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Figure 1: Users running data-parallel applications across the In-
ternet. The data stores are on server clusters, which, compared to
monolithic machines, flexibly support different kinds of concurrent
workloads, are easier to upgrade, and have the potential to support
independent node faults. Our client machines, in contrast to the tra-
ditional view, are active collaborators with the clusters in providing
the end-result to the user.

1 Introduction and motivation

In recent years we have seen an enormous growth in the
size and prevalence of data processing workloads [Fayyad
1998, Gray 1997]. The picture that is becoming increasingly
common is depicted in Figure 1. In it, organizations or re-
sourceful individuals provide services via a set of loosely-
coupled workstation nodes. The service is usually some form
of data-mining like searching, filtering, or image recognition.
Clients, which could be machines running web browsers, not
only initiate requests, but also partake in the processing, with
the goal of reducing the request turnaround. That is, when the
servers are overloaded, clients with spare cycles take some of
the computational burden. Naturally, many aspects of such
a system cannot be determined at design time. E.g., exactly
how much work a client should do depends on the computa-
tional resources available at the client and server cluster, the
network bandwidth unused between them, and the workload
demand. This position paper is interested in this and other
aspects that must be divined at run-time to provide high per-

formance and availability in data-parallel systems.

What makes system tuning especially hard is that it’s not
possible to find the right knob-settings once and for all. A
system upgrade or component failure may change the appro-
priate degree of data-parallelism. Changes in usable band-
width may ask for a different partitioning of code among
the client and server cluster. Moreover, an application may
go through distinct phases during its execution. We should
checkpoint the application for fault-tolerance less often dur-
ing those phases in which checkpointing takes longer. Finally,
the system needs to effectively allocate resources to concur-
rent applications, which can start at any time and which ben-
efit differently from having these resources. In summary, we
argue that in the future a significant fraction of computing
will happen on architectures like Figure 1, and that, due to
the architectures’ inherent complexity, high availability and
fast turnaround can only be realized by dynamically tuning a
number of system parameters.

Our position is that this tuning should be provided auto-
matically by the system. The contrasting, application-specific
view, contends that, to the extent possible, policies should be
made by applications since they can make more informed op-
timizations. However, this requires a great deal of sophisti-
cation from the programmer. Further, it requires programmer
time, one of the most scarce resources in systems building
today.

Toward our goal, we contribute a framework that is suf-
ficiently rich to express a variety of interesting data-parallel
applications, but which is also restricted enough so that the
system can tune itself. These applications are built atop the
ABACUS migration system, whose object placement algo-
rithms are extended to reason about how many nodes should
participate in a data-parallel computation, how to split up ap-
plication objects among a client and server cluster, how of-
ten program state should be checkpointed, and the interaction
(sometimes conflicting) between these questions. By auto-
matically determining a number of critical parameters at run-
time, we are minimizing the management costs which have
in recent years given system administrators the howling fan-
tods [Satyanarayanan 1999].
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2 Background and related work

Before presenting our approach for building high perfor-
mance and fault-tolerant data processing systems out of
clients and server clusters, we describe some background and
most relevant related work.

Data-parallelism A significant fraction of data processing
applications are data-parallel; that is, they can be divided
into a parallelizable scanning stage and a centralized merging
stage. We call the implementation of these stages scanning
and merging objects. The scanning object is replicated onto
many machines and each instantiation accesses data from
storage nodes. In many cases, scanning objects execute di-
rectly on storage nodes. The scanners read and transform
part of the dataset and send intermediate results to a single
merger. The merging object aggregates these partial results
into a final summary for the user.

The Apriori algorithm, which discovers association rules
in sales transactions, is an example data-parallel applica-
tion [Agrawal & Srikant 1994]. It finds the most common
items purchased, then the most common pairs of items pur-
chased, and so on. For each successive phase, the merger con-
structs a list of candidates using the results from the previous
phase. These candidates are communicated to scanning ob-
jects that count the number of times they occur in the dataset.
Finally, the scanners report their results to the merging object
and the process repeats. Further examples of applications that
can be organized in a similar manner are nearest neighbor
search, edge detection, and image registration [Riedel et al.
1998]. Piranha is an example system that supports dynamic
replication of tasks atop a Linda tuple-space [Carriero et al.
1993].

For data-parallel applications, performance is affected by
the number of participating nodes in the server cluster (also
called the degree of data-parallelism) and whether the merg-
ing object runs on a node in the server cluster or on the client.
The right answers depend on run-time conditions and are ex-
plored later in this paper.

Fault-tolerance Utilizing many nodes in parallel increases
performance at the cost of reliability. The chance of any
one node failing may be small, but when a computation de-
pends on a set of nodes, the probability of an application fail-
ing before it finishes becomes quite real. The redundancy in
RAID [Patterson et al. 1988] makes data resilient to storage
device failure, but in our proposed environment, we must also
protect the computation spread among clients and servers.

The standard approach to providing transparent fault-
tolerance is to take checkpoints of the task and resume pro-
cessing from a checkpoint on failure. Unfortunately, rolling
back a failed node can confuse other elements of a distributed
system. Consider what happens if a node has received some
messages from another node which then fails. After the failed
node is rolled back, the other node is in a state that causally

depends on lost computation, making it an orphan, and the
system is now inconsistent. Using checkpoints to efficiently
reach a consistent global state after failure, that is, with no
orphans, is hard. A potentially inefficient solution is to take
individual node checkpoints synchronously, and then to roll
back all nodes to the same checkpoint on failure. To avoid
the overhead of synchronizing the nodes, more complex al-
gorithms have been devised for asynchronous checkpoint-
ing [Strom & Yemini 1985]. Other work goes further by al-
lowing even recovery to proceed asynchronously [Smith et al.
1995].

Because many data-parallel programs are structured as an
object hierarchy with many of those objects stateless, we im-
plement the most simple approach to fault-tolerance with-
out significantly degrading performance. That is, we syn-
chronously checkpoint only the stateful objects, and on fail-
ure, roll back all of these objects to the same checkpoint. A
similar simplification was implemented for tolerating faults
in the Orca system [Kaashoek et al. 1992].

But how often should these checkpoints be taken? We can
only answer intelligently after knowing the expected time to
take a checkpoint and to recover after a failure, and the prob-
ability of a failure occurring. Further, there is a confound-
ing interaction between the degree of parallelism and the fre-
quency of checkpoints. Limiting the number of nodes with
scanning objects lowers the probability of the application fail-
ing, but also reduces its performance, and vice versa.

The ABACUS migration system This work is part of
the continuing evolution of the ABACUS migration sys-
tem [Amiri et al. 2000]. ABACUS began when we were
designing a filesystem for Network-Attached Secure Disks
(NASDs) [Gibson et al. 1998] and realized that we could
achieve higher performance and flexibility by letting parts of
the filesystem move between clients and NASDs at runtime.
We soon extended our approach, which we now briefly de-
scribe, to general purpose data-intensive applications, treat-
ing the filesystem as an example of, or extension to, an appli-
cation.

ABACUS consists of a programming model and run-time
system as shown in Figure 2. Programmers compose data-
intensive applications from a number of objects. ABACUS

is language-neutral, in contrast to providing rich language or
compiler support as demonstrated by seminal work such as
Emerald [Jul et al. 1988]. Our approach is still effective be-
cause of the difference in communication granularity between
fine-grained application objects and those objects that make
up data-intensive applications.

An application is represented by a graph of communicating
objects which is rooted at the client by a console object and at
storage nodes by storage objects. The storage objects provide
persistent storage, while the console object contains the part
of the application that must remain at the node where the ap-
plication started. All of the objects between the console and
storage objects can migrate between nodes. The run-time sys-
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Figure 2: The architecture of the ABACUS migration system. An
application is broken up into a number of migratable objects. Calls
between the objects are redirected by binding managers that know
where the objects are currently running. Binding managers also in-
form resource managers about the resources consumed by the ob-
jects. The resource managers use this information to reevaluate how
objects are partitioned among clients and servers.

tem invokes object-provided checkpoint and restore methods
after deciding to relocate objects.

Objects expose methods that can be called by other ob-
jects. The console object makes calls to the union of all of
the objects’ exposed methods. A call trickles down the object
hierarchy until it reaches the first object that implements it.
Now this object does some work and either makes additional
calls down the hierarchy or returns a result immediately to the
higher layers.

Object calls are redirected through binding managers that
shunt the calls to wherever the next object in the hierarchy
is currently running. While doing this, the binding man-
agers also inform resource managers about the resources con-
sumed by the objects, such as the rate at which data is moving
through the hierarchy. The resource managers use this infor-
mation along with a cost/benefit model to determine if any
of the objects can be reshuffled among the nodes to provide
better performance.

We show a small example application in Figure 3 confirm-
ing our approach. We run a filter on the same file twice,
each time searching for something different. The first run
throws away most of the file’s data while the other keeps
most of it. (Consider the difference between grep kernel

Bible.txt and grep kernel LinuxBible.txt.) For the
first, it makes sense to migrate the filter to the storage node to
reduce network traffic. For the second, it’s better to keep the
filter at the client to offload busy servers that work on behalf
of many clients.

Our first version of ABACUS lacked support for the more
complex object hierarchies required by data-parallel applica-
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Figure 3: Filtering on a client, on a server, or with ABACUS deciding
where. Each bar represents the time to filter a 16MB file. Highly
selective filters, which throw away most of the data, are correctly
migrated to the server by ABACUS. Because the experiment finishes
quickly when the client and server are connected by a SAN network,
our improvement over bad placement is more pronounced on the
slower LAN. In the third set of numbers, the storage node is loaded
down so that it can’t effectively run the filter, making client filtering
preferable. In the last case, the difference between client- and server-
side filtering wasn’t deemed sufficiently significant by ABACUS to
warrant migration.

Method Description
SetBlockParams() Set block size and other params
GetNextBlock() Read the next sequential block
GetAnyBlock() Read any unread block
ReadRange() Read specific byte range
WriteRange() Write (install) a dataset
Checkpoint() Record object state to a buffer
Restore() Recover state from a buffer

Table 1: The abridged API for writing data-parallel applications in
ABACUS.

tions and did not tolerate node faults. The rest of this po-
sition paper describes our ongoing work in developing these
aspects.

3 Data-parallelism

ABACUS presents the API shown in Table 1 for writing data-
parallel applications to the programmer. The scan/merge
structure of such an application is shown in Figure 4.

The data that an application acts on is organized into a
number of files. Each file may reside entirely on one stor-
age node, or may span many nodes, and exactly which set
of nodes may change during the execution of the application.
The API abstracts away the underlying data layout so that the
programmer is unaware on which or how many nodes individ-
ual data records within its files are stored. This both simpli-
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Figure 4: The decomposition of a data-parallel application into scan-
ning and merging objects. The dataset is stored across two storage
nodes. The scanning object is computationally expensive so there
are more scanning nodes than storage nodes. When the scanners
aren’t costly, ABACUS would configure the system to look like one
of the examples in Figure 5.

fies the application programmer’s job and enables ABACUS

to change the data layout as external conditions warrant.
Scanning objects read records in a file by making

GetNextBlock() or GetAnyBlock() requests until every
application-specific block size of data is consumed (similar
to dynamic sets [Steere 1997]). When the network is the bot-
tleneck, we try to run scanners directly on the storage nodes
and direct these requests only to the blocks on those storage
nodes. Some applications need to access specific records in
special cases or boundary conditions, and for these rarer in-
stances, the scanners can issue ReadRange() requests to spe-
cific file offsets, which may or may not reside on the same
device. For instances in which the data transformations ap-
plied by the scanners are computationally expensive, we may
recruit extra scanning nodes that access data blocks at their
original locations.

For our initial prototype, we either replicate each file on
each storage node, or cut the dataset uniformly into pieces,
with one piece residing on a single node. Today we are ex-
ploring the replication and distribution of computation un-
der the assumption that the data layout does not change very
often. In fact, many of our target applications install their
datasets infrequently and operate read-only to answer client
queries. Future work will look at more elaborate ways of
placing data and dynamically migrating data in response to
access patterns. E.g., we’d like to incorporate some ideas
from the River system which handles run-time load pertur-
bations in write workloads [Arpaci-Dusseau et al. 1999].

The number of scanner nodes used by an application can
range from one to the total number of nodes in the system.
The appropriate number depends on what part of the system
is the bottleneck. When the storage nodes don’t have enough
processing power for the scanners to keep up with their disks
and buffer caches, then recruiting other nodes can enable the
application to complete faster. However, there are diminish-
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Figure 5: Adapting the merge object location. On the left, the well-
connected client is running the merge object, offloading this work
from the contended server cluster. On the right, the client has rela-
tively poor connectivity, and to avoid this “last-hop” network bottle-
neck, ABACUS migrates the merge object down to one of the nodes
in the server cluster.

ing returns to increasing the degree of parallelism. Eventually
the network between scanners and storage nodes, or between
the merger and scanners will be saturated. Also, scanning
from fewer devices may be faster because we are multiplex-
ing fewer TCP streams. Further, as described later, the more
participating devices there are, the higher the cost for provid-
ing fault-tolerance.

The merging object, by default, begins on the client. But,
in many cases, the client has poor connectivity whereas the
nodes in the server cluster are connected via a high-speed
switched network. When this is true and when there is a lot
of traffic between the scanners and the merger, ABACUS will
push the merge object from the client onto one of the server
nodes, so that only the final, summary results are presented to
the console object on the client. Both potential locations of
the merge object are shown in Figure 5.

The bottleneck component of the system may change dur-
ing the lifetime of the application, requiring ABACUS to
reevaluate the degree of parallelism and location of the merge
object. This can happen when the application enters a differ-
ent phase, there are node failures or system upgrades, or other
concurrent applications change their demands on the shared
nodes and network resources.

We may determine that an application should involve more
scanning nodes, but the other nodes in the cluster happen to be
loaded down by other work. We resolve contention by assign-
ing nodes to the application that benefits the most. Naturally,
if an object in an application is only using a percentage of a
node’s resources, we can run objects from other applications
on the node concurrently.

Some applications are structured so that they run as fast as
the slowest scanning node. When a node such an application
is using is loaded from something external (like a daemon),
ABACUS will remove the node from the computation (equiv-
alent to lowering the application’s degree of parallelism) to
speed execution.



ABACUS can only estimate that a different configuration
will lead to better performance. Unfortunately, changing the
degree of parallelism isn’t free. Hence, ABACUS compares
the estimated benefit to making a change vs. the cost in mak-
ing it. The benefit is how much faster the application will
run when its work has different CPU and network resources
available to it, and the cost is the lost time waiting for objects
to become quiescent and replicating or killing some objects.

4 Fault tolerance

Increasing the number of participating nodes in a data-
parallel workload can improve performance, but it also in-
creases the chance that a hardware fault kills the workload,
compelling us to make ABACUS objects fault-tolerant. Here,
we are concerned with recovering computation and assume
that data is recoverable via well-known techniques. We are
further only concerned with hardware, not software, faults.
Our goal is to ensure that an application that was written to
be fault-tolerant on a single node is no more vulnerable to
faults when running atop the ABACUS migration system. We
achieve this with no extra burden on the programmer, that is,
with no increase in programming complexity.

As with other aspects of ABACUS, we implement fault-
tolerance below the application, providing it transparently to
any code written to the ABACUS interface. This interface
requires objects within an application to provide their own
checkpoint and restore methods1 which were originally used
in ABACUS for object migration. Fault-tolerance in ABACUS

is transparent in the sense that the objects do not know when
checkpoints are taken, when recovery is initiated, and do not
actively participate in the recovery procedure.

Nodes take checkpoints now and then, and when we de-
tect a failure, we restart the failed node’s objects on another
node. Recovering from a checkpoint assumes that the compu-
tation is deterministic. To tolerate one fault, each node should
take periodic object checkpoints and save them on a “buddy”
node. Various tricks can be played to reduce the amount of
data consumed by checkpoints, such as computing and only
storing the parity over the checkpoints [Plank 1996], or stor-
ing only checkpoint deltas, that is, what has changed since the
last checkpoint. Since our data-parallelism design abstracts
away data layout, we can restart failed computations on other
nodes transparently to the programmer.

We observe that the structure of a data-parallel application
is simple. Instead of a fully connected graph of stateful ob-
jects, we can often structure the application as many stateless
scanning objects and one stateful merging object in a simple
hierarchy. For these applications, orphans cannot arise and
we only have to worry about the computational state of the

1We note that requiring programmers to provide checkpoint and restore
methods potentially lowers the cost to take object checkpoints, because an
object will only checkpoint the necessary bits of data required to resume
computation, unlike a generic approach that would save its entire address
space.

merging objects2. Some applications may have stateful scan-
ners and possibly more complex communication patterns. For
them, we simply take a synchronized checkpoint of all the
objects, and on failure, we roll them all back. This is not
the most efficient approach, but it has a bounded rollback of
one, and is simple to understand and implement. Here we
are trading performance (checkpoint/recovery overhead) for
simplicity (code correctness and maintainability).

When a node fails, the system chooses another node on
which to resume the lost computation. If a scanner failed
while running on a storage node, ABACUS will attempt to
restart it on an idle node holding a replica of the dataset on
the failed node. If no suitable spare exists, ABACUS will de-
crease the degree of parallelism for the application. A failed
merge object will be restarted on a machine whose available
resources are most similar to the failed node.

We assume fail-stop processors [Schneider 1983] and de-
clare a node as failed if it doesn’t respond after a timeout, or
if network sockets to it are terminated unexpectedly. We de-
tect when a node is being unresponsive via a watchdog thread
that periodically sends pings down an object hierarchy from
the console object. If a node responds after its timeout ex-
pires, we ignore its messages and kill the remaining work on
it. For now, we assume that network partitions do not oc-
cur. For each application, the console object is responsible
for initiating the recovery procedure when a failure is de-
tected. Naturally, a console object does nothing if recovery
operations for the failed node have already been initiated by
another application’s console object.

What we contribute is a system that dynamically reeval-
uates how often to take checkpoints. The more frequently
you checkpoint, the faster you can recover from a failure. If
you never checkpoint, recovery means starting from the be-
ginning. But the act of checkpointing has an associated cost
in time. We should checkpoint in a way to minimize the total
execution time of the application, which involves estimates
on how expensive it is to checkpoint objects within an appli-
cation and recover them in case of failure, the application’s
lifetime, and the probability of a hardware failure. We pre-
dict the time to take future checkpoints based on the past.
Before an object has been checkpointed, our estimate is based
on how much memory it has allocated. We can estimate ap-
plication lifetimes by either maintaining a database of past
application runs, or in the absence of history, we can use val-
idated heuristics for estimating remaining lifetime based on
how long a program has already been running for [Harchol-
Balter & Downey 1997]. Finally, we record and analyze when
past failures have occurred to estimate the probability of an-
other failure occurring. Some of these variables change over
the duration of the application, so we need to continually
reevaluate when to checkpoint.

2Console objects are made fault-tolerant by the application programmer.
Recall that our goal is to ensure that already fault-tolerant applications re-
main immune to failures when their objects are run atop the ABACUS migra-
tion system.



5 Summary and future work

A concise restatement of our goal would be to simplify
the programmers’ and administrators’ jobs in writing and
maintaining distributed data-intensive applications. This is
achieved by providing adaptivity below the application. The
effort of reacting to run-time conditions is all in ABACUS so
that the programmer can concentrate on getting the algorith-
mic parts of the application right, and the administrator needs
only to be involved when extraordinary situations arise.

Philosophically, this is a turn away from the application-
specific position. In this view, the system exposes much of
the underlying system to applications for better performance
and to enable more functionality [Anderson 1992]. For some
cases, the application-specific approach can yield major ben-
efits at the cost of requiring more work and more sophistica-
tion from the programmer who must possess intimate details
of the system. For the workloads we are targeting, we ar-
gue that a generic monitoring and reconfiguring substrate can
yield results comparable to a clever implementor with an ad
hoc program. Further, centralized algorithms result in less
code whose correctness must be trusted, and lets us explore
the interactions among multiple applications in a way that in-
dependent, laissez faire policies cannot.

Our research is proceeding among a number of lines. We
are extending the ABACUS core to understand the structure
of data-parallel applications. This involves logic to choose
an appropriate degree of parallelism and a good set of nodes
on which to run the scanners and merger. It also entails a
way to determine fault-tolerance parameters under changing
conditions. At the same time, we’re looking to port a few
data-parallel applications to ABACUS and in the process we
expect to refine our API. The applications should be easy to
port because our API hides storage-level details from the pro-
grammer. An interesting question that we hope to soon an-
swer is how effective can our approach be, which employs
black-box resource monitoring and decision making, to this
general class of applications.
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