
Foundations for Scaling Analytics
 in Apache Spark

Joseph K. Bradley
September 19, 2016

® ™

Who am I?

Apache Spark committer & PMC member

Software Engineer @ Databricks (ML team)

Machine Learning Department @ Carnegie Mellon

2

Talk outline

Intro
 Apache Spark
 Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames

3

• General engine for big data computing
•  Fast & scalable
•  Easy to use
•  APIs in Python, Scala, Java & R

4

Apache Spark

Spark	SQL	 Streaming	 MLlib	 GraphX	

Open source
•  Apache Software Foundation
•  1000+ contributors
•  250+ companies & universities

It’s big
• Spark beat Hadoop’s Gray Sort record by 3x

with 1/10 as many machines
• Largest cluster size of 8000 Nodes (Tencent)

5

MLlib: Spark’s ML library

6

ML tasks
Classification
Regression
Recommendation
Clustering
Frequent itemsets

Data utilities
Featurization
Statistics
Linear algebra

Workflow utilities
Model import/export
Pipelines
DataFrames
Cross validation

Goals
Scale-out
Standard library
Extensible API

Challenges for big data
•  Iterative algorithms
•  Diverse algorithmic patterns
•  Many data types

GraphX and GraphFrames

7

Graph algorithms
Connected components
PageRank
Label propagation
…

Graph queries
Vertex degrees
Subgraphs
Motif finding
…

Goals
Scale-out
Standard library
Extensible API

Challenges for big data
•  Iterative algorithms
•  Many (big) joins
•  Many data types

Talk outline

Intro
 Apache Spark
 Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames

8

Talk outline

Intro
 Apache Spark
 Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames

9

10

Map Reduce

master

Resilient Distributed Datasets (RDDs)

val myData:
 RDD[(String, Vector)]
myData.map {
 _._2 * 0.5
}

Resilient Distributed Datasets (RDDs)

11

Resilient Distributed Datasets (RDDs)

12

Resiliency
•  Lineage
•  Caching &

checkpointing

13

Compute gradient (Vector)
for each row (training example)

Aggregate
gradient

master

ML on RDDs

Broadcast
gradient

ML on RDDs: the good

Flexible: GLMs, trees, matrix factorization, etc.

Scalable: E.g., Alternating Least Squares on Spotify data (2014)
•  50+ million users x 30+ million songs
•  50 billion ratings
Cost ~ $10
•  32 r3.8xlarge nodes (spot instances)
•  For rank 10 with 10 iterations, ~1 hour running time.

14

ML on RDDs: the challenges

Maintaining state

Python API

Iterator model

Data partitioning

15

16

master

Maintaining state on master

Current
state

17

Maintaining state in RDDs

…
…
…

Current state

Maintaining state

18

Cons of master
•  Single point of failure.
•  Cannot support large state (1 billion parameters)
Cons of RDDs
• More complex
•  Lineage becomes a problem à cache & checkpoint

Unstated con: Developers have to choose 1 option!

19

Python API (RDD-based)

Spark
worker
(JVM)

Python

Python

Data stored as Python objects
à Serialization overhead

20

Iterator model
val rdd0: RDD[(String, Vector)] = …

val rdd1 = rdd0.map { (name, data) =>
 (name.trim, normalizeVec(data))

}

val rdd2 = rdd1.map {

 ...

}

Arbitrary
data types

Black box lambda
functions

Iterative processing
(especially in ML!)

à Boxed types
à JVM object creation & GC

21

Data partitioning: numPartitions

Selecting numPartitions can
be critical.
•  Each task has overhead.
•  Overhead / parallelism trade-off.

Different numPartitions for
different jobs:
•  SQL: 200+ is reasonable
•  ML: 1 per compute core

22

Data partitioning: co-partitioning

Algorithm
•  Join
•  Map
•  Iterate

Co-partitioning is critical for
•  ALS (matrix factorization)
•  Graph algorithms

ML on RDDs: the challenges

Maintaining state (& lineage)

Python API

Iterator model

Data partitioning

23

Talk outline

Intro
 Apache Spark
 Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames

24

Talk outline

Intro
 Apache Spark
 Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames

25

Spark DataFrames & Datasets

26

dept	 age	 name	

Bio	 48	 H	Smith	

CS	 34	 A	Turing	

Bio	 43	 B	Jones	

Chem	 61	 M	Kennedy	

Data grouped into
named columns

DSL for common tasks
•  Project, filter, aggregate, join, …
•  Statistics, n/a values, sketching, …
•  User-Defined Functions (UDFs) &

Aggregation (UDAFs)

data.groupBy(“dept”).avg(“age”)

Datasets: Strongly typed DataFrames

27

Catalyst query optimizer

SQL

DataFrame

Dataset

Query Plan Optimized
Query Plan RDDs

Catalyst
transformations

Abstractions of user programs
(Trees)

Project Tungsten

Memory management
•  Off-heap (Java Unsafe API)
•  Avoid JVM GC
•  Compressed format

Code generation
•  Rewrite chain of iterators into single code blocks
•  Operate directly on compressed format

28

DataFrames in ML and Graphs

API
• DataFrame-based API in MLlib (spark.ml package)
• GraphFrames (Spark package)

Transformation & prediction

Training

29

Python API

30

0 2 4 6 8 10

RDD Scala
RDD Python

Spark Scala DF
Spark Python DF

Time to aggregate 10^6 Int pairs (secs) in Spark 1.4

better

Transformation/prediction with DataFrames

User-Defined Types (UDTs)
•  Vector (sparse & dense)
• Matrix (sparse & dense)

31

User-Defined Functions (UDFs)
•  Feature transformation
• Model prediction

Future work: model training
Goal: Port all ML/graph algorithms to run on DataFrames
for better speed & scalability.

Currently:
•  Belief propagation
•  Connected components

32

Catalyst in ML

What’s missing?
•  Concept of iteration
• Handling caching and checkpointing

across many iterations
• ML/Graph-specific optimizations for

Catalyst query planner

33

Tungsten in ML

Partly done
•  Vector/Matrix UDTs
• UDFs for some operations

What’s missing?
•  Code generation for critical paths
•  Closer integration of Vector/Matrix types with Tungsten

34

OOMing

DataFrames automatically spill to disk

 à Classic pain point of RDDs

35

java.lang.OutOfMemoryError

Goal: Smoothly scale, without custom per-algorithm optimizations

To summarize...
MLlib on RDDs
•  Required custom optimizations

MLlib with a DataFrame-based API
•  Friendly API
•  Improvements for prediction

In the future
•  Potential for even greater scaling for training
•  Simpler for non-experts to write new algorithms

36

Get started
Get involved
•  JIRA http://issues.apache.org
•  mailing lists http://spark.apache.org
•  Github http://github.com/apache/spark
•  Spark Packages http://spark-packages.org

Learn more
•  New in Apache Spark 2.0

http://databricks.com/blog/2016/06/01
•  MOOCs on EdX http://databricks.com/spark/training

37

Try out Apache Spark 2.0 in
Databricks Community Edition
http://databricks.com/ce

Many thanks to the community
for contributions & support!

Databricks
Founded by the creators of Apache Spark

Offers hosted service
•  Spark on EC2
•  Notebooks
•  Visualizations
•  Cluster management
•  Scheduled jobs

38

We’re hiring!

Thank you!
FB group: Databricks at CMU
databricks.com/careers

