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Abstract

The Apache Hadoop framework has rung in a new era in
how data-rich organizations can process, store, and analyze
large amounts of data. This has resulted in increased potential
for an infrastructure exodus from the traditional solution of
commercial database ad-hoc analytics on network-attached
storage (NAS). While many data-rich organizations can afford
to either move entirely to Hadoop for their Big Data analytics,
or to maintain their existing traditional infrastructures and
acquire a new set of infrastructure solely for Hadoop jobs,
most supercomputing centers do not enjoy either of those
possibilities. Too much of the existing scientific code is tailored
to work on massively parallel file systems unlike the Hadoop
Distributed File System (HDFS), and their datasets are too
large to reasonably maintain and/or ferry between two distinct
storage systems. Nevertheless, as scientists search for easier-
to-program frameworks with a lower time-to-science to post-
process their huge datasets after execution, there is increasing
pressure to enable use of MapReduce within these traditional
High Performance Computing (HPC) architectures.

Therefore, in this work we explore potential means to
enable use of the easy-to-program Hadoop MapReduce frame-
work without requiring a complete infrastructure overhaul from
existing HPC NAS solutions. We demonstrate that retaining
function-dedicated resources like NAS is not only possible,
but can even be effected efficiently with MapReduce. In our
exploration, we unearth subtle pitfalls resultant from this mash-
up of new-era Big Data computation on conventional HPC
storage and share the clever architectural configurations that
allow us to avoid them. Last, we design and present a novel
Hadoop File System, the Reliable Array of Independent NAS
File System (RainFS), and experimentally demonstrate its
improvements in performance and reliability over the previous
architectures we have investigated.

I. INTRODUCTION

Cluster computing specialized for processing massive vir-
tual and physical sensor data, one definition of the emerging
Big Data vertical, arose from internet services computing,
especially the MapReduce [16], Google File System [19], and
BigTable [15] tools and their open source siblings, Hadoop
[4], its distributed file system (HDFS) [11], and HBase [14],
respectively. These systems were developed with a specific
system model: identical cost-optimized nodes containing all
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the compute and storage available to the cluster, simplified
semantics tailored to target applications, and the expectation
of frequent failures [19]. With this heritage, interoperation
with systems and tools from other environments such as high
performance computing (HPC) can not be taken for granted,
including traditional HPC storage. Because HPC computing
systems are of comparable scale to Big Data clusters, it is
particularly interesting to be able to support both types of
applications using existing HPC storage for convenience and
load sharing, if not consolidation for lower associated costs.

With the emergence of resource allocators like Mesos [21]
and Yarn [2], a Big Data cluster can dynamically distribute
resources between different parallel program schedulers such
as Hadoop or HPC’s ubiquitous Message Passing Interface
(MPI) tools [18]. This enables a sharing of clusters arising
from the needs of internet services and those arising from
the needs of high performance computing. Switching a set
of nodes from executing Hadoop programs to executing MPI
programs is easy; its just stopping and launching a set of
user-level binaries. However, storage solutions for Big Data
frameworks differ widely from that of traditional HPC. For
example, HDFS stores write-once files that can only have
one writing process, while HPC parallel file systems such as
PVES [22], Lustre [6], GPFS [26], and PanFS [28] support
concurrent writes to the same file from thousands of processes.
Further, HDFS was designed to store all data in the local
disks of compute nodes, using replication for fault tolerance,
and to interface to its servers through library (Java class)
plugins. Parallel file systems, on the other hand, typically
store all data in external storage systems, using RAID erasure
coding for fault tolerance, and access servers through a Virtual
File System (VFS) kernel module in each host. Therefore, if
data is stored in the native format of one, it is not easily
accessible to the other and copying is required between the
storage mediums; with terabytes to petabytes of data the copy
operation itself, not to mention the egregious amounts of
wasted capacity, becomes prohibitively expensive.

A. The NAS and HPC Narrative

Nevertheless, due to the attractiveness of the solutions in
the Big Data space, many organizations have acquired or put
aside a separate set of nodes for exclusively Hadoop compute
and storage and have suffered through the cost of capacity
waste and expensive copies. Doing so may not be economically
or tractably possible due to the huge datasets in traditional
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HPC NAS storage, but even if it were, the scattering of
storage throughout the compute nodes comes with a number
of drawbacks, which motivate our effort to seek consolidated
compute for HPC and Big Data computing atop a NAS system:

e Loss of Infrastructure Consolidation: Unlike tradi-
tional POSIX filesystems, it is non-trivial to execute
a variety of applications on HDFS without adapting
them to its specific semantics and interface.

e  Forced Import/Export: Sharing data between HDFS
and traditional storage requires an import or export,
wasting storage and network resources.

e ]/O Performance Degradation: For more typical work-
loads I/0 performance degrades since Hadoop is tuned
for performance on large datasets.

o Loss of High-Availability: The Hadoop NameNode is
a single point of failure and requires administrative
intervention when downed.

e No Modification of Files: It is impossible to modify
previously written data, as HDFS is a write-once-read-
many distributed file system.

o [Inefficient Compute-Storage Coupling: When an HDD
fails, system administrators may be forced to power
down the node or at least restart Hadoop services,
resulting in loss of computational resources.

While we argue these reasons give credence to even
considering NAS for use under MapReduce, we admit there
are other approaches possible in exploring solutions to this
problem, such as adapting Hadoop to more efficiently handle
scientific problems as recent research has attempted [12], [13].
Therefore, it is important to pause here and clarify that we
attack it from the very specific narrative that existing traditional
HPC architecture is in-place already. Specifically, we make
the following key assumptions: First, the HPC compute is
already in place and tuned to efficiently operate with discrete,
high-performance NAS storage. Second, the HPC applications
developed over many years, which run on these systems have
been written in a combination of C or Fortran and MPI
to maximize performance for their extensive executions and
presume POSIX or near-POSIX semantics, making wholesale
transition to MapReduce and a pure Hadoop environment
highly intractable. We argue these assumptions reflect the
reality of most supercomputing centers in the world today.

This narrative and its assumptions are critical to point
out so that it is clear experimentally comparing MapReduce
atop NAS against traditional Hadoop installations would be
both inappropriate and discordant with our theme — we are
not attempting to prove traditional HPC nor a converged
architecture is the way of the future for HPC. Our goal in
this work is to show, if you presume the existence of high-
performance NAS storage and compute nodes with limited
storage, that using a Big Data computation framework such
as Hadoop atop this NAS storage is not only possible, but,
if cleverly configured, can be efficient and thereby expedite
time-to-science for post-execution analytics.

B. Contributions

In this work we seek to explore possible architectures
that allow Hadoop MapReduce to run alongside traditional

POSIX applications and against a consolidated storage system
provided via NAS. Our first contribution towards this effort is
a thorough exploration of the following three architectural ar-
rangements that use existing software solutions to accomplish
the aforementioned goal:

1)  HDFS as a Client Service: As HDFS employs node-
local VFS to store chunks, reconfiguration can replace
node-local storage with remote NAS storage.

2) HDFS as a Wire Protocol: Alternatively, because
HDFEFS is a client-server model with a network proto-
col for all communication, it could also be treated as a
Network-Attached Storage (NAS) protocol like NFS
[17] or CIFS [20], with the server running within the
NAS system itself.

3) No HDFS: While HDFS requires MapReduce appli-
cations to efficiently operate on its data, MapReduce
will efficiently operate on non-HDFS data if config-
ured correctly, so skipping HDFS entirely and going
directly to NAS is possible.

In each of the above architectures we thoroughly analyze
the impact the arrangement has on reliability and experimen-
tally demonstrate the effect that each has on application perfor-
mance. Finding the above solutions satisfactory yet suboptimal,
our second contribution is the design and development of
a new Hadoop FileSystem interface class. Note that Hadoop
applications perform I/O via a FileSystem class which can
be replaced. Further, alternative FileSystem implementations
to HDFS are available for communicating to Amazon S3 [1],
CloudStore [5] and PVFES [27].

Our novel file system, the Replicating Array of Independent
NAS File System (RainFS), overcomes all of the major issues
we discovered. As we had done with the three more standard
approaches above, we analyze and evaluate RainFS along the
dimensions of reliability and performance. We experimentally
demonstrate the performance advantages of RainFS to be as
high as 127% for write-intensive workloads and 217% for
read-intensive workloads when solely utilizing erasure-coding
reliability mechanisms. This superiority continues when we
combine replicating and erasure coding reliability mechanisms,
demonstrating as high as 254% for write-intensive workloads
and 210% for read-intensive workloads. In all tests performed,
RainFS performed as well or better than all other architectures
tested, while providing reliability guarantees exceeding any of
the architectures which perform comparably to it.

II. BACKGROUND
A. Overview of HDFS

When Google introduced its MapReduce framework [16]
in 2004, a restructuring of large scale data analysis was spurred
with the most notable open-source implementation of Google’s
framework being Hadoop [4]. The Hadoop sub-projects we
utilize in this work are Hadoop MapReduce, Hadoop YARN,
and the Hadoop Distributed File System (HDFS). MapReduce
allows users to write parallel programs that are automatically
broken into Map and Reduce tasks and executed in parallel
within a distributed environment. YARN allows multiple re-
source management and scheduling mechanisms to co-exist
(MapReduce, MPI, etc.) in one managed cluster. HDFS, taking
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Fig. 1: Flow of I/O from MapReduce tasks, through HDFS,
and eventually to each nodes local HDD.

its initial specification from the Google File System [19],
makes distributed storage accessible to MapReduce programs,
and is tuned to perform well for local hard-disk-drives (HDDs)
in the same cluster as the computation. This architecture is now
referred to as Converged Storage. Note that converged storage
breaks from previous architectures that separated processing
from storage, normally taking the form of commercial RDBMS
or MPI atop NAS systems.

Hadoop MapReduce and HDFS have been shown to scale
to thousands of nodes, millions of files and petabytes of storage
[8]. HDFS provides double-disk failure tolerance via file repli-
cation, out-of-band metadata access, is designed in Java for
platform independence, supports Unix-style file permissions,
and automatic capacity balancing between nodes. Hadoop has
been adopted by many organizations, some of the most notable
being Yahoo!, Facebook, Twitter, and LinkedIn.

1) Replication in HDFS: HDFS achieves double-disk fail-
ure tolerance by replicating a file across multiple nodes (and
therefore distinct HDDs). The process, shown in Figure 1,
proceeds in the following manner: First, contact the NameNode
for file creation (for clarity, communications with the NameN-
ode are excluded from all diagrams). A response will provide
the locations to write each copy and requesting Node A will
begin concurrently writing its first copy to the local disk and its
second copy over the network to Node B. The NameNode will
attempt to specify a rack-local Node B to take advantage of
higher-performance intra-rack communication, and specifies a
rack-remote Node C to provide rack-failure tolerance. Node B
concurrently writes to its local disk and pipelines that replica
to the last destination, Node C, referred to as replication
pipelining in HDFS. It is intended to share the replicating work
with another node (B) and decrease the total time to replicate.

III. ARCHITECTURES EXPLORED

We evaluate three architectural options regarding where the
DataNode (DN) daemons are located; we examine running
them on the client node as in typical Hadoop usage, running
them on the nodes within the NAS system (as if HDFS were a
wire-protocol like NFS or CIFS), and bypassing DN daemons
altogether, as shown in Figure 2.

The simplest manner in which one can utilize the Hadoop
framework with NAS is to specify NAS mount points instead
of paths to local storage. As can be seen in Figure 2a, this
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Fig. 2: Flow of writes in the different architectures we explore,
shown with a replication level of 2 for all but Figure 2c,
which relies on internal redundancy. Dashed arrows signify
communication that is purely network overhead, and grayed
out nodes indicate that they have no role in the writing of the
file from Node A.

architecure is the most similar to the traditional HDFS setup
shown in Figure 1 since the DN daemon still runs within a
client node. Hadoop will attempt to write to and read from
these paths and, finding that it can do so, will happily begin to
use it as if it were a local drive. However, as a side-effect of
HDFS believing this is a local drive, one will have to make sure
to provide unique paths within the mount-folder for each node
to use or else nodes may accidentally corrupt each other’s files.
As we later show, while easy to setup and get started with, this
method has serious reliability and performance short-comings.

The second manner we explore using Hadoop on NAS is to
move the DN out from each client and to run it directly on NAS
nodes. In this architecture we specify, within the NAS nodes,
paths to the mount-point(s) for the remaining NAS slaves so
that incoming data to the node can be sent via these mounts
to the individual storage nodes. This data flow is depicted in
Figure 2b. However, forcing all of the data both for reads
and writes through these nodes creates serious performance
bottlenecks, as we experimentally demonstrate later.

Our third option is to completely avoid using HDFS,
directing MapReduce tasks to access the underlying NAS
mounts as if locally available to the system. One large caveat
is demarcated in Figure 2c — the underlying NAS storage must
either be a single system or multiple systems that provide



federating services, such that the exposed namespace is unified
and the NAS systems transparently achieve striping among
themselves. This requirement is an artifact of MapReduce jobs
being designed to operate on a single path, rather than a series
of paths because HDFS is presumed to be in use. In order to
fully remove HDFS, these NAS systems must expose a single
namespace, provide reliability mechanisms, and provide load
and capacity balancing.

IV. RELIABILITY ANALYSIS

Reliability guarantees and the means by which these guar-
antees are kept vary between NAS systems and HDFS. In this
work we consider the following fault model:

e  Failure of a Disk: The disk is the most basic unit of
storage, and is the most common part to fail.

e Failure of a Rack: Inability to get to an entire
rack (e.g. top-of-rack network failure) or destruction
of an entire rack of storage leads to the transient
or permanent failure of an entire rack, and storage
systems must provision for such failures.

To ease discussion, we use the term failure domain to
refer to the range of physical resources that lose data upon
failures greater than what it can tolerate. The trade-offs when
considering the size of a failure domain tends to be a perfor-
mance/reliability trade-off; large domains (across many NAS
systems) allows for high-bandwidth access to single files since
many disks can simultaneously help in the access, whereas
small domains (perhaps one domain per NAS) reduces the
chances of concurrent failure but have segmented namespaces
and therefore fewer disks can help for a single file access.

A. Failure in NAS

To continue to operate upon failure of one or more disks
in a NAS system, RAID (i.e. erasure coding) is typically
employed, which can recover from a defined maximum number
of concurrent disk failures based on the RAID level.

To handle failure of network and power components of the
storage system that would otherwise result in inaccessibility of
an entire rack, NAS systems employ redundant hardware (e.g.,
redundant network interface cards and power supply units).

B. Failure in Hadoop

HDES provides tolerance to individual disk failure in a
similar but nuanced manner when compared to traditional
erasure coding done in NAS systems. In effect, HDFS fault
tolerance mimics declustered RAID1 with copies total. By
replicating every file created on distinct HDDs, this assures that
upon failure of a drive another copy will remain. The location
and health of all replicas is managed by the NameNode.

To handle failures of an entire rack (caused by inacces-
sibility or physical damage) HDFS still employs replication,
but it relies on knowledge of the topology of the HDDs to
assure resilience. By assuring that at least one replica exists in
a separate rack than the original copy, HDFS provides single-
rack failure tolerance. The specific layout and flow of these
replicas was diagrammed and can be referenced in Figure 1.

C. Combining the Architectures

We now consider how each of the proposed architectures
placed atop NAS handle failure. When we report “failure
tolerance of X disks”, we are referring to the maximum X
which can be tolerated, no matter which specific X disks fail.

Let us first consider placing the DN on the client node
and configuring paths to NAS mounts. As mentioned, HDFS
assumes each time it copies a file, it is in a totally separate
disk (and therefore, failure domain), which will not be true if
each client node sees paths to all NAS systems. When given
multiple paths a DN will randomly select one of the paths for
writing the file to load balance as this normally doesn’t matter
(typically each path is a discrete, local HDD). However, when
DN-on-client points at NAS paths, we risk sending multiple
replicas to the same NAS.

However, we discovered that achieving a replication level
of two is safely possible by giving all of the clients in a given
rack access solely to the single NAS system in the same rack
(and thereby a single failure domain), and providing HDFS the
topology of the system such that it knows all those clients are
in the same rack. HDFS will therefore immediately attempt
to make the second replica outside of the rack, assuring that
the two copies are in two separate NAS systems. However, at
triplication and beyond, Hadoop will attempt to create a rack-
local second replica, and therefore duplication is the highest
level of replication possible when using HDFS on NAS. This
limits the possible reliability schemes as presented in Table I.

Moving to the DN on the NAS node architecture, one will
see that this no longer suffers from the replication level ceiling
restriction as discovered with the last architecture. This is a
result of placing a single DN on each NAS node; since we only
have a single NAS system for each rack, there is a one-to-one
mapping of DN to rack and therefore accidental duplication to
the same rack becomes impossible. This allows for replication
up to the number of NAS systems, achieving a comparatively
wider range of reliability scenarios, shown in Table I.

Last, examining the impact of guiding MapReduce to oper-
ate directly on the underlying NAS mount-point, we are faced
with a much different situation since the NAS systems must
be federated in order for this architecture to work. Because
the NAS units are federated, RAID-5 will only provide single-
disk tolerance across all of them, and RAID-6 similarly only
provides double-disk tolerance. Further, without HDFS we lose
replication, so we have no way to tolerate rack failure or ensure
availability in the face of network, power, or some other fault
in a rack that causes it to go offline.

D. Why Not Just NAS?

Finally, we recognize that many supercomputing systems
may (and should) be architected to be reliable based on the
guarantees provided by the parallel file systems and NAS
alone. While this may be the case, and in which case utilizing
the No-DN architecture may be the best choice, two potential
use-cases exist for layering Hadoop replication on existing
NAS RAID: First, doing so dramatically increases the reliabil-
ity and up-time for files in an existing system that may only
otherwise provide RAIDS; higher reliability may be desired
for the post-processing analytics so that chance of data loss



RAID 5 | RAID 6 | RAID 5 | RAID 6 | RAID 5 | RAID 6
Repl. 1 | Repl. 1 | Repl. 2 | Repl. 2 | Repl. 3 | Repl. 3
DN-on-Client 1/0 270 3/1 571 -/ - -/ -
DN-on-NAS Node 1/0 2/0 3/1 5/1 572 8/2
No HDFS 1/0 270 -/ - -/ - -/ - -/ -
RainFS 1/0 270 3/1 5/1 5/2 8/2

TABLE I: The number of concurrently failed disks or racks (shown in disk / rack format) that a given architecture can tolerate
without data loss. Considered for all combinations of typical replication and RAID levels, and dashes (- / —) used to indicate

an architecture cannot operate at this reliability level.

for these final results is not only absolutely minimal, but also
not tethered to the capabilities of the system to rebuild quickly.
Second, layering Hadoop with replication on NAS also may
make sense for smaller supercomputing centers whom may
utilize NAS systems from multiple vendors. With such discrete
namespaces, this would prevent the No-DN architecture from
operating, and therefore layering Hadoop in-between would
enable one to execute a MapReduce task to concurrently utilize
all of the discrete NAS pools.

V. DATA LOCALITY AND TRANSPORT

In this section we consider the impact of locality changes
when moving away from a traditional node-local Hadoop
configuration to a remote storage solution.

A. Write Transport

Figure 2 provides an overview for each of the considered
architectures on how writes flow from MapReduce tasks to
NAS. When the DN runs on the clients as shown in Figure
2a, performance suffers significantly due to the errant network
transits. Because HDFS assumes that it is working with
individual HDDs, it believes there is no other way to get data
to that HDD besides going over the network to the client that
supposedly contains it. However, when all of these local HDDs
are replaced with paths to remote storage, the storage becomes
equally close to all of the clients, and therefore an additional
transit through some other node is complete overhead. It would
be better for the DN in client Node A to write both replicas
to separate NAS systems itself, but there is no way to effect
this in HDFS without significant changes to its codebase that
handles topology. This inefficient behavior is experimentally
validated in Figure 3a, which shows that while writes should
solely result in network send-bandwidth from the clients to the
NAS, high receive-bandwidth is also occurring. In short, when
we use HDFS with a replication level of 2 (original plus one
copy) atop NAS, we should expect one out of three of the total
network transits of the file to be overhead.

Moving the DN onto the NAS head nodes does not remove
this errant pass-through behavior for writes, as shown in Figure
2b, but it does have the potential to alleviate it, depending
on the relative link sizes available to nodes and connected to
the NAS systems. Specifically, while the client machines in
our experiments solely have a single Gigabit Ethernet link,
each NAS system has two bonded 10 Gigabit links available.
Nevertheless, it is quite computationally expensive to manage
many tens, if not hundreds, of high-bandwidth, busy streams.
This is a key issue we run into; even with only 10 clients
per NAS system stream management overhead outweighs any
benefits we gain from a higher theoretical peak performance.

In the third architecture, without HDFS shown in Figure
2c, there is no potential for any misunderstanding on how the
storage is actually laid out — MapReduce is operating directly
on normal files served via NAS. This enables all accesses to
incur the fewest transits to maximize performance.

B. Read Transport

Reads seem considerably simpler than writes since no
replication is performed — one imagines that reads should go
directly through the local NAS mount and therefore avoid any
pass-through situations. While this is true for our DN-on-NAS
node and No-DN architectures, this intuition was found to fall
flat for the simplest architecture of DN-on-Client.

We experimentally document the problem witnessed with
our NAS on Client architecture in Figure 3b, which shows
that while reads from NAS storage via HDFS should only
show large amounts of received data, our per-node aggregation
shows significant amounts of sends as well. This phenomenon
is the result of a task being placed on a client node that the
HDFS NameNode does not believe to have the file that task
operates on stored locally. Misplacement results in a request
to one of the other nodes that the NameNode does believe
to have the file locally, which starts a pull-through from the
NAS system to the requestee and finally to the requester. These
sends reach as high as around 33% of the bandwidth of the
receives as shown in the middle of Figure 3b, indicating about
a third of the tasks were misplaced.

VI. RAINFS

As we have shown, there are considerable overheads when
utilizing HDFS to access NAS storage, yet bypassing HDFS
entirely removes many of the reliability boons we had pre-
viously enjoyed. Further, bypassing HDFS requires that the
NAS systems are capable of federation, which is not always
the case, particularly with systems from different vendors.
Therefore, we decided to implement a solution that attempts to
avoid these overheads while concurrently retaining the ability
to replicate over discrete failure domains and provide client-
level federation. To that end, we present the Reliable Array of
Independent NAS File System (RainFS), an intermediate file-
system to replace HDFS for MapReduce on NAS applications.

A. Design Desirata

The goals in the design of RainFS were four-fold:

1)  Client-Level Federation of NAS Systems: Enable
MapReduce to take advantage of the performance of
all of the available NAS systems concurrently and
maintain discrete failure domains.
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Fig. 3: Write-intensive and read-intensive benchmarks on 50-node cluster and 5 NAS shelves, demonstrating poor write and read

transport behaviors for DN-on-Client architecture.

2)  Full Replication: Restore the ability to replicate files
written in MapReduce.

3) No Data Pass/Pull-Throughs: Neither writes nor
reads should ever go through another client node on
its way to or from the NAS systems.

4) A Fair Namespace: Create a framework-agnostic
namespace where no imports or exports are required.

B. Implementation Overview

RainFS employs two key mechanisms to achieve the afore-
mentioned goals. The first is utilizing symbolic links (sym-
links) and hidden folders in order to allow a single NAS system
to manage the remaining NAS systems and present a fair,
federated namespace to MapReduce and POSIX applications.
The second mechanism is providing metadata management via
hidden metadata files beside the symlinks.

RainFS allows the NAS systems to be unfederated at
the storage-level and yet, exposes a unified namespace, by
maintaining that namespace on one of the many NAS systems
available to the administrator. In that managing-NAS names-
pace, instead of storing the data directly when written from
MapReduce, it stores symlinks that lead to the data files in one
of a number of distributed, hidden directories. It is important
to emphasize that the symlinks nor hidden metadata files are
not on individual, local clients, but on a single managing-NAS
system such that all clients see them in a unified manner. This
enables concurrent reads on a set of files in the visible RainFS
file system to be load-balanced across many or all of the NAS
systems, depending on how many files are accessed at once.
Further, this allows an MPI or other POSIX application to read
a MapReduce-generated file directly from the symlink in the
visible namespace of the managing NAS or to write its own
set of files and allow MapReduce to turn around and process
those files directly without import or export.

The second mechanism, metadata management via hidden
files beside the symlink, allows RainFS to manage these many
hidden files and folders that the symlink points to. As we
will discuss in the following sections, there are numerous
consistency issues that must be addressed on file create, delete,
and move, and RainFS achieves all of this without its own
centralized metadata manager.

C. File Operations

To enable easy adoption and code-reuse, RainFS extends
from the abstract base class FileSystem as provided in the
Hadoop code. This makes it a sibling to other FileSystem-
extended classes like FTPFileSystem, where FTP servers are
used for storage, S3FileSystem, where Amazon S3 is used as
the backing store, and even HDFS, which also extends from the
FileSystem class. Furthmore, for operations that do not require
special handling of symlinks or hidden file metadata (e.g., a
mkdir), RainFS re-uses code from the RawLocalFileSystem
class to provide a similar range of operations available in other
Hadoop filesystems. The operations which do starkly differ in
RainFS from those available in RawLocalFileSystem are file
creation, deletion, and move, and we detail them at length in
this section.

Algorithm 1 File Creation

1: procedure CREATE(filepath, replication)

2: LOCK(FILEPATH)

3: rndl D < RNDGEN.NEXTLONG

4: nasStart < rndI D mod nasCount

5: bucket < rndID mod 2bucketPower

6 for i < 0, replication — 1 do

7: files[i] <+  BUILDPATH((nasStart + i) mod
nasCount, bucket, rndI D)

8: FILE.CREATE( files]i])

9: end for

10: CREATEMETASTORE( filepath)
11: SYMLINK( filepath, files[0])
12: UNLOCK(FILEPATH)

13: end procedure

1) Create: Algorithm 1 creates a file by taking as param-
eters the path to the file and the replication level desired.
First, we utilize NAS file locking to create and lock a hidden
locking file beside the path of the symlink we are seeking
to create. Since MapReduce is designed for Big Data (and
therefore fewer, larger files), we do not believe a basic locking
approach should have notable performance impacts on any
realistic workloads. We then generate a psuedo-random long
integer and identify both the first NAS system the symlink
should point to as well as the bucket in use. Since the first
NAS is randomly chosen and then subsequent replicas are
just round-robined around available other NAS systems, the
replicas will be uniformly distributed. We utilize the concept



of buckets, which are truly just folders, and a configurable
bucket Power, to ensure that it is unlikely that any single
folder becomes overwhelmed with a huge number of files.
Without buckets, depending on the NAS system in use, folders
with a huge numbers of files could very well suffer perfor-
mance degradation.

Then we create each replica, iterating through the available
NAS systems as specified in the RainFS configuration file in
round-robin fashion. Changing available NAS systems is as
simple as altering the configuration file, as it is read upon
every call to the RainFS library; no restart required. However,
in similar nature to HDFS files needing to be read and rewritten
if the block size is desired to be changed, RainFS does not yet
provide capacity rebalancing if the replication level changes.
One will need to read, rewrite, and delete the old file to achieve
rebalancing. Following creation of the replicas the symlink to
the first NAS is created and the metadata information about
the file is stored in a hidden file beside it.

Once the file is unlocked this procedure returns a new
output stream for subsequent writes. Writes occur simultane-
ously to all replicas via threading, one thread per replica. This
process is identical for subsequent writes sometime later after
the file creation. On read access, only the data file that the
symlink points to will be actually read from — reads are not
performed concurrently from all replicas available. However,
MapReduce programs frequently work with multiple files
concurrently, so it should still achieve load balancing on read-
intensive workloads across all NAS systems. In future work
we are considering improving the read function so even single,
huge files, are served from all available replica locations. This
achieves client-level federation of the NAS systems, allows
for replication all the way up to the number of NAS systems
available, avoids transit overheads for both writes and reads
since each client directly contacts the NAS systems for each
of its I/Os, and maintains a namespace on the primary NAS
system that non-Hadoop applications can access.

Algorithm 2 File Deletion

1: procedure DELETE(filepath)
2: LOCK(FILEPATH)
3 replicas < GETREPLICAS( filepath)
4 FILE.DELETE( filepath)
5: for i < 0, replication — 1 do
6: FILE.DELETE(replicas]i])
7: end for
8 FILE.DELETE( filepath.metadata)
9: UNLOCK (FILEPATH)
10: end procedure

2) Delete: File deletion as shown in Algorithm 2 works in
nearly reverse order as create, and is done so with good reason:
if intermediate failure occurs partway through a creation or
deletion, these routines are built to maintain a reasonably
sane environment even in the face of failures. Further, partial
creates or deletes should be easy to clean-up with this ordering
by an independent, scanning RainFS checking daemon. In
the delete routine the file destined for deletion is locked via
NAS file locking as done with create and all of the replicas
are determined from the metadata file. Then, the symlink is
removed such that any subsequent operation should recognize
that the left-over replicas should also be deleted. Finally,

the replicas are removed followed by the metadata file. The
metadata file is left until last in order to preserve information
and expedite clean-up in the event of an interrupted delete.

Algorithm 3 File Move

1: procedure MOVE( filepath, newpath)
2 if filepath > newpath then

3 LOCK(FILEPATH)

4 LOCK(NEWPATH)

5: else

6: LOCK(NEWPATH)

7 LOCK(FILEPATH)

8: end if

9: UPDATEMETASTORE(newpath, filepath)
10 FILE.MOVE( filepath, newpath)
11: FILE.DELETE( filepath.metadata)
12: UNLOCK (FILEPATH)
13: UNLOCK(NEWPATH)

14: end procedure

3) Move: Last of the common file operations, file move,
would be a tricky routine if it were not for locks provided via
NAS file locking. As we mentioned, providing locks around the
entire routine is a reasonable approach for creates and deletes —
as a Big Data framework, MapReduce was never designed for
rapid creation or deletion of huge numbers of tiny files. We find
moves to also be satisfactory for such routine-encompassing
locks because we do not actually move the data, we only move
the symlink and the metadata file. This allows for a very short
time to be spent in the locked section compared to a full data
copy and subsequent deletion of the old data. Therefore, in
the move routine, we lock both the target and the source files
in order to prevent any concurrency issues from arising. Once
both are successfully locked, we first update the metadata file
at the target and then and only then move the symlink to that
target. Updating the metadata file at the target first prevents the
possibility of a partial move resulting in lack of a metadata file
alongside the new target symlink. Once the move is successful
(metadata and symlink), we then delete the old metadata file
at the source location and unlock both the source and target.

D. Failure Handling

The last consideration before experimentally comparing the
performance of RainFS against the previous architectures is
reliability of RainFS in the face of failure of a disk or rack.

First, just as in the other architectures, since it utilizes NAS
storage, it gets single- or double-disk failure tolerance based on
the RAID level the NAS system employs for every NAS system.
However, unlike the architecture that simply bypasses HDFS,
RainFS achieves federation at the client-level and therefore
the fault domains among NAS systems are not conjoined.
Concurrent failures in distinct NAS systems will therefore
not aggregate — for five NAS systems and RAID-5, five disk
failures can be tolerated without data loss in any of the failure
domains if they occur in separate systems.

Furthermore, if an entire rack becomes unavailable and
RainFS is unable to contact it for a read, it will simply iterate
through the remaining replicas to attempt transfer from a NAS
system on another rack. A notable caveat here is that the master
NAS is a single point of failure; if it fails the unified namespace
will be unavailable until it is restored.



[ Component | Description [ Per-VM |
Processor Intel Xeon E5240 2 Cores
Memory | DDR2 667 MHz ECC | 3.8 GB
Hard Disk Sata II 7,200 RPM 200 GB
NIC Unknown Card 1 Gb/s

TABLE II: Hardware and VM resources

Beyond what RainFS can promise in the face of failure
or unavailability of one of the NAS systems, we must also
briefly consider how consistency is maintained. We make one
important assumption in this work to simplify RainFS and keep
it out of the critical path for non-MapReduce applications: if
a file is created via Hadoop, the user should take care to also
delete it or move it with Hadoop. Users can of course (as it was
one of our goals) read from those files using any application
they wish, be it MapReduce-based or not. The reason behind
this assumption is that since RainFS is solely in Hadoop, if
an external user or application moves a symlink in the unified
namespace, RainFS will not be able to keep up and move
the metadata file along with it. Similarly, external deletions of
symlinks will leak storage since the metadata files and replicas
still remain in hidden folders on the distributed NAS systems.
This RainFS checker similarly attempts to complete or roll-
back partial creates, deletes, and moves after a specified time-
out. Improving the RainFS checker to be more robust beyond
these capabilities is a target in future work.

VII. EVALUATION

We now describe our experimental environment, the bench-
marks we used to tease out differences between architectures,
and provide results for and discussion on our experiments.

A. Experimental Setup

To experimentally validate our expected overheads and
proposed optimizations we used a medium-sized cluster of 50
nodes, which utilize five shelves of Panasas ActiveStor 12.
The nodes have Gigabit NICs, which are connected to one
of four Forcel0 S50n Gigabit switches. These switches are in
turn connected by dual 10-Gigabit Ethernet uplinks to a single
Forcel0 S4810p 10-Gigabit switch, which our NAS system is
also connected to via two, 10 Gigabit Ethernet links bonded
together per shelf. Each node is running KVM with a virtual
machine image of CentOS 5.5, which is the environment for all
of our experiments. Further specifics regarding the hardware
is listed in Table II. We required virtualization in order to take
advantage of the Panasas DirectFlow client module, which at
the start of this work was solely available for RedHat-based
distributions and our hosts run Debian.

B. Benchmarks

Perhaps the most ubiquitous macro-benchmark in the
Hadoop space is the TeraSort benchmark, which is a suite
of MapReduce applications designed by Yahoo! in 2008 [24]
designed to compete in (and enabled them to win) the terabyte
sort competition [25] that year. The three major components
of the benchmark are:

TeraGen: The first component of the suite is TeraGen, an
application that utilizes MapReduce to automatically divide
the work of generating a configurable number of rows of

key/value pairs over available clients. This benchmark is
almost exclusively write-intensive and therefore, is used in this
work as our write-throughput microbenchmark.

TeraSort: The second component is the most complex and
performs the sort itself. TeraSort incorporates a custom par-
titioning algorithm that uses a sorted list of N — 1 keys.
This enables a simpler, nearly embarrassingly parallel sort
that correspondingly scales well. It has a read- and CPU-
intensive Map-phase, a network- and memory-limited shuffle
phase, which shares the now-partially-sorted data, and last
performs a write-intensive reduce phase, where the data is
merged and outputted to disk fully sorted. Because it exhibits a
full spectrum of MapReduce application behavior, we consider
this component of the suite representative of more compute-
heavy applications.

TeraValidate: The last component of the TeraSort benchmark
suite is the validation application, which simply reads through
the entire set of data and makes sure each key is sorted properly
(it is less than or equal to the one previous). This benchmark,
barring any errors (we encountered none in any of our tests),
is completely read-intensive and therefore is used as a read-
throughput microbenchmark in this work.

This benchmark exhibits the behaviors we expect most
HPC post-processing analytics will exhibit. For instance, it
is easy to imagine a scientist would first simulate a nuclear
reaction using traditional HPC compute and storage. Then,
they might seek to leverage a big data framework such as
MapReduce as explored in this work to do a light filtering
of the data, which might generate an only slightly smaller
dataset (like the write-heavy TeraGen). Then they may sort
to find areas with the highest or lowest temperatures (like
TeraSort), and last look through all of the sorted data to verify
no anomalies exist (like TeraValidate).

C. Results

Having laid out our experimental framework and the
Hadoop TeraSort benchmark suite we utilize for this work,
we begin our discussion of results by first presenting a basic
overview of the parameters we configured for the TeraSort
runs. In these experiments we first write 0.5TB of data
using TeraGen and then sort that data using TeraSort, which
generates a separate 0.5TB of data. Finally, we read in and
validate that the second 0.5TB dataset was truly sorted using
TeraValidate. Additionally, for all of our runs, we execute each
benchmark three times in order to find a reasonable average.
With half a terabyte, each machine is writing at least twenty
gigabytes of data over the course of the benchmark suite and
reading the same amount, making this a considerably out-
of-memory dataset. Nevertheless, we take precautions against
cache-effects by flushing the cache on all of our client nodes.

As a last consideration, we utilized the local HDD in each
machine as the temporary storage space for MapReduce during
its shuffle phases. This decision was made after thorough
testing of entirely NAS-based setups, where no local disks
were in use for the benchmark. In those we found performance
to be much better when keeping temporary data local to the
machine itself rather than pushing it out over the network to
remote storage and subsequently pulling it back when needed
(often very soon after the push). We believe utilizing a single
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therefore is missing from the bottom graphs.

local disk for temporary shuffle data does not jeopardize the
intent of our exploration for two reasons: First, no permanent
data stays on that disk and thus the reliability guarantees that
HDFS and/or NAS promise are not in danger. Second, while
not all HPC systems have a local disk (some boot simply over
the network), many do, including current #1 Top500 Tianhe-2
[9], and almost all others provide some form of solution for a
fast scratch space even if it is remote.

Moving to the results, let us first consider the write- and
read-intensive benchmarks for replication levels of 1 and 2
as shown in Figures 4a and 4c. In the former, three main
take-aways surface: First, DN-on-NAS runs into significant
performance degradation for writes — it only begins to compete
with any of the other architectures on reads, and that is because
the DN-on-Client architecture begins to suffer from poor
task placement (resulting in data pull-through). Second, and
related, the impact of this errant data pull-through phenomenon
resurfaces for TeraValidate in the DN-on-Client architecture.
While performance improves for the No-DN and RainFS
architectures when going from writes to reads, performance
plummets for reads on the DN-on-Client setup. Third, the No-
DN and RainFS architectures perform almost identically in all
tests. This is a result of both of these architectures being based
off of the same code-base, which performs I/O almost directly
through standard Java I/O libraries.

In the latter set of read- and write-intensive benchmarks
performing duplication, we note two points of interest: First,
the DN-on-NAS node architecture performs even worse than
in the previous case, achieving less than 10% of the theoretical
throughput available to the NAS systems. This seems to make
a fairly cogent case against pigeon-holing a distributed data

framework like Hadoop MapReduce through a limited number
of master nodes; it simply will not scale or achieve higher
replication levels well once those nodes are overwhelmed.
Second, since the No-DN architecture, or the architecture that
skips both HDFS and RainFS and goes directly to NAS,
cannot perform any replication, it is missing from this graph
intentionally to accent the reliability/performance trade-offs.

Now examining the compute-intensive benchmark TeraSort
as shown in Figures 4b and 4d, the findings are somewhat
less striking but nevertheless fit intuition. First, because this
benchmark is running on simply dual-core machines with
limited main-memory, we should expect any improvements
in storage access speed to only improve a limited fraction of
the run time. This is demonstrated with much smaller swings
from the worst to the best in the architectures. Further, DN-
on-NAS node finally takes a win in this case because the DN
responsibilities have been moved off of the compute nodes,
allowing them to move faster, and I/O is not the bottleneck.
Last, No-DN performs almost identically with RainFS for
replication level of 1, and is excluded from replication level
of 2 for the aforementioned reasons.

Lastly, we analyze this performance data in Figure 5 to
determine how the various architectures fair when increasing
replication level. As the simplest architecture matches up with,
our intuition suggests if twice the amount of data is being
written, then the slow-down should be two times. However,
DN-on-NAS fairs worse than this number, coming in at 2.38
times slower and RainFS fairs better, showing only a 1.52X
slowdown. In the former case, we believe this to be related
to the already overburdened NAS node slowing down further
as it continues to struggle with more high-throughput network
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Fig. 5: Throughput impact on write-intensive workloads when
going from replication level of 1 to 2.

streams. However, for RainFS we were initially quite unclear
as to how it performed better than in the replication level
1 case. What we have found through microbenchmarks and
careful observation of the test as it runs is that since RainFS
makes use of threads to write both of the copies simultaneously
when replicating, it is able to hide some of the overhead in the
I/O path and the other stream of data fills in that space while
the initial one idles.

VIII. RELATED WORKS

Despite the huge volume of work done in the cloud
computation and parallel file system arenas, there are only
two academic works to our knowledge that seek to find an
efficient coexistence between them, and both are just short
papers reporting research that is still in progress.

In the first work, MixApart [23], the authors create a
new task scheduler and caching manager that relies on local
HDDs to perform staging of data brought from shared storage.
Their work does no exploratory research into whether standard
incarnations of Hadoop are possible atop shared storage nor
does it appear to operate without powerful compute-local
storage, and therefore one of the major incentives for our work,
infrastructure conslidation, becomes impossible. Last, there is
no consideration of storage reliability or improving federation
capabilities in their work; they rely on whatever the underlying
shared storage can provide.

In the second work [10], the authors perform a comparative
study of unmodified Hadoop MapReduce on HDFS versus
a modified version of GPFS. Unlike our work, where we
seek from the outset to use MapReduce on function-specific
dedicated storage, this work attempts to retain the merged
infrastructure of Hadoop where compute and storage share the
same machines.

In the commercial space, EMC Isilon and NetApp have re-
leased products that perform, to one degree or another, actions
similar to two of our explored architectures. In the former
case, EMC Isilon provides their solution, OneFS [3], which
exports a wire-protocol version of HDFS but that translates
HDFS commands extensively into Isilon-specific data move-
ment in the back-end. Our wire-protocol architecture (DN-on-
NAS node) has parallels with this setup, although the exact
implementation is not equivalent. In the latter case, NetApp
provides their OpenSolution for Hadoop [7], which enables

individual compute nodes in the Hadoop cluster with SAS-
attached storage instead of their own commodity HDDs. This
methodology has some parallels to our DN-on-Client setup,
except we utilize NAS storage rather than directly-attached
storage. These commercial implementations of architectures
similar to ours were part of our motivation to explore this arena
and try to bring some clarity about the benefits and pitfalls of
the various approaches to integrating Hadoop MapReduce and
shared storage solutions.

IX. CONCLUSION

As an increasing number of organizations and researchers
in HPC begin to take stock of their I/O intensive workloads
and consider a Hadoop environment, particularly for ad-hoc
analytics and post-processing, we believe our work has shed
light on the potential to combine new compute frameworks
with traditional storage infrastructure. In this paper we have
detailed the numerous reliability implications, locality impacts,
and caveats involved in utilizing three different architectures to
effect MapReduce atop NAS with standard software. We have
further designed and presented RainFS, our custom Hadoop
File System that works to overcome the many pitfalls ob-
served in the previous architectures. Finally, we have compared
these architectures along the dimensions of reliability and
performance on a real cluster, and demonstrated performance
improvements for RainFS as high as 127% for write-intensive
workloads and 217% for read-intensive workloads for replica-
tion level 1, and as high as 254% for write-intensive workloads
and 210% for read-intensive workloads when performing du-
plication to achieve higher reliability guarantees.
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