Big Data Learning Systems

Tyson Condie
Cloud and Information Services Lab, Microsoft

Collaborators: Markus Weimer, Rusty Sears, Byung-Gon Chun, Shravan
Narayanamurthy, Sriram Rao, Carlo Curino, Raghu Ramakrishnan

kéMachine Learning is
Programming by Example

Used when:
Programming is hard (e.g. topic detection, bioinformatics)
Program changes all the time (recommender systems, antispam)

Machine Learning

 Classification
e Regression

e Recommender
D t Model
a a « Clustering
o . e Dimensionality
Small: MiB - GiB reduction

 Topic modeling

Big: TiB - PIB

Machine Learning Workflow

Step I Example Formation

Feature and Label Extraction

Step I Modeling

Step III: Evaluation (and eventually Deployment)

Example Formation m Modeling m
4

Example Formation at Scale

Feature Extraction
: Bag of
EMail » D g

Data Parallel

Functions
Click Log »

Label Extraction

(Large Scale)

Join
4

F
J of

Example

Machine Learning Workflow

Step I Example Formation

Feature and Label Extraction

Step I Modeling

Step III: Evaluation

1hadEJtDp ¢ —/a/a/a p

Example Formation

Machine Learning Workflow

Step I Example Formation

Feature and Label Extraction

Step II: Modeling

Step III: Evaluation

7

Modeling (30,000ft)

Learning is Iterative There isn't one computational
model (yet)

Statistical Query Model: Algorithm operates on
Apply statistics of the dataset
Model

to Data Graphical Models: Heavy message passing,
possibly asynchronous.

Many more: Custom solutions

\VileYe =)

Machine Learning Workflow

Step I Example Formation

Feature and Label Extraction

Cumbersome

Step I Modeling &

Not scalable

Step III: Evaluation

& ThErEED

© liErlEED

Features

Modeling

Example Formation

Distributed Learning

Machine Learning in MapReduce? “Solution”: Map only jobs

+ MapReduce model fits statistical query model 1. Allocate a set of map tasks

learning
2. Instantiate learning algorithm

- Hadoop MR does not support iterations (30x

slowdown compared to others) 3. Execute iterative algorithm until convergence

- Hadoop MR does not match other forms of

algorithms 4. Release mappers

=» Hadoop Abuse

10

Hadoop Abusers 1: (All)Reduce and friends

Jerry Ye et al.
Runs OpenMPI on a map only job
Uses HDFS for coordination/bootstrap [Model]

Vowpal Wabbit

John Langford et al.

AllReduce on a map-only job

Uses custom server for coordination/bootstrap
Constructs a binary aggregation tree
Optimizes node selection via redundant tasks

Worker/Aggregator Abstraction
Markus Weimer and Sriram Rao

Iterative Map-Reduce-Update on a map-only job

Uses Zookeeper for coordination/bootstrap

Custom communication between workers and aggregator

Decision Trees on Hadoop
[Statistics]

Updates

11

Hadoop Abusers 2: The Graph View

Apache Giraph

Avery Chen et al.

Open source implementation of Pregel on a map-only job
Uses Zookeeper for coordination/bootstrap

Graph computation using “think like a vertex” UDFs
Executes BSP message passing algorithm

Yahoo! LDA (YLDA)

Alex Smola and Shravan Narayanamurthy

Instantiate Graphical Model on a map-only job

Uses HDFS for coordination/bootstrap

Coordinate global parameters via shared memory
Version 1: memcached. Version 2: ICE

12

Data and
Model

[

Statistics /
Updates

Partitions

Problems with this Approach

Problems for the Abusers

Fault Tolerance Mismatch
MapReduce fault tolerance actually gets in the way

Resource Model Mismatch

MapReduce's resource selection often suboptimal for the job
at hand (data local vs. communication)

Cumbersome integration with M/R

Every Abuser has to implement ...
Networking
Cluster Membership
Bulk data transfers

13

Problems for the Cluster

Abusers Violate MapReduce assumptions
Network usage bursts in (All)Reduce
Local disk use in VW

The Abusers are disrespectful of other users

e.g. production workflows

Hoarding of resources (even worse as Hadoop does not support
preemption)

Rise of the Resource Managers

Hadoop vl

Job Submission

15

MapReduce
Scheduler

Resource
Manager

(Reduce
Task

Map Map Reduce Reduce
Slot Slot Slot Slot

_ Master)

. Worker

<=

MapReduce ﬂ‘ Map Map Reduce Reduce
Status and Slot Slot Slot Slot
cheduling 9 Worker

Tasl
Reduce Reduce
Slot Slot

Map Map

Slot Slot

Worker

YARN: Hadoop vZ

-

Pl Resource Pool

\Node Manager
-

Resource [ESEIE
\YFE nager .. Resource

“Availability | Node Manager

-

Al Resource Pool

\Node Manage

16

YARN: Hadoop v2

E.g.

MapReduce
Scheduler

Resource Allocation = .
list of (node type, count, resource) Resource Allocation
P
E.g. N M
N I
{ (nodel, 1, 1GB), (rack-1, 2, 1GB),(*, 1, 2GB) } J 7 ode Manage

-

V4
Job Submission A(Resource
,
L Manager

\Node Manager

-

Resource Pool

\Node Manage

17

YARN: Hadoop v2

E.g.

MapReduce
Scheduler

Vs

App
Master

E.g.

../ Reauce
) IEN

Monitor Job Af Resource
L Manager

\Node Manage

18

YARN: Hadoop v2

@Monitowob Af Resource
L Manager

19

Status
L

Node Manager

Resource Pool

\Node Manager

Resource Pool

\Node Manage

YARN: Hadoop v2

Release Resou rces/ 7

@Monitowob

20

o
f Resource
L Manager

7

7

7

\Node Manager

MAalz’? er Contamer
Resource Pool
\Node Manager
@ Contamer
Resource Pool
Contanner
Resource Pool

\Node Manage

YARN: Hadoop v2

_ Job Complete

21

~ Notification

=
L Manager

-~

Resource Pool

\Node Manager
-

Resource Pool

\Node Manager

-

Resource Pool

\Node Manage

YARN: A step in the right direction

Disentangles resource allocation from the computational model

YARN manages the cluster resource allocations
Application masters manage computation on allocated resources

Low-level API

Containers are empty processes (with resource limits)
No assumed higher-level semantics

22

REEF: Retainable Evaluator
Fxecution Framework

Goals for REEF

Fase development on resource managers (like YARN)

Cluster membership: Heartbeats, Failure notification, etc.
Networking: Naming, Message Passing, Group Communications, etc.
State management: Checkpointing, Storage, etc.

Unity different computations on a single runtime

e.g. Map/Reduce followed by MPI followed by stream processing
Hand-over of resources (containers on the machines)
Hand-over of data and state (ideally, in RAM)

24

The Challenge

\YEledallsl=
Learning

Q

SQL / Hive

:

YARN / HDFS

25

The Solution: add a layer of indirection

#

REEF

YARN / HDFS

26

REEF in the Stack (Future)

-

Logical Abstraction

Physical Data Parallel Operators

REEF

YARN / HDFS

27

REEF: Computation and Data Management

Fxtensible Control Flow Data Management Services

Control plane implementation. Storage
User code executed on YARN's Abstractions: Map and Spool

Application Master Local and Remote

User code executed within an Network

Evaluator. Message passing

Bulk Transfers

Collective Communications

Activity

Al Execution Environment for
Activities. One Evaluator is State Management
bound to one YARN Container. Fault Tolerance
Checkpointing

REEF Control Flow

8 Running Example: Distributed Shel
Run ‘1s’

on these
nodes!

The REEF Control Flow

submit job

launch
container

public class DistributedShell {
public static void main(String[] args){
Injector i = new Injector(yarnConfiguration);

REEF reef = i.getInstance(REEF.class);

[reef.submit(driverConf);]

y

}
}

The REEF Control Flow

launch
container

submit job <$j>

public class DistributedShell {
ﬁ&glic static void main(String[] args){
iéiector i = new Injector(yarnConfiguration);
éééF reef = i.getInstance(REEF.class);

reef.submit(driverConf);

}
}

y

33

The REEF Control Flow

Request
ask for

public class DistributedShellJobDriver {
private final EvaluatorRequestor requestor;

public void onNext(StartTime time) {

requestor.submit(EvaluatorRequest.Builder()
.setSize(SMALL).setNumber(2)

.build()

)5

The REEF Control Flow

Allocated
Evaluator

—y—

signed token

NEINEE R7A RN

public class DistributedShellJobDriver {
private final EvaluatorRequestor requestor;

public void onNext(AllocatedEvaluator eval) {
Configuration contextConf = ...;
eval.submitContext(contextConf)

}

The REEF Control Flow

REEF \

context
conﬁg

f

Evaluator

ActiveContext
NEINER B7Aa
Node

public class DistributedShellJobDriver {
private final String cmd = “ls”;

[...]

public void onNext(ActiveContext ctx) {
final String activityId = [...];

Configuration activityConf = Activity.CONF
.Set (IDENTIFIER, "ShellActivity")
.set(ACTIVITY, ShellActivity.class)
.set (COMMAND, this.cmd)

.build();

J:ctx.submitActivity(activityConf);]

[...]

Activity

Evaluator

class ShellActivity implements Activity {
private final String command;

@Inject
ShellActivity(@Parameter(Command.class) String c) {
this.command = c;

}

private String exec(final String command){

}

@Override

public byte[] call(byte[] memento) {
String s = exec(this.cmd);
return s.getBytes();

}

|

heartbeat()
Activity Activity
Context

Evaluator

Context
Evaluator

il

39

The REEF Control Flow

CompletedActivity

Name § YARN C REEF

Activity Activity

Context Context

Evaluator _ Evaluator
Retains
State! S

==
-~

e

40

The REEF Control Flow

CompletedActivity

Name | YARN C REEF

Activity Activity
Context

Evaluator

Context
Evaluator

==
R

18] 1

42

The REEF Control Flow

Context.
close() 3 CompletedEvaluator

NEINEE R7A RN
Node

Act|V|ty
| Context |
EvahJator

43

REEF Control Flow: Summary

Control Flow is centralized in the Driver

Evaluator allocation & configuration
Activity configuration & submission

Easy to reason

— about and

Error Handling is centralized in the Driver debug

When an Activity throws an Exception, we ship & throw it at the Driver
When an Evaluator dies, we throw an Exception at the Driver

All APIs are asynchronous

Driver files requests via non-blocking API calls
REEF fires events at user (e.g. Evaluator availability, Exceptions, ...)
Goal: REEF is stateless for fault-tolerant drivers

— Scalable

44

Checkpoint Services

PCKpOINt Services

Client

. suspend

Activity C Job Driver
REEF

Name { Yarn

()
>

preempt cont.
on node4

suspend ()

Activity

Evaluator

services

PCKpOINt Services

Client

Job Driver

Name | Yarn REEF <\
»

l mem;

C Evaluator
rode1e

PCKpOINt Services

Client

Job Driver
Name | Yarn REEF

SeI’VICGS

Evaluator

-nodeg Retrieve Checkpoint ﬂ

Learning IN REEF

Simple Batch Gradient Descent

\ A

Compute
Gradient

Evaluator

Compute Compute
Gradient Gradient

Evaluator Evaluator

50

1. Driver Launches

2. Driver Launches Evaluators
3. Driver submits LoadActivity
4. Activity loads Data

5. Activity finishes

6.Until Converged:
Driver submits ComputeGradient
Gradient is shipped to the Driver

Conclusion

Logical/Physical Separation

Graph
Analysis

, [SQM
Logical
Layer

> o

PhySical Select, Project,

: MapReduce MPI
Join, Group
Layer

- Observation #1: Enables query optimization
- Can we automate this translation?

Logical/Physical Separation

Graph
Analysis

) [SQM
Logical
Layer

> o

MapReduce MPI

PhySical Select, Project,
Join, Group
Layer

- Observation #2: Systems have to solve the same problems and adopt similar
solutions

- Can we isolate these solutions in reusable modules?

53

A Unitying Design

Graph

ML algorithm Analysis

[SQM

Logical query over training
data

Query optimizer

¥

Parallel Recursive Dataflow

¥

REEF

54

Datalog?

Graph

ML algorithm Analysis

[SQM

Datalog query over training
data

- Recursion is built into the language
- Amenable to optimizations

. Lots of existing work that we can leverage Query optimizer

J. Eisner and N. Filardo. Dyna: Extending datalog for
modern Al In Datalog '10

S. Funiak et al. Distributed inference with declarative
overlay networks. EECS Tech Report 2008

Parallel Recursive Dataflow

D. Deutch, C. Koch, T. Milo. On Probabilistic Fixpoint and

Markov Chain Query Languages. In PODS '10

Y. Bu et al. Scaling Datalog for Machine Learning on Big REEF
Data. Tech Report 2012

55

http://arxiv.org/abs/1203.0160

Version 0.1

Programming Pregel

[Iterative—MRU Models for ML

. Implementation over Hyracks algorithms

. Supports both Iterative-MRU and Pregel
. Standard optimizations + some new tricks

Datalog queries

,;;.100 N

° | W Spark

o 80

O W Datalog on Hyracks

3 60 - Hardcoded optimizations

.

Hyracks

AN
o
|

Execution Time
N
O o
| |

1 2 3 4 5 6
Scale-up Factor

Graph

 Provenance for triage Analysis

* "My model misbehaves
- why?”
« Fault-awareness policies
* Incremental learning

Datalog query over training
data

-- <=y
Processing

Query optimizer

¥

e State IVianiayciielll ~ Parallel Recursive Dataflow

e Caching policies ‘

REEF

57

Conclusion

- Open source release soon

- Apache 2 license
- MapReduce support (including Hive)

- Machine learning libraries supported

- Iterative Map-Reduce-Update
+ MPI (Graphical Models)
- Mahout compatibility?

- Contact: Tyson Condie A
. . ° Engincering
+ tcondie@microsoft.com B MlcrOSOft HENRY SAMUELI SCHOOL OF

: ENGINEERING AND APPLIED SCIENCE
- tcondie@cs.ucla.edu Birthplace of the Internet

58

mailto:tcondie@microsoft.com
mailto:tcondie@cs.ucla.edu

	Big Data Learning Systems
	Machine Learning is Programming by Example
	Machine Learning
	Machine Learning Workflow
	Example Formation at Scale
	Machine Learning Workflow
	Machine Learning Workflow
	Modeling (30,000ft)
	Machine Learning Workflow
	Distributed Learning
	Hadoop Abusers 1: (All)Reduce and friends
	Hadoop Abusers 2: The Graph View
	Problems with this Approach
	Rise of the Resource Managers
	Hadoop v1
	YARN: Hadoop v2
	YARN: Hadoop v2
	YARN: Hadoop v2
	YARN: Hadoop v2
	YARN: Hadoop v2
	YARN: Hadoop v2
	YARN: A step in the right direction
	REEF: Retainable Evaluator Execution Framework
	Goals for REEF
	The Challenge
	The Solution: add a layer of indirection
	REEF in the Stack (Future)
	REEF: Computation and Data Management
	REEF Control Flow
	Running Example: Distributed Shell
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	The REEF Control Flow
	REEF Control Flow: Summary
	Checkpoint Services
	Checkpoint Services
	Checkpoint Services
	Checkpoint Services
	Learning in REEF
	Simple Batch Gradient Descent
	Conclusion
	Logical/Physical Separation
	Logical/Physical Separation
	A Unifying Design
	Datalog?
	Version 0.1
	Open Research ?
	Conclusion

