—

Hewlett Packard
Enterprise

Memory-Driven Computing

Kimberly Keeton

Distinguished Technologist

kimberly.keeton@hpe.com
Hewlett Packard
October 20, 2016 Labs

mailto:kimberly.keeton@hpe.com

From Processor-Centric Computing... ...to Memory-Driven Computing

—

Hewlett Packard
Enterprise

Technology trends enabling Memory-Driven Computing

— Converging memory and storage

— Byte-addressable persistent memory (NVM) replaces hard drives and
SSDs

— Resource disaggregation leads to shared memory pool
— Fabric-attached memory pool is accessible by all compute resources

— Optical networking provides near-uniform latency
— Local volatile memory provides lower latency, high performance tier

Local DRAM

Local DRAM

Physical
Server

yo
o
Z
)
Z

— Distributed heterogeneous compute resources

Local DRAM — Moving compute closer to data

— Software
— Memory-speed persistence
— Low-latency, high BW memory/storage access

— Globally addressable, low latency access to all PM across the memory
fabric

Local DRAM

Physical
Server

Memory Pool

—

Hewlett Packard

Enterprise ©Copyright 2016 Hewlett Packard Enterprise Company

Memory-Driven Computing in context

Physical
Local DRAM Server
SoC
NVM Local DRAM
SoC
Local DRAM NVM Local NVM
SoC
% I= g
[
i o 9=
: E 28
° ()
2 O g
Local DRAM
SoC NVM Local DRAM
SoC
NVM Local NVM
Local DRAM
SoC
Memory
Pool
Shared nothing Shared something Shared everything

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Outline

—Memory driven systems software: OS and data management
—Memory driven data analytics: Spark for The Machine
—Memory driven programming models

— Prototypes and emulators

— Commercial memory driven computing

—Summary

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Memory driven systems software

| I—
Hewlett Packard
Enterprise

Traditional file systems

mmap file 1O

Traditional FS

: | I
: I
: I
! :
| Page cache |
. | |
: I
' ;
: I
' ;
[

Block device

Storage: Disks, SSDs

—

Hewlett Packard
Enterprise

Separate storage address space

« Data is copied between storage and DRAM
» Block-level abstraction leads to inefficiencies

Use of page cache leads to extra copies

* True even for memory-mapped I/O
Software layers add overhead

DDR PeEsRs

PCle NVM [yl
PCle Flash [ralerz
LR 193 %

HDD

I

Software Overhead

A
v

10 Latency

©Copyright 2016 Hewlett Packard Enterprise Company

Non-volatile memory aware file systems

] I |
mmap file 10 file 10 mmap

py— Examples

L l—' _________ I » Direct access (DAX)

Traditional FS * pmem.io/NVML

Low overhead access to
| persistent memory

i « No page cache
P e « Direct access with mmap

|
Block device

r
[
[
[
[
, I
[
[
[
[
[
[
[
[

| |
| |
| |
| |
| |
Page cache <—— : :
| |
| |
| |
| |
| |
| |

Source: S. R Dulloor, et al. "System Software for Persistent Memory," Proc. EuroSys, 2014.

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Linux for The Machine

— HPE’s modifications to Linux to support
— Fabric-attached persistent memory

— Block device abstractions backed by
persistent memory

— Kernel modifications for “flush on failure”

— Additional support for

— Fabric-attached memory atomics
primitives to handle sharing across SoCs

— “Librarian File System” for naming and
giving permissions to persistent memory

— Remote virtual memory access
— Configuration and management utilities

Your Application

RoCE/RDMA Persistent Memory Support Fabric-Attached Memory
Software Library Atomics Library
Remote Virtual Memory Access NVM Backed Block Librarian File

(RVMA)

Devices System Controls

Librarian File System

Kernel
+

Remainder of User Space (L4TM Core)

We plan to contribute all changes
back to the Linux community.

Linux for The Machine

HPE

Linux w/

HPE Changes Linux

©Copyright 2016 Hewlett Packard Enterprise Company

SpaceJMP: Programming with Multiple Virtual Address Spaces

* Process has multiple virtual address spaces 1000K| . pegisjmp oo Redis 6x
o * = Redis]MP (Tags) Redis
New Process Abstraction: {PC, registers, VAS*, {VAS}} c 800K
___ 5 *E*W-*** —fpe i
S, S, 2 600K} X
e e JE # 9 09 0@
Registers || PC [VAS* | | Glob || Code || Heap So S, S, Stack | :?).J- 400K %’ ...-"'/
S B e e e B S S e S = ZOOK;:_’,‘,..--""'.
- Se Se S,
e T E— T
- . . . No. Clients
 Efficient safe programming and sharing for huge memories :
160K
« Data sharing and communication between processes o} .
_] o 2 120K} o %
 Versioning and checkpointing § 100K , qostesmn o S35 4
= BOK|
» Co-design between OS, programming languages, compilers, £ e *°
and runtimes £ o « % Rediglp
i @ @ Redis
* Prototype implementations in BSD, Linux, and Barrelfish) 15 60
No. Clients

l. El Hajj, et al. “SpaceJMP: Programming with Multiple Virtual Address Spaces,” Proc. Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2016.

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Memory-driven data management

| I—
Hewlett Packard
Enterprise

Traditional databases

—Example: A database (write) transaction

« Traditional databases struggle Bree 8.1%
with big & fast data loaging | 1 0%
 90% of a database transaction TRRRBR 1o 70
|S Overhead Latching 10.2%

« Memory-semantics non-volatile
memory: up to 10x improvement

Buffer manager PASNORZ

Other 12.3%

S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “OLTP Through the
Looking Glass, and What We Found There,” Proc. SIGMOD, 2008.

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

FOEDUS: Fast optimistic engine for data unification services

—Open-source, from-scratch database engine designed to
—Manipulate data both in DRAM and NVM
— Take advantage of large multi-core machines

—Fully ACID, serializable database kernel in C++
—Can be embedded in applications as a library
— Simplified in-memory applications

—Designed to eliminate scalability bottlenecks
— Lightweight optimistic concurrency control
—Decentralized logs are SoC-friendly
—Design maximizes NVM bandwidth and endurance

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

FOEDUS: Fast optimistic engine for data unification services

/ DRAM
) Dual Pointers
Volati lﬂ [[Volatiteper_]
Pages Csnapshoter |

HH

NVRAM

Stratified
Snapshots

-
-“'-u..
o

Snapshot
Pages

ayie) joysdeus

O0xABCD SP2,PID
SP1,PID

S

N Sequential
Decentralized Logical Logs |5 1 Log Gleaner Dump
. a ||
7ZZ = ol |&
B = Epoch X~Y | | Epoch Y~Z ol le
; =3 Log File Log File vl fn
W e g : //

—

Hewlett Packard
Enterprise ©Copyright 2016 Hewlett Packard Enterprise Company

FOEDUS: Open source embedded database

— Scalable up to tens of SoCs
— Tested scale: Superdome X: 12 TB DRAM, 240 cores

— Efficiently handles datasets larger than DRAM

— Orders of magnitude faster when compared to
state-of-the-art in-memory engines

— H. Kimura, “FOEDUS: OLTP engine for a thousand
cores and NVRAM,” Proc. SIGMOD, 2015.

— Open source code, documentation and papers at
http://qgithub.com/hkimura/foedus

—

Hewlett Packard
Enterprise

Throughput [KTPS]

1.E+04 o—e o —0—0—0—0—0—090-9

1.E+03

1.E+02

1.E+01

1.E+00

-o-FOEDUS H-Store

20 40 60
Remote Transactions [%]

©Copyright 2016 Hewlett Packard Enterprise Company

http://github.com/hkimura/foedus

Memory driven data analytics:
Spark for The Machine

Enterprise

Spark contributions
Maximize advantages of large in-memory processing

HPE Components

Artificial Neural Networks C ¥ Belief Propagation

Machine
Learning

Streaming

-
Spark Core

In-Memory Shuffle Engine

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company,

In-memory shuffle engine
Provides efficient access to The Machine’s shared-memory architecture and NVM pool

A

SPArk Core - [=T . venor st rsine

Our approach Performance Evaluation for RDD Operators

— Non-volatile memory based 300

250
— In-memory sort/merge .
— Optimized CPU cache access 4.7x I 5.8x I 5.0x I 3.8x eX

200
150
groupBy reduceBy partitionBy sortBy join

100
50
0

seconds
—

E'r?t“éiﬁﬁs'l“"a’d m Spark For The Machine ® Spark

©Copyright 2016 Hewlett Packard Enterprise Company,

Predictive Analytics
Evaluating Spark for The Machine for fast accurate prediction

C Belief Propagation

GraphX

Our approach 15x on HPE Superdome X

— Exploit large NVM pool for data caching Fails to run

300
. . . 201
— Leverage computationally intensive
belief propagation . l
13
— Decrease communication cost
101 M/1.78B 1.7B/1148B
Graph Size

m Spark for the Machine m Spark

©Copyright 2016 Hewlett Packard Enterprise Company,

seconds

—

Hewlett Packard
Enterprise

http://hortonworks.com/press-releases/hortonworks-hpe-accelerate-spark/

Blog | Pariners

HORTONWORKS Why Hortonworks ~ Products Customers = Solutions Training Services = Developers

ABOUT = PRESS RELEASES

Hortonworks and Hewlett Packard Enterprise

Accelerate Apache Spark

SAN FRANCISCO, Calif., — March 1, 2016 — Horfonworks, Inc.® (NASDAQ: HDP) and Hewlett For more information -
Packard Labs, the central research organization of Hewlett Packard Enterprise™ (NYSE:
HPE), today announced a new collaboration to enhance Apache Spark, one of the most active
Apache big data projects. The collaboration will center around an entirely new class of analytic
workloads that benefit from large pools of shared memory.

Michelle Lazzar
A08-828-9681 @‘n
comms{@ hortonworks.com

Early results of the collaboration include the following:

« Enhanced shuffle engine technologies: Faster sorting and in-memory computations, which has
the potential to dramatically improve Spark performance.

— « Better memory utilization: Improved performance and usage for broader scalability, which will

E':t‘g:g help enable new large-scale use cases.

[T o T | D T L . [T S T Y T . D T T 1 S S - 9

Memory driven programming models

| I—
Hewlett Packard
Enterprise

Do we need separate data representations?

In-storage durability

Serialize
+ Separate object and persistent formats In-memory File or
— Programmability and performance issues objects & =
: : Deserialize database
— Translation code error-prone and insecure
In-memory durability CPU
+ In-memory objects are durable throughout !
+ Byte-addressability simplifies programmability Caches
+ Low Id/st latencies offer high performance ; : ;
— Persistent does not mean consistent!
DRAM NVM

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

NVM-aware application programming
Why can’t | just write my program, and have all my data be persistent?

Consider a simple banking program (just two accounts):
double accounts|2];

| want to transfer money between accounts. Naive implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;

What if | crash here?
accounts|to] += amount;

What if | crash here?

Crashes cause corruption, which prevents us from merely restarting the computation

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Persistent memory programming — Hewlett Packard Labs

—Manage consistent updates with failure atomicity
—Handle recovery
— Support multi-threaded concurrent access

— Atlas: Persistence for lock-based, multhreaded shared memory programs
— C/C++11
— Arbitrary data structures
— Operate directly on persistent memory within critical sections (lock-based or TM-style transactions)

—Managed Data Structures (MDS) in persistent memory
— C++11/Java8
— Specific data structures
— Library mediated access with ACID transactions with configurable isolation

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Manual solution

Need code that plays back
undo log on restart

Getting this to work with
threads and locks is very hard

Really want to optimize it

Very unlikely application
programmers will get it right

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Atlas solution: Consistent sections
Provide a construct that atomically updates NVM

persistent double accounts[2]; e Updatesin atomic block
transfer(int from, int to, double amount) { are either completely visible
__atomic { after crash or not at all
accounts[from] -= amount; _ _
accounts[to] += amount; o If updatesin atomic block
} are visible, then so are prior
} updates to persistent memory

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory
Consistency,” Proc. OOPSLA, 2014.
—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

The Atlas programming model
Ensure data consistency in persistent memory

— Programmer distinguishes persistent and transient data

Persistent Consistenc
— Persistent data lives in a “persistent region” Region API y API
— E.g., in pseudo-file-system in NVM
.g P _ Y | > User Program < |
— Directly mapped into process address space (no DRAM
buffers) L
. Compile
— Accessed via CPU loads and stores NV
. . . Instrumented Atlas
— Programmer writes ordinary multithreaded code User Program library
— Automatic durability support at a fine granularity, complete with |
recovery code Execute
— Supports consistency of durable data derived from s

concurrency constructs .
Persistent Data <—— Recover
— Open source code available at

https://github.com/HewlettPackard/Atlas

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory
Consistency,” Proc. Object-Oriented Programming, Systems, Languages & Applications (OOPSLA),
2014.

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Managed Data Structures (MDS)
Simplify programming on persistent in-memory data

— Ease of Programming Managed Space
— Programmer manages only application-level data
structures
— MDS data structures are automatically persisted in NVM Process 1 \PI‘OCGSS 2
— APIs in multiple programming languages: Java, C++
Pro rammerzcc:ss ?hrou h regf’erengesi data : /\ !
_ g _ g o —
— Direct reads and writes | ‘
— Ease of Data Sharing N I
— Just pass a reference AR R N
— Each program treats the data as if it was local to the program <€ Supported data
— High-level concurrency controls structures: List,
— Ensure consistent data in the face of data sharing by multiple Map, Set, Graph,
threads/processes Java, C++ Vector, Queue, . . .

simultaneously

—

Hewlett Packard

Enterprise ©Copyright 2016 Hewlett Packard Enterprise Company,

Supporting safe data sharing

Live child view Consumer update transactions
Parent view >
Snapshot child view Business Intelligence analytics
Non-blocking transactions Zero-copy snapshots Conflict resolution

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company,

Simplified data management — Benefits to application developer

Conventional Data Formats MDS Data Formats

Data structures Data structures

Data format conversion Local function calls

Serialisation/deserialisation Shared non-volatile memory

RPC, HTTP, message passing
Disk communication latency

Server
Shorter path to

Database persistence
Filesystem Less code

Disk Fewer errors

Faster development
Hewlett Packard

Enterprise ©Copyright 2016 Hewlett Packard Enterprise Company,

Prototypes and emulators

| I—
Hewlett Packard
Enterprise

_ Bridge
SoC +
“Private” — private
memory | Fabric-attached memory memory
@' —
p— () I
E_—rﬁ
SoC
o Fabric-
“Private” | — attached
memory C Fabric-attached memory memaory
-
S (FAM)

Show and tell at HPE Discover 2016

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Hardware/software co-development

Hardware development

313111

The Simulated/Emulated Machine The Machine

—tl L 1)

Software development

—

Hewlett Packard

Enterprise ©Copyright 2016 Hewlett Packard Enterprise Company

Fabric-Attached Memory Emulation for The Machine
Code for memory driven architecture

— Provides a programmer’s view of fabric
attached memory

— QEMU virtual machines running Debian mimic QEMU QEMU QEMU
compute nodes , ’ :
Pu | Debian Debian NN XN X Debian
— Shared memory on the host emulates fabric Node 1 Node 2 Node N
attached memory (FAM)

— IVSHMEM links guests and host Inter-VM shared memory backed by host file system for
— Performant environment allows developers to persistence (FAM emulation)
— Create code for The Machine architecture

Host Debian Operating System (QEMU Hypervisor)

— Modify legacy code to take advantage of The
Machine architecture

— Open source code available at
https://github.com/FabricAttachedMemory

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

Quartz: NVM Performance Emulator

—Quartz: performance emulator for NVM based on commodity hardware (DRAM)

—Focus: modeling primary performance characteristics of NVM that affect
application end-to-end performance

—Two performance knobs for NVM emulation: bandwidth and latency
—Non-goals: accurate simulation of NVM features, NVM functionality, and NVM devices...

—Quartz aims to support:

— Sensitivity analysis of complex applications on future hardware
—Which ranges of latencies and bandwidth are critical for achieving good performance and scalability?

—Design questions for future machines with both DRAM and NVM
—DRAM as cache for NVM vs. DRAM and NVM as peers
—Strategies for efficient data placement

Open source code available at

https://github.com/HewlettPackard/Quartz

H. Volos, G. Magalhaes, L. Cherkasova, J. Li. Quartz: A Lightweight Performance
— Emulator for Persistent Memory Software. Proc. of ACM/Usenix/IFIP Conference on

Hewlett Packard .
Enterprise M |dd |eware, 20 15 . ©Copyright 2016 Hewlett Packard Enterprise Company,

Commercial Memory-Driven
Computing

| I—
Hewlett Packard
Enterprise

HPE Integrity Superdome X

Large-scale shared memory multiprocessor

— Up to 16 processors, 384 cores
— Intel® Xeon® Processor E7 v4 and E7 v3 family

— Up to 24 TB DDR4 memory (Gen9)
— 384 DIMM slots

— 24 Mezz PCle gen3 slots (3 per blade) for 10
connectivity to LAN, SAN, and InfiniBand

— 18U enclosure

— https://lwww.hpe.com/us/en/servers/superdome.htmi

—

Hewlett Packard
Enterprise
©Copyright 2016 Hewlett Packard Enterprise Company,

HPE Persistent Memory

...... - . 05 TN '-‘

' F lu‘ 1
Lanaly mnastey

LE W4 i
i o

HPE NVDIMM-N NAND Flash

W

LR

- = ¥ 1 - \
AL | ‘:‘!‘-“‘11EV.'L‘.Em\\\\H\\\\\\\\\\l\l\l\l\\\\:?

— HPE 8GB NVDIMM Module (782692-B21)

— HPE ProLiant Gen9 Servers Supported and Configurations

— DL360 Gen9 and DL380 Gen9 E5-2600v4

— Ideal for accelerating databases and analytics workloads

— https://lwww.hpe.com/us/en/servers/persistent-memory.html

—

Hewlett Packard
Enterprise

HPE Persistent
Memory

Performance of memory with
the persistence of storage

The best compute platforms in the world, HPE ProLiant DL3560
and DL380, deliver up to &x faster performance in Microsoft
SQL Server workloads using HPE Persistent Memory.

The world of server storage will never look the same again.

www.he.cumsenrersrsis‘ren‘rmemo L'

Hewlett Packard
Enterprise

©Copyright 2016 Hewlett Packard Enterprise Company

Gen-Z Consortium

* Industry Leaders developing a memory-semantic interconnect

AMDZ ARM @©sroabcoM ‘Zcavium AN

DEALENC hevenrrs V2 IBM ©OIDT

Enterprise HUAWEI

Lenovo. 1\% Acron < Microsemi ‘ redhat

SAMSUNG D :eicie gl Westen g7 XILINX.

10/11/2016 © Gen-Z Consortium 2016

Memory-Semantic Fabric

« Communication at the speed of Memory

What is a Memory Semantic Fabric?

- Handles all communication as memory operations
such as load/store, put/get and atomic operations

typically used by a processor

SoC

hlermary

-----“

f
|
|
|

+ Memory semantics are optimal at sub-microsecond
latencies from CPU load command to register store

» Unlike, storage accesses which are block based and
managed by complex, code intensive, software stacks

Why Now?

SoC

hWlemary

e — —— - - -
’-----‘

Memory Semantics

+ The emergence of low latency, Storage Class
Memory (SCM) and the demand for large capacity,

rack scale resource pools, and multi node
architectures

10/11/2016

© Gen-Z Consortium 2016

Pooled Memory

GPU GPU

hWlermary hlemaory

‘-----’

Storage

T -

Gen-Z: A New Data Access Technology SE/N

Memory Semantics - simple Reads and
High Writes

Bandwidth From tens to several hundred GB/s of
Low Latency bandwidth

Sub-100 ns load-to-use memory latency

|
|
1
|
&
i
i
1

Real time analytics

~
Advanced Enables data centric and hybrid computing
Workloads Scalable memory pools for in memory
& applications
Technologies

Abstracts media interface from SoC to

J/ e :
unlock new media innovation

Provides end-to-end sézure connectivity
from node level to rack scale

Supports unmodlified OS for SW/ Storage
compatibility Pooled Memory

L & ¢ 1 & ¥ 7 [)

Secure
Compatible
Economical Graduated implementation from simple,

low cost to highly capable and robust

Leverages high-volume IEEE physical
layers and broad, deep industry ecosystem Rack Scale

\

10/11/2016 © Gen-Z Consortium 2016

For more information...
http://www.labs.hpe.com/research/themachine/

— D. Chakrabarti, H. Volos, I. Roy, and M. Swift. “How Should We Program Non-volatile Memory?”, tutorial at ACM Conf. on Programming Language Design and
Implementation (PLDI), 2016.

— |. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, W. Hwu, K. Schwan, T. Roscoe, R. Achermann, and P. Faraboschi. “SpaceJMP: Programming with multiple virtual
address spaces,” Proc. ACM Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.

— J. Izraelevitz, T. Kelly, A. Kolli, “Failure-atomic persistent memory updates via JUSTDO logging,” Proc. ACM Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

— K. Bresniker, S. Singhal, and S. Williams. “Adapting to thrive in a new economy of memory abundance,” IEEE Computer, December 2015.

— H. Volos, G, Magalhaes, L, Cherkasova, J, Li. “Quartz: A lightweight performance emulator for persistent memory software,” Proc. of ACM/Usenix/IFIP
Conference on Middleware, 2015.

— H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. ACM SIGMOD, 2015.

— P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, “Beyond processor-centric operating systems,” Proc. USENIX Workshop on Hot Topics in Operating Systems
(HotOS), 2015.

— S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, and T. Roscoe, D. Milojicic. “Not your parents’ physical address space,” Proc. USENIX HotOS, 2015.

— S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile memory in scale-out software,” Proc. ACM Intl. Workshop on
Rack-scale Computing (WRSC), 2015.

— M. Swift and H. Volos. “Programming and usage models for non-volatile memory,” Tutorial at ACM ASPLOS, 2015.

— D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging locks for non-volatile memory consistency,” Proc. ACM Conf. on Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA), 2014.

— H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, M. Swift. "Aerie: Flexible file-system interfaces to storage-class memory," Proc. ACM EuroSys,
2014.

—

Hewlett Packard
Enterprlse ©Copyright 2016 Hewlett Packard Enterprise Company

For open source code...

http://www.labs.hpe.com/research/themachine/TheMachineDistribution/

— Fast optimistic engine for data unification services
(FOEDUS): https://github.com/hkimura/foedus

— Fault-tolerant programming model for non-volatile
memory (Atlas):
https://github.com/HewlettPackard/Atlas

— Fabric Attached Memory Emulation:
https://qgithub.com/FabricAttachedMemory/Emulation

iy

it

— Performance emulation for non-volatile memory
latency and bandwidth (Quartz):
https://github.com/HewlettPackard/Quartz

—

Hewlett Packard
Enterprise

Research | The Mzchine | The Machine Distribution

Related articles

Time to get Machine-ready

Hortonworks: HPE and Hortonworks
collaborate to bring big-memary Spark
to the enterprise

With the fundamental shift in how The Machine will work, it's impartant that we invite
open source developars very early in the software development cycle to start
familiarizing with new non-volatile Memaory-Driven Computing programming models.

TheMextPlatform: Programming For
Aspart of HPE's ongoing commitment and active participation in the open source Persistent Memory Takes Persistence
community, The Machine's development team will work transparently and invite
developers wark on Memory-Oriven Computing. We'll start with familiar environments
like Linux and Portable Operating System Interface APIs with programming languages
like C/C++ and Java and make the performance advantages of massive memory on
fabrics available to them in @ way that they can be productive quickly.

TheMextPlatform: First Steps In The
Program Model For Persistent Memory

TheMextPlatform: Spark on Superdome ¥
Previews In-Memory On The Machine

During the coming months, we will continue to add to
the developer tools. The four contributions of code
gvailable today are:

1. Fast optimistic engine for data unification services: A completely new database
engine that speeds up applications by taking advantage of a large number of CPU
cores and non-volatile memary (NVM),
2. Fault-tolerant programming madel for non-volatile memory: Adapts existing
multi-threaded code to store and use data directly in persistent memaory, provides
simple, efficient fault-tolerance in the event of power failures or program crashes.
3. Fabric Attached Memary Emulation: An environment designed to allow users to
explore the new architecturzal paradigm of The Mac@i@apyright 2016 Hewlett Packard Enterprise Company
4. Performance emulation for non-volatile memory bandwidth : A DRAM-based
narfarmanre amiilation nlatform that levaranec featiirec availahle in cnmmodity

https://github.com/hkimura/foedus
https://github.com/HewlettPackard/Atlas
https://github.com/FabricAttachedMemory/Emulation
https://github.com/HewlettPackard/Quartz

Wrapping up

Memory-Driven Computing

» Fast load/store access to large shared pool of
fabric-attached non-volatile memory

Many opportunities for software
Innovation

* Operating systems

» Data stores

Analytics platforms

Programming models and tools
Applications

Algorithms

How would you exploit Memory-Driven
Computing?

—

Hewlett Packard
Enterprise

©Copyright 2016 Hewlett Packard Enterprise Company

	Memory-Driven Computing
	Slide Number 3
	Technology trends enabling Memory-Driven Computing
	Memory-Driven Computing in context
	Outline
	Memory driven systems software
	Traditional file systems
	Non-volatile memory aware file systems
	Linux for The Machine
	Slide Number 19
	Memory-driven data management
	Traditional databases
	FOEDUS: Fast optimistic engine for data unification services
	FOEDUS: Fast optimistic engine for data unification services
	FOEDUS: Open source embedded database
	Memory driven data analytics: �Spark for The Machine
	Spark contributions�Maximize advantages of large in-memory processing
	In-memory shuffle engine
	Predictive Analytics
	Slide Number 31
	Memory driven programming models
	Do we need separate data representations?
	NVM-aware application programming
	Persistent memory programming – Hewlett Packard Labs
	Manual solution
	Atlas solution: Consistent sections
	The Atlas programming model
	Managed Data Structures (MDS)
	Supporting safe data sharing
	Simplified data management – Benefits to application developer
	Prototypes and emulators
	Slide Number 51
	Show and tell at HPE Discover 2016
	Hardware/software co-development
	Fabric-Attached Memory Emulation for The Machine
	Quartz: NVM Performance Emulator
	Commercial Memory-Driven Computing
	HPE Integrity Superdome X
	HPE Persistent Memory
	Slide Number 71
	Slide Number 72
	Slide Number 73
	For more information...�http://www.labs.hpe.com/research/themachine/ �
	For open source code...�http://www.labs.hpe.com/research/themachine/TheMachineDistribution/�
	Wrapping up

