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Memory Wall 

In 1994 Wulf and McKee pointed out 

the implications of processor and 

memory performance progressing 

exponentially but with differing rates 

(~50%/yr for processors vs 7%/yr for 

memory) – causing an exponentially 

increasing gap which would lead to 

the end of single thread processor 

performance progress by 2008 



Predictions were largely accurate 

Transistors, frequency, power, performance, and processor cores over 
time. The original Moore’s law projection of increasing transistors per 
chip remains unabated even as performance has stalled. 



Power Wall 
The Power Wall was Hit around 2004 due to a breakdown in Dennard Scaling 
Where Power had previously scaled as 1/L3  
at ~ 2004 was limited to scaling as 1/L 

Vdd scaling -> lower Vth -> exponential increase in leakage 
This caused diminishing returns on pushing single-thread processor architectures 

Intel Reaction in 2005 – “Platform 2015 – White Paper – Intel Processor and Platform 
Evolution for the Next Decade” 
use Moore scaling to double  
cores every generation 



Increased Parallelism has forced the emergence of 
New Computing paradigms 



Computing Performance 

The era of sequential computing must give way to a new era in which parallelism 

holds the forefront. There is no guarantee we can make parallel computing as 

common and easy to use as yesterday’s sequential single-processor computer 

systems, but unless we aggressively pursue the efforts suggested by the 

CSTB* committee’s recommendations, it will be game over for growth in 

computing performance. 

 - Samuel H. Fuller “Computing Performance – Game Over or Next Level”  2011 and  

Chair - Committee on Sustaining Growth in Computing Performance (CSTB)* 



IEEE Computer Society – March 2013 

…We have been using the same models for computation since the inception 

of computing. We’ve tweaked and optimized every level of the stack, but to 

meet today’s challenges, everything has to be on the table.  

This will require a serious, cross-discipline conversation among domain 

experts.”   

Tom Conte, vice president of the IEEE Computer Society 



IEEE - Rebooting Computing Working Group 

“Revamping computing is not something that any organization or company 

can undertake by itself.   IEEE has societies and councils engaged in almost 

every aspect of computing, so our organization is the natural place to take on 

these tasks..  The goal is to completely rethink computing, from devices 

to circuits to architecture and software …IEEE will be the catalyst to 

spawn new thinking.” 

Elie Track, chair “IEEE Rebooting Computing Group” 



Dark Silicon 

“Dark silicon and the end of multicore scaling” 
H Esmaeilzadeh, et al … (ISCA), 2011



Dark Silicon 

“….Dennard scaling’s failure led the industry to race down the multicore path, which for 

some time permitted performance scaling for parallel and multitasked workloads, 

permitting the economics of process scaling to hold.. 

..An essential question is how much more performance can be extracted from the 

multicore path in the near future. 

…This paper combined technology scaling models, performance models, and empirical 

results from parallel workloads to answer that question and estimate the remaining 

performance available from multicore scaling. Using PARSEC benchmarks and ITRS 

scaling projections, this study predicts best-case average speedup of 7.9 times between 

now and 2024 at 8 nm That result translates into a 16% annual performance gain, for 

highly parallel workloads…” 



Heterogeneous Architectures 

As Moore continues to increase the number of transistors on silicon at a scale of 1/L2 

while  power is only decreasing as 1/L … 

… we can afford to ‘overprovision’ the chip – i.e. use the TDP (total die power budget) 
using just a subset of the chip’s resources – for example use the entire budget on 
compute while shutting down global on-chip communication resources. 

Enables peak performance (using all available power) on diverse workloads. 

This may signal that the right time for Reconfigurable Computing has arrived – 
specialized hardware acceleration, powered off most of the time. 



The Cost of Moving Data 

“Architecture at the end of Moore”,  Stefanos Kaxiras,, 2012  



Energy cost now is dominated by data movement 

GPUS AND THE FUTURE OF PARALLEL COMPUTING”, William Dally IEEE Micro 2011

Locality = Efficiency 



NAND process node and corresponding channel 
complexity needed to maintain system error rate 

If the NAND controller is pad limited it would be feasible to increase die 
utilization and add compute functionality with zero increase in die size 



•  NAND is a block device and requires a significant and growing investment in 

signal processing to enable it’s continued scaling 

•  This signal processing overhead is best situated close to NAND to minimize 

the energy cost of data movement 

•  NAND has no delusions of being a DRAM replacement like PCM or STTRAM 

with low-latency and close to byte addressable architectures which will not 

tolerate any significant signal processing overhead 

•  It is not about the technology – it’s the economics - SSDs exist due to 

the much larger demand for consumer grade NAND devices for the 

smartphone, tablet, SD Card and USB memory markets.  

•  Storage-Compute likewise will succeed or fail purely on economics ($/op, J/

op) not technology 

Why NAND and not other NVM technologies 



ITRS – Technology Trends 



NAND will continue to scale… vertically  

 - ITRS Winter Public Conference Dec 2012 Hsinchu, Taiwan 



ITRS – Winter Conference, Dec 2012  



Managed NAND 

Micron Enhanced ClearNAND Flash Memory

Enhanced ClearNAND Applications Contact Us

Enhanced ClearNAND Flash devices are available now. To 
find out more about product specifications, visit  
micron.com/clearnand

micron.com
Products are warranted only to meet Micron’s production data sheet 
specifications. Products and specifications are subject to change without 
notice.
Micron, the Micron logo, and ClearNAND are trademarks of Micron Technology, Inc. All other 
trademarks are the property of their respective owners. ©2012 Micron Technology, Inc. All rights 
reserved. 9/12 EN.L
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OpenStack
The Virtualization Revolution 



Big Data – application areas 

Some Application Areas 
•  content based image retrieval 

•  semantic tagging of streaming multimedia 

•  data intensive scientific computing 

•  on-line machine learning from streaming data 

•  cloud compute optimized for Numenta's Grok Engine 

•  on-line spatiotemporal clustering and classification of trading data 

•  hierarchical-temporal memory model based algorithmic trading in financial markets 



Big Data Application Example – Numenta’s Grok 
An Engine for Acting on Data Streams 

“Building brains to understand the world’s data”   
Jeff Hawkins, 



“..No Storage Required..” 

“Building brains to understand the world’s data”   
Jeff Hawkins, 

Big Data Application Example – Numenta’s Grok 
An Engine for Acting on Data Streams 



Data Intensive Scientific Computation 



Big Data -> Useful Information 



SSD as a Storage Processing Element 

CPU Power: use ITRS HP technology to evaluate dynamic and leakage power.  
Number of Gates: 200M/core  
Frequency: 2GHz.  
Dynamic Power (per core): 5.04W  
Leakage Power (per core): 0.340W  

SSD Controller Power: use ITRS LOP technology to evaluate dynamic and leakage power.  
Number of Gates: 20 millions per core (Assumption: 10% of the CPU).  
Frequency: 1GHz.  
Dynamic Power (per core): 0.156W.  
Leakage Power (per core): 1.34mW. 

Channel Processor Power: use ITRS LOP technology to evaluate dynamic and leakage power.  
Number of Gates: 1K, 10K, 100K, 1M.  
Frequency: 400MHz.  
Dynamic Power (per core): 3.12uW, 31.2uW, 312uW, 3.12mW. 
Leakage Power (per core): 67nW, 670nW , 6.7uW, 67uW. 

DDR SDRAM: use parameters from MICRON. 
Dynamic Power (per 2GB): 438.3mW. 
Leakage Power (per 2GB): 88.1mW.  

NAND Flash: use parameters from MICRON. 
Dynamic Power (per die): 0.04W. 
Leakage Power (per die): 0.003W.  

Host Interface: PCIe. 
Dynamic Power (per GB): 37.5mW. 
Leakage Power (per GB): 0.mW 



Architecture Block Diagrams 



Architecture Block Diagrams 



Architecture Block Diagrams 



Baseline Face Recognition 

1-Core 2-Core 4-Core 8-Core 16-Core 

Average Processing Time of Facial Recognition Algorithm (ms) 

CPI = 100 52.7 26.4 13.3 6.80 3.50 

CPI = 10 5.50 2.90 3.40 3.00 2.90 

CPI = 1 3.00 2.80 2.80 2.70 2.70 

CPI = 0.1 2.70 2.70 2.70 2.70 2.70 

Average Power of Facial Recognition Algorithm (W) 

CPI = 100 294 289 286 287 286 
CPI = 10 31.5 31.5 33.9 36.9 45.4 
CPI = 1 6.36 7.12 9.17 12.6 20.1 
CPI = 0.1 3.76 4.70 6.57 10.3 17.7 
Average Energy of Facial Recognition Algorithm (mJ) 

CPI = 100 294 289 286 287 286 
CPI = 10 31.5 31.5 33.9 36.9 45.4 
CPI = 1 6.36 7.13 9.17 12.6 20.1 

CPI = 0.1 3.76 4.71 6.57 10.3 17.7 



Active Flash Face Recognition 

1-Core 2-Core 4-Core 8-Core 16-Core 

Average Processing Time of Facial Recognition Algorithm (ms) 

CPI = 100 52.6 26.4 13.3 6.70 3.40 

CPI = 10 5.40 2.80 1.50 0.800 0.500 

CPI = 1 0.700 0.400 0.300 0.300 0.300 

Average Power of Facial Recognition Algorithm (W) 

CPI = 100 0.699 0.858 1.17 1.79 2.98 

CPI = 10 0.716 0.881 1.18 1.70 2.48 

CPI = 1 0.839 1.02 1.15 1.16 1.17 

Average Energy of Facial Recognition Algorithm (mJ) 

CPI = 100 36.8 22.6 15.6 12.0 10.1 

CPI = 10 3.86 2.47 1.78 1.36 1.24 

CPI = 1 0.587 0.410 0.345 0.347 0.351 



SPU Face Recognition 

Channels 4 8 16 32 

Average Processing Time (ms) 

Time 0.300 0.200 0.100 0.0500 

Average Power of Facial Recognition Algorithm (W) 

Gates = 1K 0.887 1.23 1.87 2.98 

Gates = 10K 0.887 1.23 1.87 2.98 

Gates = 100K 0.888 1.23 1.88 2.99 

Gates = 1M 0.899 1.26 1.92 3.06 

Average Energy of Facial Recognition Algorithm (mJ) 

Gates = 1K 0.266 0.246 0.187 0.149 

Gates = 10K 0.266 0.246 0.187 0.149 

Gates = 100K 0.266 0.247 0.188 0.149 

Gates = 1M 0.270 0.251 0.192 0.153 



Baseline Boltzmann Machine 

1-Core 2-Core 4-Core 8-Core 16-Core 

Average Processing Time of Boltzmann Machine Algorithm (ms) 

CPI = 100 0.952 0.497 0.270 0.157 0.0998 

CPI = 10 0.134 0.0888 0.100 0.0943 0.0913 

CPI = 1 0.0931 0.0907 0.0895 0.0889 0.0886 

CPI = 0.1 0.0888 0.0886 0.0885 0.0884 0.0884 

Average Power of Boltzmann Machine Algorithm (W) 

CPI = 100 5.20 10.0 18.7 33.3 55.4 

CPI = 10 3.99 6.48 8.02 12.0 19.5 

CPI = 1 1.43 2.37 4.21 7.90 15.3 

CPI = 0.1 1.02 1.94 3.78 7.46 14.8 

Average Energy of Boltzmann Machine Algorithm (mJ) 

CPI = 100 4.95 4.98 5.06 5.21 5.53 

CPI = 10 0.534 0.576 0.804 1.13 1.78 

CPI = 1 0.133 0.215 0.377 0.702 1.35 

CPI = 0.1 0.0906 0.172 0.334 0.660 1.31 



Active Flash Boltzmann Machine 

1-Core 2-Core 4-Core 8-Core 16-Core 

Average Processing Time of Facial Recognition Algorithm (ms) 

CPI = 100 34.2 17.1 8.59 4.31 2.18 

CPI = 10 0.528 0.690 1.00 1.59 2.63 

CPI = 1 0.381 0.210 0.124 0.0816 0.0602 

Average Power of Facial Recognition Algorithm (W) 

CPI = 100 0.521 0.679 0.993 1.62 2.85 

CPI = 10 0.528 0.690 1.00 1.59 2.63 

CPI = 1 0.595 0.785 1.08 1.45 1.84 

Average Energy of Facial Recognition Algorithm (mJ) 

CPI = 100 17.8 11.6 5.53 6.98 6.21 

CPI = 10 1.83 1.21 0.897 0.742 0.665 

CPI = 1 0.227 0.165 0.134 0.118 0.111 



SPU Boltzmann Machine 

Channels 4 8 16 32 

Time (ms) 0.0873 0.0584 0.0493 0.0482 

Average Power of Facial Recognition Algorithm (W) 

Gates = 1K 0.415 0.451 0.486 0.512 

Gates = 10K 0.415 0.451 0.486 0.512 

Gates = 100K 0.415 0.452 0.488 0.514 

Gates = 1M 0.424 0.465 0.503 0.529 

Average Energy of Facial Recognition Algorithm (mJ) 

Gates = 1K 0.0362 0.0263 0.0240 0.0247 

Gates = 10K 0.0362 0.0263 0.0240 0.0247 

Gates = 100K 0.0363 0.0264 0.0240 0.0247 

Gates = 1M 0.0370 0.0271 0.0248 0.0254 



Summary 

Facial recognition task – which is a proxy algorithm  for content 
based image retrieval  - Compute on 16 channel SSD is 
 ~ 0.2mJ/face vs  30mJ/face computing on Host 

Boltzmann machine task which is proxy for many machine learning 
and data intensive scientific compute algorithms – Compute on SSD 
is ~40X lower Joule/operation compared to Quad-Core host 



Summary – cont’d 

0 5 10 15 20 25 30 35 40 

SPU (16 channels, Gates=100K) 

Active Flash (4-core, CPI=10) 

Baseline (4-core CPI=10) 

SPU (16 channels, Gates=100K) Active Flash (4-core, CPI=10) Baseline (4-core CPI=10) 
Boltzmann Machine 0.024 0.897 0.804 
Facial Recognition 0.188 1.78 33.9 

Energy Consumption (mJ) 
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Thank You 



Bio-inspired Vision - and what electronics and computers can learn from nature 
Christoph Posch - Austrian Institute of Technology AIT TWEPP 2011 

What electronics and computers can learn from 
nature - Christoph Posch 
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