey band represents the quartiles.

and clock speed. In this trace, exactly 10 keys are used with more
than 10 possible values. 6 of these keys are used as constraints. One
of them has 12569 unique values — an order of magnitude greater
than all others combined, which roughly corresponds to the number
of machines in the cluster. Based on further analysis in Section 6
and [21], these attributes likely reflect a combination of machine
configuration and location information. Since these attributes are
all candidates for task placement constraints (discussed later), their
number and variety are a concern for a scheduler. Scheduler de-
signs can no longer consider heterogeneity of hardware an aberra-
tion.

3.2 Workload types
One signal of differing job types is the priority associated with

the tasks. The trace uses twelve task priorities (numbered 0 to 11),
which we will group into three sets: production (9–11), middle
(2–8), and gratis (0–1). The trace providers tell us that latency-
sensitive tasks (as marked by another task attribute) in the produc-
tion priorities should not be “evicted due to over-allocation of ma-
chine resources” [18] and that users of tasks of gratis priorities are
charged substantially less for their resources.

The aggregate usage shows that the production priorities repre-
sent a different kind of workload than the others. As shown in Fig-
ure 1, production priorities account for more resource usage than
all the other priorities and have the clearest daily patterns in usage
(with a peak-to-mean ratio of 1.3). As can be seen from Figure 2,
the production priorities also include more long-duration jobs, ac-
counting for a majority of all jobs which run longer than a day even
though only 7% of all jobs run at production priority. Usage at the
lowest priority shows little such pattern, and this remains true even
if short-running jobs are excluded.

These are clearly not perfect divisions of job purpose — each
priority set appears to contain jobs that behave like user-facing
services would and large numbers of short-lived batch-like jobs
(based on their durations and utilization patterns). The trace con-
tains no obvious job or task attribute that distinguishes between
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Figure 2: Log-log scale inverted CDF of job durations. Only the
duration for which the job runs during the trace time period is
known; thus, for example, we do not observe durations longer
than around 700 hours. The thin, black line shows all jobs; the
thick line shows production-priority jobs; and the dashed line
shows non-production priority jobs.

types of jobs besides their actual resource usage and duration: even
‘scheduling class’, which the trace providers say represents how
latency-sensitive a job is, does not separate short-duration jobs from
long-duration jobs. Nevertheless, the qualitative difference in the
aggregate workloads at the higher and lower priorities shows that
the trace is both unlike batch workload traces (which lack the com-
bination of diurnal patterns and very long-running jobs) and unlike
interactive service (which lack large sets of short jobs with little
pattern in demand).

3.3 Job durations
Job durations range from tens of seconds to essentially the entire

duration of the trace. Over 2000 jobs (from hundreds of distinct
users) run for the entire trace period, while a majority of jobs last
for only minutes. We infer durations from how long tasks are active
during the one month time window of the trace; jobs which are cut
off by the beginning or end of the trace are a small portion (< 1%)
of jobs and consist mostly of jobs which are active for at least sev-
eral days and so are not responsible for us observing many shorter
job durations. These come from a large portion of the users, so it is
not likely that the workload is skewed by one particular individual
or application. Consistent with our intuition about priorities corre-
lating with job types, production priorities have a much higher pro-
portion of long-running jobs and the ‘other’ priorities have a much
lower proportion. But slicing the jobs by priority or ‘scheduling
class’ (which the trace providers say should reflect how latency-
sensitive a job is) reveals a similar heavy-tailed distribution shape
with a large number of short jobs.

3.4 Task shapes
Each task has a resource request, which should indicate the amount

of CPU and memory space the task will require. (The requests are
intended to represent the submitter’s predicted “maximum” usage
for the task.) Both the amount of the resources requested and the
amount actually used by tasks varies by several orders of magni-
tude; see Figures 3 and 4, respectively. These are not just out-
liers. Over 2000 jobs request less than 0.0001 normalized units of
memory per task, and over 8000 jobs request more than 0.1 units
of memory per task. Similarly, over 70000 jobs request less than
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unit = max machine size.) These are the raw resource requests
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Figure 4: Log-log scale inverted CDF of instantaneous me-
dian job usage, accounting for both varying per-task usage and
varying job task counts.

0.0001 units of CPU per task, and over 8000 request more than 0.1
units of CPU. Both tiny and large resource requesting jobs include
hundreds of distinct users, so it is not likely that the particularly
large or small requests are caused by the quirky demands of a sin-
gle individual or service.

We believe that this variety in task “shapes” has not been seen in
prior workloads, if only because most schedulers simply do not
support this range of sizes. The smallest resource requests are
likely so small that it would be difficult for any VM-based sched-
uler to run a VM using that little memory. (0.0001 units would be
around 50MB if the largest machines in the cluster had 512GB of
memory.) Also, any slot-based scheduler, which includes all HPC
and Grid installations we are aware of, would be unlikely to have
thousands of slots per commodity machine.

The ratio between CPU and memory requests also spans a large
range. The memory and CPU request sizes are correlated, but
weakly (linear regression R2 ≈ 0.14). A large number jobs request
0 units of CPU — presumably they require so little CPU they can
depend on running in the ‘left-over’ CPU of a machine; it makes
little sense to talk about the CPU:memory ratio without adjusting
these. Rounding these requests to the next largest request size, the



CPU:memory ratio spans about two orders of magnitude.

3.5 Distributions
The job durations and total requested resources of jobs appear to

form a heavy-tailed distribution. We found that power law distribu-
tions are not good fits to the data (p-value� 0.1 for the Kolmogorov-
Smirnov test for goodness of fit, from the Monte Carlo method
recommended in [6]– clearly below the 0.10 threshold it recom-
mends). The same is true for task durations and the total requested
resources (CPU-days or memory-days) of tasks and jobs.

The median instantaneous usage of the largest 0.2% or so jobs
does appear to follow a power law distribution by this test. The tail
(top 20%) of the distribution of the usage (in terms of task-days
used) of ‘users’ (which can represent individuals or services) is also
a plausible power law fit. But generally, the overall distributions in
this trace are do not appear to match a power law or other simple
statistical distributions, like a lognormal, Weibull, or exponential
distribution.

For durations, there is a bias from our inability to observe when
jobs or tasks are running outside the month of the trace. Particu-
larly, this means that the durations we can observe are limited to the
time from when the job or task starts till the end of the trace time
period. We corrected for this by minimizing the K-S distance be-
tween the power law distribution with fixed cut-off and identically
cut-off observations. We selected only jobs or tasks that started
near the beginning of the trace to ensure that the fixed cut-off could
be large without introducing bias from tasks which start near the
end of the trace time window. The p-value for the K-S test was still
substantially below the threshold recommended in [6] for plausi-
bility of fit.

Job and task parameters, like the number of tasks in jobs or the
amount of CPU or memory requested for each task, are very dis-
crete and unsmooth, apparently due to human factors (see Section
5.4). This makes it unlikely that any common distribution will ac-
curately model these parameters.

Given the lack of a clear statistical fit, we believe that anyone
trying to evaluate a scheduler targeting workloads like this trace’s
would be best advised to sample directly. We believe, however,
that using a power-law-like heavy-tailed distribution for task usage
and task durations with similar distributions heavily-biased towards
powers-of-two and ten for user-set job parameters like task counts
and resource requests may approximate the observed behavior.

4. DYNAMICITY
Schedulers targeting workloads of long-running services may as-

sume that the cluster state changes slowly and, consequently, may
assume that considerable time or resources can be expended when
making scheduling or placement decisions. The mixed workload of
this trace violates those assumptions. The scheduler needs to make
decisions about where to place tasks tens of times per second and
even frequently needs to restart tasks. Even though there are long-
running programs whose placement could be carefully optimized,
these are not most of the requests to the scheduler; instead, most
of the requests are shorter tasks which the scheduler must process
quickly.

In this section, we take a closer look at the highly dynamic nature
of the Google cluster analyzed. The dynamicity is both in hardware
availability to the scheduler and the behavior of tasks.

4.1 Machine Churn
Researchers evaluating cluster schedulers which have dedicated

clusters usually assume machine downtimes are either negligible or
occur at a rate similar to hardware failure rates. In this cluster, ma-

chines become unavailable to the scheduler more frequently: about
40% of the machines are unavailable to the scheduler at least once.
The rate of unavailability corresponds to about 9.7 losses of avail-
ability per machine per year. Since hardware failures do not occur
so frequently, we suspect that most of the down times represent
machine maintenance, but the trace lacks information to confirm
this. Usually, these periods of unavailability last less than half an
hour, which is more consistent with planned maintenance events
than with hardware failures.

There are some indications of space-correlated downtime, in-
cluding tens of events where tens to around 100 distinct machine
losses occur within minutes of each other, but these do not account
for a majority of machine downtimes in the trace. At no point in the
trace does it appear that less than 98% of the machines are avail-
able, and over 95% of the time, more than 99% of the machines are
available.

4.2 Task and Job Churn
Since many tasks behave like long-running services, one might

expect the scheduler not to have much work from new tasks. This
is especially true since the trace providers indicate that MapReduce
programs execute separate jobs for the workers and the masters.
The cluster jobs serve as execution containers for many map/reduce
tasks. So, at least some common sources of what would be fine-
grained tasks are not directly managed by this scheduler. However,
Figure 5 shows that the scheduler must decide where (or whether)
to place runnable tasks frequently. In peak hours, the scheduler
needs to make hundreds of task placement decisions per second.
Even during quieter times, the average scheduling throughput is
several tasks per second.

There are two reasons for the frequency of scheduling events.
One is that there are many short-duration tasks being scheduled.
Another is that tasks terminate and need to be rescheduled; we will
call this resubmission. The task terminations preceding these re-
submissions are labeled by the trace providers: they are either fail-
ures (software crashes of a task), evictions (task ceased to fit on the
machine, due to competing workload, over-commitment of the ma-
chine, or hardware failures) or kills (underlying reason for a task’s
death is not available).

Resubmissions account for nearly half of task submissions to the
scheduler. However, a principal cause of resubmissions (14M of
the 22M resubmission events) is tasks which repeatedly fail and
are retried. Another major cause (4.5M events) of resubmissions is
evictions; as discussed later, most of these evictions are attributable
to machine configuration changes or other (higher priority) work-
load being started on the machine. For the remaining resubmissions
(4.1M events), the task is marked as killed; these may logically rep-
resent software failures or evictions, or other reasons, such as tasks
being restarted to change their configuration.

Crash-loops. Large spikes in the rate of task resubmissions seen
in Figure 5 can be attributed to ‘crash-loops’. These are cases
where the tasks of a job fail deterministically shortly after starting,
but they are restarted after these failures. Of the 14M task failures
recorded in the trace, 10M are in three crash looping jobs, each of
which has tens of thousands of distinct tasks and repeatedly failing
tasks. The length of these three large jobs ranges from around 30
minutes to around 5 days.

Jobs with large numbers of tasks are not the only ones that appear
to experience crash-loops. Approximately 2% of the memory-time
requested comes from jobs that experience more than 10 failures
per task over the course of the trace. Most of these failures occur
in lower priority jobs (which are probably used for development),
but there are some noticeable (but smaller in terms of task failure
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count) crash loops even at the production priorities.
Small jobs. Even though the scheduler runs large, long-lived

parallel jobs, most of the jobs in the trace only request a small
amount of a single machine’s resources and only run for several
minutes. 75% of jobs consist of only one task, half of the jobs run
for less than 3 minutes, and most jobs request less than 5% of the
average machine’s resources. These small job submissions are fre-
quent, ensuring that the cluster scheduler has new work to schedule
nearly every minute of every day.

Job submissions are clustered together (Figure 6 shows job inter-
arrival times), with around 40% of submissions recorded less than
10 milliseconds after the previous submission even though the me-
dian interarrival period is 900 ms. The tail of the distribution of
interarrival times is power-law-like, though the maximum job in-
terarrival period is only 11 minutes.

The prevalence of many very small interarrival periods suggest
that some sets of jobs are part of the same logical program and
intended to run together. For example, the trace providers indi-
cate that MapReduce programs run with a separate ‘master’ and
‘worker’ jobs, which will presumably each have a different shape.
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Figure 7: Moving average (over day-long window) of task evic-
tion rates, broken by priority.

Another likely cause is embarrassingly parallel programs being split
into many distinct single-task jobs. (Users might specify many
small jobs rather than one job with many tasks to avoid implying
any co-scheduling requirement between the parallel tasks.) A com-
bination of the two of these might explain the very large number of
single-task jobs.

Evictions. Evictions are also a common cause of task reschedul-
ing. There are 4.5M evictions recorded in the trace, more than
the number of recorded software failures after excluding the largest
crash-looping jobs. As would be expected, eviction rates are re-
lated to task priorities. The rate of evictions for production priority
tasks is comparable to the rate of machine churn: between one per
one hundred task days and one per fifteen task days, depending on
how many unknown task terminations are due to evictions. Most of
these evictions are near in time to a machine configuration record
for the machine the task was evicted from, so we suspect most of
these evictions are due to machine availability changes.

The rate of evictions at lower priorities varies by orders of mag-
nitude, with some weekly pattern in the eviction rate. Gratis pri-
ority tasks average about at least 4 evictions per task-day, though
almost none of these evictions occur on what appear to be week-
ends. Given this eviction rate, an average 100-task job running at
a gratis priority would expect about one task to be lost every 15
minutes. These programs must tolerate a very high “failure” rate
by the standards of a typical cloud computing provider or Hadoop
cluster.

Almost all of these evictions occur within half a second of an-
other task of the same or higher priority starting on the same ma-
chine. This indicates that most of these evictions are probably in-
tended to free resources for those tasks. Since the evictions occur
so soon after the higher priority task is scheduled, it is unlikely
that many of these evictions are driven by resource usage monitor-
ing. If the scheduler were measuring resource usage to determine
when lower-priority tasks should be evicted, then one would ex-
pect many higher-priority tasks to have a ‘warm-up’ period of at
least some seconds. During this period, the resources used by the
lower-priority task would not yet be required, so the task would not
be immediately evicted.

Given that the scheduler is evicting before the resources actually
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Figure 8: Moving hourly average of CPU (top) and mem-
ory (bottom) utilization (left) and resource requests (right).
Stacked plot by priority range, highest priorities (production)
on bottom (in red/lightest color), followed by the middle prior-
ities (green), and gratis (blue/darkest color). The dashed line
near the top of each plot shows the total capacity of the cluster.

come into conflict, some evicted tasks could probably run substan-
tially longer — potentially till completion, without any resource
conflicts. To estimate how often this might be occurring, we exam-
ined maximum machine usage after evictions events and compared
these to the requested resources of evicted tasks. After around 30%
of evictions, resources requested by the evicted tasks appear to re-
main free for an hour after the eviction, suggesting that these evic-
tions were either unnecessary or were to make way for brief usage
spikes we cannot detect in this monitoring data.

5. RESOURCE USAGE PREDICTABILITY
The trace includes two types of information about the resource

usage of jobs running on the cluster: the resource requests that ac-
company each task and the actual resource usage of running tasks.
If the scheduler could predict actual task resource usage more ac-
curately than that suggested by the requests, tasks could be packed
more tightly without degrading performance. Thus, we are inter-
ested in the actual usage by jobs on the cluster. We find that, even
though there is a lot of task churn, overall resource usage is stable.
This stability provides better predictions of resource usage than the
resource requests.

5.1 Usage overview
Figure 8 shows the utilization on the cluster over the 29 day

trace period. We evaluated utilization both in terms of the mea-
sured resource consumption (left side of figure) and ‘allocations’
(requested resources of running tasks; right side of figure). Based
on allocations, the cluster is very heavily booked. Total resource
allocation at almost any time account for more than 80% of the
cluster’s memory capacity and more than 100% of the cluster’s
CPU capacity. Overall usage is much lower: averaging over one-
hour windows, memory usage does not exceed about 50% of the
capacity of the cluster and CPU usage does not exceed about 60%.

The trace providers include usage information for tasks in five-
minute segments. At each five-minute boundary, when data is not
missing, there is at least (and usually exactly) one usage record for
each task which is running during that time period. Each record
is marked with a start and end time. This usage record includes a

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
hour-to-hour ratio

0.0

0.2

0.4

0.6

0.8

1.0

po
rt

io
n

of
ov

er
al

lu
til

iz
at

io
n

lo
w

er

CPU
memory

Figure 9: CDF of changes in average task utilization between
two consecutive hours, weighted by task duration. Tasks which
do not run in consecutive hours are excluded.
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Figure 10: CDF of changes in average machine utilization be-
tween two consecutive five minute sampling periods. Solid lines
exclude tasks which start or stop during one of the five minute
sampling periods.

number of types of utilization measurements gathered from Linux
containers. Since they are obtained from the Linux kernel, memory
usage measurements include some of the memory usage the kernel
makes on behalf of the task (such as page cache); tasks are expected
to request enough memory to include such kernel-managed mem-
ory they require. We will usually use utilization measurements that
represent the average CPU and memory utilization over the mea-
surement period.

To compute the actual utilization, we divided the trace into the
five-minute sampling periods; within period, for each task usage
record available, we took the sum of the average CPU and mem-
ory usage weighted by the length of the measurement. We did not
attempt to compensate for missing usage records (which the trace
producers estimate accounts for no more than 1% of the records).
The trace providers state that missing records may result from “the
monitoring system or cluster [getting] overloaded” and from filter-
ing out records “mislabeled due to a bug in the monitoring system”
[18].

5.2 Usage stability
When tasks run for several hours, their resource usage is gener-



0.0 0.5 1.0 1.5 2.0
duration (hours)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

po
rt

io
n

of
ov

er
al

lu
til

iz
at

io
n

lo
w

er

CPU
Memory

Figure 11: CDF of utilization by task duration. Note that tasks
running for less than two hours account for less than 10% of
utilization by any measure.

ally stable, as can be seen in Figure 9. Task memory usage changes
very little once most tasks are running. Memory usage data is based
on physical memory usage, so this stability is not simply a con-
sequence of measuring the available address space and not actual
memory pressure.

Because there are many small tasks, a large relative change in
CPU or memory usage of an individual task may not translate to
large changes in the overall ability to fit new tasks on a machine.
A simple strategy for determining if tasks fit on a machine is to
examine what resources are currently free on each machine and
predict that those resources will remain free. We examined how
well this would perform by examining how much machine usage
changes. On timescales of minutes, this usually predicts machine
utilization well as can be seen in Figure 10. Since most tasks only
run for minutes, this amount of prediction is all that is likely re-
quired to place most tasks effectively. Longer running tasks may re-
quire more planning, but their resource usage tends to mimic other
longer-running tasks, so the scheduler can even plan well for these
long-running tasks by monitoring running task usage.

5.3 Short jobs
One apparent obstacle to forecasting resource availability from

previous resource usage is the frequency with which tasks start and
stop. Fortunately, though there are a large number of tasks start-
ing and stopping, these short tasks do not contribute significantly
to usage. This is why, as seen in Figure 10, ignoring the many tasks
which start or stop within five minutes does not have a very large
effect. Figure 11 indicates that jobs shorter than two hours account
for less than 10% of the overall utilization (even though they repre-
sent more than 95% of the jobs). Hence, the scheduler may safely
ignore short-running jobs when forecasting cluster utilization.

Even though most jobs are very short, it is not rare for users to
run long jobs. 615 of the 925 users of the cluster submit at least
one job which runs for more than a day, and 310 do so outside the
gratis priorities.

5.4 Resource requests
Even though we’ve seen that resource requests in this trace are

not accurate in aggregate, perhaps this behavior only arises because
users lack tools to determine accurate requests or because users
lack incentives to make accurate requests. Thus, we are interested
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Figure 12: Histograms of job counts by task count (top), mem-
ory request size (middle) and CPU request size (bottom). Note
the log-scale on each y-axis and the log-scale on the top plot’s
x-axis. We speculate that many of the periodic peaks in task
counts and resource request sizes represent humans choosing
round numbers. Memory and CPU units are the same as Table
1. Due to the choice of x-axis limits, not all jobs appear on these
plots.

in how closely requests could be made to reflect the monitored us-
age.

Non-automation. Resource requests appear to be specified man-
ually, which may explain why they do not correspond to actual
usage. One sign of manual request specification is the uneven
distribution of resource request sizes, shown in Figure 12. When
users specify parameters, they tend to choose round numbers like
16, 100, 500, 1000, and 1024. This pattern can clearly be seen in
the number of tasks selected for jobs in this trace; it is not plausi-
ble that the multiples of powers of ten are the result of a technical
choice. We cannot directly identify any similar round numbers in
the CPU and memory requests because the raw values have been
rescaled, but the distribution shows similar periodic peaks, which
might represent, e.g., multiples of 100 megabytes of memory or
some fraction of a core. For memory requests, it is unlikely that
these round numbers accurately reflect requirements. For CPU re-
quests, whole numbers of CPUs would accurately reflect the CPU
a disproportionate number of tasks would use [19], but it seems
unlikely that the smallest ‘bands’ (at around 1/80th of a machine)
represent a whole number of cores on a 2011 commodity machine.

Request accuracy. Requests in this trace are supposed to in-
dicate the “maximum amount . . . a task is permitted to use” [18].
Large gaps between aggregate usage and aggregate allocation, there-
fore, do not necessarily indicate that the requests are inaccurate. If
a task ever required those CPU and memory resources for even a
second of its execution, then the request would be accurate, re-
gardless of its average consumption. Thus, resource requests could



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
jo

bs

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Memory

0.0 0.5 1.0 1.5 2.0
portion of request used

0.0

0.2

0.4

0.6

0.8

1.0
CPU

(a) unweighted

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
re

so
ur

ce
-d

ay
s

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Memory

0.0 0.5 1.0 1.5 2.0
portion of request used

0.0

0.2

0.4

0.6

0.8

1.0
CPU

(b) weighted

Figure 13: 13(a) shows the CDF of the maximum five-minute
usage sample relative to the resource request for the corre-
sponding job. The thin line represents the largest five-minute
sample within each job. The thick line discards outlier tasks
within a job; for each job, it shows the 99th percentile of the
largest five-minute usage measurements for each task. The top
graphs shows memory usage; the bottom graphs show CPU us-
age. 13(b) shows the same CDFs as 13(a), but with each job
weighted by its per-task request times the number of task-days
its tasks run.

be thought of as reflecting the maximum anticipated utilization of
CPU and memory for the requesting task.

Without the ability to rerun programs and understand their per-
formance requirements, we cannot find the “correct” resource re-
quest for applications, i.e., a request that reflects the maximum re-
sources that the tasks may need. We will make some guesses from
the actual usage we observe: we believe the maximum or some
high (e.g. 99th) percentile of the actual usage samples is a good
estimate of an appropriate resource request. Since the tasks in a
job are usually identical, we will assume that the resource request
needs to be suitable for each task within a job. To avoid being sen-
sitive to any outlier tasks, we will take the 99th percentile of the
estimates for each task as the estimate for resource request for all
tasks of the jobs.

The differences between the resource request we would estimate
from usage and the actual request is not what one would infer from
the aggregate usage and requests shown in Figure 8. One would
assume that jobs generally requested twice as much as they used
from the aggregate figures. But considering the high percentile us-
age as an estimate of the actual resource request, the typical request

‘accuracy’ is very different.
As shown in Figure 13(b), jobs accounting for about 60% of the

memory allocated fall within 10% of our estimate of their appropri-
ate request. The remaining jobs over-estimate their memory usage.
Memory requests rarely under-estimate their jobs’ memory utiliza-
tion by a large factor, probably because tasks are terminated if their
memory request is exceeded by too much. The memory overesti-
mates amount to about a fifth of the total memory allocation while
the total difference between the memory usage and allocation is
about 50% of the memory allocation. The remaining 30% can be
accounted for by the difference between high-percentile memory
usage and average memory usage within each job, discussed in the
next section.

CPU usage is not as constrained by the request as memory us-
age. Tasks both use much less or much more than CPU than they
request. To determine whether the CPU requests are usually too
high or too low, it is useful to weight each job by the size of its
per-task resource request multiplied by the number of task-days for
which its tasks run. The difference between the request with this
weighting is shown in Figure 13(b); the resulting CDF reflects how
much each unit of allocation is an over- or under-estimate of its
usage. As shown in Figure 13(b), with this weighting weighted,
the ‘middle’ job accurately estimates its CPU usage: about half the
weight is in jobs for which 99% of the tasks have no CPU usage
sample greater than the CPU request, and half in jobs with samples
strictly greater.

Outliers within tasks. Resource usage is not the same between
tasks in a job or over time within a job. As long as requests or
predictions need to represent maximum usage, this variation will
hamper the efficiency of any scheduler no matter how accurate the
requests or predictions are. In this trace, this variation seems to be
responsible for more of the inability of resource requests to predict
usage than the requests being poorly set by users.

Conceivably, if users understood their resource usage well enough
and the scheduler interface were rich enough, one might imagine
that users would identify these outliers explicitly. The system from
which the trace was extracted allows users to change their resource
requests over time and across tasks in a job, but this feature is rarely
used: jobs accounting for around 4% of memory allocated adjusted
their CPU request in this fashion, and jobs accounting for another
3% updated their memory request.

Based on the usage measurements in the trace, the maximum
of the usage samples are much larger than average usage — both
between tasks in a job and within single long-running tasks over
time. Even though memory usage is very stable overtime, these
outliers exists even for memory utilization: differences between
the maximum usage of tasks within jobs account for about 20% of
the total memory-hours requested (roughly the same as the appar-
ent inaccuracies of each job’s requests). Differences between the
maximum usage for a task and its typical usage account for another
18%. (Because maximum memory usage can slightly exceed the
memory allocation, the sum of these percentages can exceed the
aggregate difference between requested and used memory-hours.)

These large gaps are rare; for example, most of the difference
is the difference between the maximum and 99th percentile mea-
surements (even for memory usage). We suspect that some of these
outliers may be measurement error (e.g., page cache memory for
common system files being accounted to only one program) or spu-
rious (extra data being cached by the kernel that would be released
at no performance cost under memory pressure). However, similar
gaps exist for CPU usage where variability is less surprising. The
effect does not appear to arise solely from startup effects, as even
very long-running jobs experience these outliers.
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peated job utilization.

Even though these gaps are rare, they have substantial implica-
tions for schedulers. For many applications, if any one task in a
job can experience a usage spike then schedulers or users might
(perhaps correctly) assume that all tasks will eventually. Sched-
ulers that actually set aside resources for this spike will necessarily
limit their system utilization they can achieve. Instead, to achieve
high utilization in the face of usage spikes, schedulers should not
set aside resources, but have resources that can, in the rare cases
where necessary, be made available by, for example, stopping or
migrating fine-grained or low-priority workload.

5.5 Repeated Submissions
The frequency of job submissions suggests that some programs

are run repeatedly. Repeated jobs provide a natural opportunity
for resource prediction. If a workload is composed of primarily
of repeated jobs — such as periodic batch jobs or programs being
tweaked while being developed — than over time the scheduler can
allocate the job exactly the resources it requires by using statistics
collected during previous runs of the job.

We can approximately identify repeated jobs in this trace through
the “logical job name”, which, according the trace providers, will
usually remain the same across different executions of the same
program. The trace providers do not guarantee, however, that dif-
ferent programs cannot have the same logical job name. Based on

this information, we find that many jobs may represent repeated
programs.

There are around 40k unique names in the trace. The number of
jobs per name loosely follows a power-law-like distribution except
that some numbers of job repetitions are much more popular than
predicted. These peaks correspond to quantities such as the number
of days in the trace, so they may indicate some periodic jobs.

Frequently repeated jobs do not, however, account for very much
of the utilization of the cluster. As shown in Figure 14, jobs names
which repeat more than 5 times account for only about 30% of
the utilization, so the effect of any repeated-job-based prediction is
limited. More concerningly, the usage of repeated jobs is often not
very consistent; as shown in Figure 15. Without more information,
predictions based on this notion of repeated jobs are only likely to
be accurate within 25% for jobs accounting for less than half of
usage (in memory-hours) of all the repeated jobs.

6. TASK CONSTRAINTS
In general, a constraint is any specification from the user that

restricts the placement of a task, such as based on machine capa-
bilities or the relative placement of related tasks. These constraints
can be challenging for schedulers since they can leave the scheduler
with tasks for which sufficient machine resources are free but un-
usable until less-constrained tasks are moved, terminated, or finish.
Constraints can be hard or soft. Hard constraints divide the space of
possible resource assignments into feasible and non-feasible. Soft
constraints specify a preference gradient over members of the so-
lution space [22]. The Google trace provides hard constraints for
approximately 6% of all tasks submitted to the scheduler. These
constraints capture restrictions based on machine attributes and pre-
vent coscheduling of a job’s tasks on a single machine (known as
the anti-affinity constraint). While some soft constraints and other
types of hard constraints are supported by the scheduler [18], only
these two major categories of hard constraints were captured by the
trace: resource attribute based and anti-affinity restrictions.

6.1 General characterization
In the first category, task constraints are specified as (key, value,

operator) tuples over machine attributes. There are 17 unique at-
tribute keys used by task constraints. Of the 6% that specify con-
straints, most tasks do so over a single attribute; Table 2 shows
how many unique attributes each of the 6% uses in its constraint
specification.

task count unique constraint count
24019159 0

1368376 1
33026 2

2782 3
1352 4

30 5
6 6

25424731 17

Table 2: Task count by the number of unique attribute keys
specified in constraints.2

Operators used in the trace are =, 6=, <, and >. A machine can
be used for a task only if the machine attribute value corresponding
2The uniqueness in this case was determined by attribute key alone.
This ensures that “range” constraints (e.g., X > 2 and X < 5) and
attribute value updates are not double-counted.



constraint key task count job count user count
o/ 958203 51870 173
5d 307918 2310 68
ma 20144 1415 73

Table 3: The three most popular constraint keys by unique
task, job and user count.

to the key satisfies the binary relation specified by the operator and
the value provided in the constraint tuple. If the machine specifies
no value for an attribute, then 0 or the empty string is assumed. This
permits testing for the presence or absence of a particular attribute.
Note that multiple constraints against the same key are permitted
on a task. It is possible, for example, for a task’s constraints to
require that a machine attribute fall within a certain range.

According to [21], example attribute keys might be architecture,
number of cores, number of spindles, number of CPUs, kernel ver-
sion, CPU clock speed, Ethernet speed, and platform family. The
trace has all attribute keys anonymized, and numeric values obfus-
cated such that only the relative ordering is preserved. In some
cases, however, we were able to make reasonable guesses as to the
nature of a particular constraint key.

All attribute keys used by constraints can be uniquely identi-
fied by their 2-letter prefix. We will thus refer to them as such for
brevity. Table 3 shows the three most popular constraints. Two of
them have an order of magnitude more tasks specifying them than
any other constraint, and, counted by unique users, tasks, or jobs,
they always make the top 3. The most popular constraint, ‘o/’, is at
the top in all three categories. Interestingly, this constraint is only
ever used with a single operator—equality—and only one attribute
value—the empty string. Thus, it specifies all machines that do not
have this attribute key. There are only 142 machines that have this
attribute and are avoided by the specification of this constraint.

One aspect of constraint specification that we found surprising is
the relatively small number of unique (key, value, operator) tuples
specified, especially considering that values can be numeric and
operators include < and >. Excluding attribute key ‘GK’ (getting
separate treatment in 6.3), there are only 44 unique tuples. The only
constraint that has thousands of possible values specified in this
trace is the ‘GK’ constraint, which behaves like a unique machine
identifier. All other constraints have less than 10 unique values they
compare against.

The second class of hard constraints captured by this trace is a
type of anti-affinity constraint. Each task can specify that it cannot
run on the same machine as any other task belonging to the same
job. This constraint is specified as a boolean flag on each task,
separate from the other constraints, and will be discussed in greater
detail in Section 6.2.

6.2 Constraint-induced scheduling delay
We found the number of constraints poorly correlated with schedul-

ing latency. For example, mean scheduling delay across all tasks
with one constraint specified is similar to that of tasks with six con-
straints (546 and 507 seconds, respectively), while tasks with five
constraints see a 16 second mean scheduling delay. The reason for
that is that constraints vary widely in how “constraining” they are.
As an example, we’ve found at least 4 string-valued constraints that
match the whole cluster. For example, all constraints on attribute
key "rs", with the exception of attribute value "bf", match the whole
cluster. The mere presence or absence of constraints, however, is a
better predictor of delay. Unconstrained tasks see a mean schedul-
ing delay of 211 seconds, while constrained ones spend 46% more
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Figure 16: Task scheduling delay CDF broken down by both
priority and anti-affinity requirement. The dashed line and
“(with anti)” indicates those tasks with anti-affinity constraints.
Scheduling delay is higher for tasks with anti-affinity con-
straints for two most important classes in the trace.

time (308 seconds) in the queue, on average.
As shown in Table 4 and Figure 16, the absence of the special

anti-affinity constraint correlates with a decrease in scheduling la-
tency. The difference is a factor of 2 for production priority work-
load and a factor of 4 for gratis. The remaining priority groups
in aggregate do not follow the same trend, though. In Figure 16,
we’ve broken down the scheduling latency by priority group (color)
as well as anti-affinity (linestyle). It can be seen that, for a given
task scheduling delay greater than 2 seconds (for gratis workloads)
and 5 seconds for production, more anti-affinity constrained tasks
experience that delay than those without anti-affinity.

Thus, the presence or absence of either the anti-affinity constraint
or constraints specified over the set of machine attributes correlates
with higher or lower scheduling delay respectively. The difference
is not as dramatic as reported in [21] for attribute constraints, but
the anti-affinity requirement did have a factor of 2 to 4 effect.

6.3 Locality
One machine attribute was found to have the characteristics of a

unique machine identifier. We will refer to this key as ‘GK’ (con-
sistent with Section 6.1). First, there are 12569 unique values for
this attribute, which is only 14 less than the number of machines.
Second, in the trace, a machine’s value for GK never changes. Each
machine with the GK attribute has exactly one value throughout the
entire trace. Conversely, each unique value is ever associated with
exactly one machine. The 14 machines unaccounted for simply do
not have this attribute specified, i.e. there’s a one-to-one, but not
onto, mapping from the set of GK values to the set of machines.

The number of unique values that the GK attribute was used with
as a constraint is three orders of magnitude greater than the num-
ber of unique values for all other unique (attribute, operator) pairs
combined. We counted 5977 unique values used with the GK con-
straint and equality operator, but all other constraints had fewer
than 10 unique values.

These three observations lead us to conclude that the GK at-
tribute is used as a machine location identifier. We will refer to it as



no anti-affinity with anti-affinity
Priority task count delay (s) task count delay (s)

0-1 28002936 233.49 260809 892.19
2-8 14148983 244.19 2945288 11.40

9-10 1558255 5.06 80861 13.19

Table 4: Anti-affinity and priority as predictors of scheduling
delay.

a locality constraint. It was used by 17% of 253 users that specified
constraints, by 1.8% of constrained tasks, and 0.7% of constrained
jobs. Although not wide-spread, it is not specific to one or a few
jobs, users, or tasks; tens of users, hundreds of jobs, and tens of
thousand of unique tasks used the GK locality constraint. In addi-
tion to equality tests, 5 unique users used the GK constraint with a
6= test, explicitly avoiding 4 unique machines.

Even though the reasons for specifying locality are not available
in this trace, the number of unique tasks (24854) that use it suggests
that it was performance-related. Hypothetical examples might in-
clude cache, memory, loaded binary, or disk locality. This locality
constraint, as all the others, was specified as a hard constraint. If
our hypothesis is true, and this is indeed a performance-related lo-
cality constraint, its specification as a hard constraint could be sub-
optimal. Specifically, it poses an interesting research question of
how to trade off constraint-induced scheduling latency for runtime
performance improvements [22]. The consequences of specifying
locality preferences as hard constraints versus a placement prefer-
ence is an interesting question for further exploration.

7. CONCLUSIONS
Analysis of Google trace data exposes a challenging set of con-

sequences of consolidation, for which new resource management
approaches will likely be necessary. The most notable character-
istic, seen in almost every aspect, is heterogeneity: the resources
(e.g., cores:RAM per machine) and, especially, the tasks executed
(e.g., duration and resources needed) vary widely, making popular
simplifications (e.g., slots) unsuitable. Some tasks also come with
constraints on which machine types are suitable, increasing the im-
pact of the heterogeneity and creating concerns with greedy sched-
ulers that are unable to efficiently migrate executing tasks. The
workload is also quite dynamic, varying over time on most dimen-
sions, driven in part by many short jobs for which quick scheduling
will be important. While few simplifying assumptions appear to
hold, we do find that many longer-running jobs have relatively sta-
ble resource utilizations, which can help adaptive resource sched-
ulers. Overall, we believe that the observations arising from our
analysis confirm the need for new cloud resource schedulers and
also provide useful guidance for their design.
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