Big Data Learning Systems

Tyson Condie

Cloud and Information Services Lab, Microsoft

Collaborators: Markus Weimer, Rusty Sears, Byung-Gon Chun, Shravan Narayanamurthy, Sriram Rao, Carlo Curino, Raghu Ramakrishnan

Machine Learning is Programming by Example

Used when:

Programming is hard (e.g. topic detection, bioinformatics)

Program changes all the time (recommender systems, antispam)

Machine Learning

Big: TiB - PiB

Supervised

- Classification
- Regression
- Recommender

Unsupervised

- Clustering
- Dimensionality reduction
- Topic modeling

Machine Learning Workflow

Step I: Example Formation

Feature and Label Extraction

Step II: Modeling

Step III: Evaluation (and eventually Deployment)

Example Formation at Scale

Machine Learning Workflow

Step I: Example Formation

Feature and Label Extraction

Step II: Modeling

Step III: Evaluation

Modeling

Machine Learning Workflow

Step I: Example Formation

Feature and Label Extraction

Step II: Modeling

Step III: Evaluation

Example Formation

Evaluation

Modeling (30,000ft)

Learning is Iterative

There isn't **one** computational model (yet)

Statistical Query Model: Algorithm operates on statistics of the dataset

Graphical Models: Heavy message passing, possibly asynchronous.

Many more: Custom solutions

Machine Learning Workflow

Step I: Example Formation

Feature and Label Extraction

Step II: Modeling

Step III: Evaluation

Example Formation

Copy Model

Cumbersome

Not scalable

Evaluation

Distributed Learning

Machine Learning in MapReduce?

- + MapReduce model fits statistical query model learning
- Hadoop MR does not support iterations (30x slowdown compared to others)
- Hadoop MR does not match other forms of algorithms

"Solution": Map only jobs

- 1. Allocate a set of map tasks
- 2. Instantiate learning algorithm
- 3. Execute iterative algorithm until convergence
- 4. Release mappers

Hadoop Abusers 1: (All)Reduce and friends

Decision Trees on Hadoop

Jerry Ye et al.

Runs OpenMPI on a map only job Uses HDFS for coordination/bootstrap

Vowpal Wabbit

John Langford et al.

AllReduce on a map-only job
Uses custom server for coordination/bootstrap
Constructs a binary aggregation tree
Optimizes node selection via redundant tasks

Worker/Aggregator Abstraction

Markus Weimer and Sriram Rao

Iterative Map-Reduce-Update on a map-only job
Uses Zookeeper for coordination/bootstrap
Custom communication between workers and aggregator

Hadoop Abusers 2: The Graph View

Apache Giraph

Avery Chen et al.

Open source implementation of Pregel on a map-only job Uses Zookeeper for coordination/bootstrap Graph computation using "think like a vertex" UDFs Executes BSP message passing algorithm

Yahoo! LDA (YLDA)

Alex Smola and Shravan Narayanamurthy

Instantiate Graphical Model on a map-only job
Uses HDFS for coordination/bootstrap
Coordinate global parameters via shared memory
Version 1: memcached, Version 2: ICE

Problems with this Approach

Problems for the Abusers

Fault Tolerance Mismatch

MapReduce fault tolerance actually gets in the way

Resource Model Mismatch

MapReduce's resource selection often suboptimal for the job at hand (data local vs. communication)

Cumbersome integration with M/R

Every Abuser has to implement ...

Networking Cluster Membership Bulk data transfers

. . .

Problems for the Cluster

Abusers Violate MapReduce assumptions

Network usage bursts in (All)Reduce Local disk use in VW

The Abusers are disrespectful of other users

e.g. production workflows Hoarding of resources (even worse as Hadoop does not support preemption)

Rise of the Resource Managers

Hadoop v1

E.g., MapReduce Scheduler Resource Allocation = App Resource Allocation list of (node type, count, resource) Master Resource Pool E.g. Node Manager HDFS { (node1, 1, 1GB), (rack-1, 2, 1GB),(*, 1, 2GB) } Resource Job Submission Client Resource Pool Manager Node Manager HDFS Resource Pool Node Manager **HDFS**

YARN: A step in the right direction

Disentangles resource allocation from the computational model

YARN manages the cluster resource allocations

Application masters manage computation on allocated resources

Low-level API

Containers are empty processes (with resource limits)

No assumed higher-level semantics

REEF: Retainable Evaluator Execution Framework

Goals for REEF

Ease development on resource managers (like YARN)

Cluster membership: Heartbeats, Failure notification, etc. Networking: Naming, Message Passing, Group Communications, etc. State management: Checkpointing, Storage, etc.

• • •

Unify different computations on a single runtime

e.g. Map/Reduce followed by MPI followed by stream processing Hand-over of resources (containers on the machines) Hand-over of data and state (ideally, in RAM)

The Challenge

The Solution: add a layer of indirection

REEF in the Stack (Future)

REEF: Computation and Data Management

Extensible Control Flow

Control plane implementation. **User code** executed on YARN's Application Master

User code executed within an **Evaluator**.

Execution Environment for **Activities**. One **Evaluator** is bound to one YARN Container.

Data Management Services

Storage

Abstractions: Map and Spool Local and Remote

Network

Message passing
Bulk Transfers
Collective Communications

State Management

Fault Tolerance Checkpointing

REEF Control Flow

Running Example: Distributed Shell Run '1s' on these nodes!

launch container


```
public class DistributedShell {
  public static void main(String[] args){
    Injector i = new Injector(yarnConfiguration);
    REEF reef = i.getInstance(REEF.class);
   reef.submit(driverConf);
```


Job Driver


```
public class DistributedShellJobDriver {
  private final EvaluatorRequestor requestor;
  . . .
  public void onNext(StartTime time) {
    requestor.submit(EvaluatorRequest.Builder()
                    .setSize(SMALL).setNumber(2)
                    .build()
```



```
public class DistributedShellJobDriver {
  private final EvaluatorRequestor requestor;
  ...

public void onNext(AllocatedEvaluator eval) {
   Configuration contextConf = ...;
   eval.submitContext(contextConf)
  }
  ...
}
```



```
public class DistributedShellJobDriver {
  private final String cmd = "ls";
  [...]
  public void onNext(ActiveContext ctx) {
   final String activityId = [...];
   Configuration activityConf = Activity.CONF
            .set(IDENTIFIER, "ShellActivity")
            .set(ACTIVITY, ShellActivity.class)
            .set(COMMAND, this.cmd)
            .build();
    ctx.submitActivity(activityConf);
  [...]
```



```
class ShellActivity implements Activity {
  private final String command;
 @Inject
  ShellActivity(@Parameter(Command.class) String c) {
    this.command = c;
  private String exec(final String command){
 @Override
  public byte[] call(byte[] memento) {
    String s = exec(this.cmd);
    return s.getBytes();
```


REEF Control Flow: Summary

Control Flow is centralized in the Driver

Evaluator allocation & configuration Activity configuration & submission

Error Handling is centralized in the Driver

When an Activity throws an Exception, we ship & throw it at the Driver When an Evaluator dies, we throw an Exception at the Driver

All APIs are asynchronous

Driver files requests via non-blocking API calls REEF fires events at user (e.g. Evaluator availability, Exceptions, ...) Goal: REEF is stateless for fault-tolerant drivers Easy to reason about and debug

Scalable

Checkpoint Services

Ceckpoint Services

Client Services Client

Client Services Client

Learning in REEF

Simple Batch Gradient Descent

- 1. Driver Launches
- 2. Driver Launches Evaluators
- 3. Driver submits LoadActivity
- 4. Activity loads Data
- 5. Activity finishes

6. Until Converged:

Driver submits ComputeGradient Gradient is shipped to the Driver

Conclusion

Logical/Physical Separation

- Observation #1: Enables query optimization
- Can we automate this translation?

Logical/Physical Separation

- Observation #2: Systems have to solve the same problems and adopt similar solutions
- Can we isolate these solutions in reusable modules?

A Unifying Design

Datalog?

Graph **Analysis** ML algorithm SQM **Datalog** query over training data Query optimizer Parallel Recursive Dataflow

- Recursion is built into the language
- Amenable to optimizations
- Lots of existing work that we can leverage
 - J. Eisner and N. Filardo. Dyna: Extending datalog for modern AI. In Datalog '10
 - S. Funiak et al. Distributed inference with declarative overlay networks. EECS Tech Report 2008
 - D. Deutch, C. Koch, T. Milo. On Probabilistic Fixpoint and Markov Chain Query Languages. In PODS '10
 - Y. Bu et al. Scaling Datalog for Machine Learning on Big Data. Tech Report http://arxiv.org/abs/1203.0160

REEF

Version 0.1

Open

- Provenance for triage
 - "My model misbehaves why?"
- Fault-awareness policies
- Incremental learning

Processing

• _

- State management
- Caching policies

Conclusion

- · Open source release soon
 - · Apache 2 license
 - MapReduce support (including Hive)
- Machine learning libraries supported
 - · Iterative Map-Reduce-Update
 - MPI (Graphical Models)
 - Mahout compatibility?
- Contact: Tyson Condie
 - · tcondie@microsoft.com
 - · tcondie@cs.ucla.edu

UCLA Engineering
HENRY SAMUELI SCHOOL OF
ENGINEERING AND APPLIED SCIENCE
Birthplace of the Internet