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Memory Wall

Hitting the Memory Wall: Implications of the Obvious

Wm. A. Wulf
Sally A. McKee
Department of Computer Science
University of Virginia
{wulf | mckee }@ virginia.edu
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Figure 3 Average Access Cost for 80% Annual Increase in Processor Performance

In 1994 Wulf and McKee pointed out
the implications of processor and
memory performance progressing
exponentially but with differing rates
(~50%!/yr for processors vs 7%/yr for
memory) — causing an exponentially
increasing gap which would lead to
the end of single thread processor

performance progress by 2008



Predictions were largely accurate
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Transistors, frequency, power, performance, and processor cores over
time. The original Moore’s law projection of increasing transistors per
chip remains unabated even as performance has stalled.

“Computing Performance: Game Over or Next Level?”
Fuller et al, 2011



Power Wall

The Power Wall was Hit around 2004 due to a breakdown in Dennard Scaling
Where Power had previously scaled as 1/L3
at ~ 2004 was limited to scaling as 1/L

Vdd scaling -> lower Vth -> exponential increase in leakage
This caused diminishing returns on pushing single-thread processor architectures

Intel Reaction in 2005 — “Platform 2015 — White Paper — Intel Processor and Platform

Evolution for the Next Decade”
use Moore scaling to double
| Many-core Era
Massively parallel
applications
1004
Increasing HW

cores every generation
Threads

Per Socket

Multi-core Era
10 4+ Scalar and
parallel applications
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Increased Parallelism has forced the emergence of
New Computing paradigms

Due to Amdahl’'s Law - simply parallelizing legacy applications has rarely
yielded proportionate performance increases

Parallelism
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* Parallelism is the main technique to improve system
performance under a power budget.

S. Borkar, Intel



Computing Performance

Game Over or Next Level

The era of sequential computing must give way to a new era in which parallelism
holds the forefront. There is no guarantee we can make parallel computing as
common and easy to use as yesterday’s sequential single-processor computer
systems, but unless we aggressively pursue the efforts suggested by the

CSTB* committee’s recommendations, it will be game over for growth in

computing performance.

- Samuel H. Fuller “Computing Performance — Game Over or Next Level” 2011 and

Chair - Committee on Sustaining Growth in Computing Performance (CSTB)*



IEEE Computer Society — March 2013

“It's time to rethink the entire approach to computation..

...We have been using the same models for computation since the inception
of computing. We’ve tweaked and optimized every level of the stack, but to
meet today’s challenges, everything has to be on the table.

This will require a serious, cross-discipline conversation among domain

experts.”

Tom Conte, vice president of the IEEE Computer Society



IEEE - Rebooting Computing Working Group

Formed 2013

“Revamping computing is not something that any organization or company
can undertake by itself. |IEEE has societies and councils engaged in almost
every aspect of computing, so our organization is the natural place to take on
these tasks.. The goal is to completely rethink computing, from devices
to circuits to architecture and software ...|IEEE will be the catalyst to

spawn new thinking.”

Elie Track, chair “IEEE Rebooting Computing Group”
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Dark Silicon

However increasing parallelism simply delays the problem
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Figure 1: Overview of the models and the methodology

“..[Modeling] must consider devices, core microarchitectures, chip organization, and benchmark
characteristics, applying area and power limits at each technology node. This paper considers all those
factors together, projecting upper-bound performance achievable through multicore scaling, and
measuring the effects of non-ideal device scaling, including the percentage of “dark silicon” (transistor

under-utilization) on future multicore chips. Additional projections include best core organization, best
chip-level topology, and optimal number of cores.

“Dark silicon and the end of multicore scaling’
H Esmaeilzadeh, et al ... (ISCA), 2011
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Dark Silicon

Conclusions

“....Dennard scaling’s failure led the industry to race down the multicore path, which for
some time permitted performance scaling for parallel and multitasked workloads,

permitting the economics of process scaling to hold..

..An essential question is how much more performance can be extracted from the

multicore path in the near future.

... This paper combined technology scaling models, performance models, and empirical
results from parallel workloads to answer that question and estimate the remaining
performance available from multicore scaling. Using PARSEC benchmarks and ITRS
scaling projections, this study predicts best-case average speedup of 7.9 times between
now and 2024 at 8 nm. That result translates into a 16% annual performance gain, for

highly parallel workloads...”

12



Heterogeneous Architectures

Lots of efficient H/W automation — powered off most of the time

As Moore continues to increase the number of transistors on silicon at a scale of 1/L?
while power is only decreasing as 1/L ...

... we can afford to ‘overprovision’ the chip —i.e. use the TDP (total die power budget)
using just a subset of the chip’s resources — for example use the entire budget on
compute while shutting down global on-chip communication resources.

Enables peak performance (using all available power) on diverse workloads.

This may signal that the right time for Reconfigurable Computing has arrived —
specialized hardware acceleration, powered off most of the time.

13



The Cost of Moving Data

= Key limitation in GPU performance = power consumption
= Ops vs. data transfer over large distances on/off chip
= Compare area and energy:

20mm

* 16-bit MAC
* 64-bit FPU = an
* channels | oo e |
| 64b lmm :—::. 16b 1mm
. Channel = Channel
= FP: 10x more energy-efficient | 2s/vor 6pJ/word

than moving a word .5 die .

Ien%th (e.g. from the LL-

Cac e) 64b Ofi-Chip 64b Ofi-Chip
= 16b MAC: 100x Neryamee! sooalfeond
=  Off-chip: 40x more! ) ) ) ‘
= ALSO: Wire delays do not Bill Dally, Internation:::l Conference on

scale as fast as transistor Supercomputing 2010

speeds

‘Architecture at the end of Moore”, Stefanos Kaxiras,, 2012
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Energy cost now is dominated by data movement

Table 1. Technology and circuit projections for processor chip components.

2010 2017
10 nm, high 10 nm,
Process technology 40 nm frequency low voltage
Voo (nominal) 09V 0.75V 0.65V
Frequency target 1.6 GHz 2.5 GHz 2 GHz
Double-precision fused-multiply 50 picojoules (pJ) 8.7 pJ 6.5 pJ
add (DFMA) energy
64-bit read from an 8-Kbyte 14 pJ 2.4 pJ 1.8 pJ
static RAM (SRAM)
Wire energy (per transition) 240 femtojoules (fJ) 150 fJ/bit/mm 115 fJ/bit/mm
per bit per mm
Wire energy (256 bits, 10 mm) 310 pJ 200 pJ 150 pJ
Table 2. Projected bandwidth and energy for main-memory DRAM.
2010 2017
DRAM process technology 45 nm 16 nm
DRAM interface pin bandwidth 4 Gbps 50 Gbps
DRAM interface energy 20 to 30 pJ/bit 2 pJ/bit
DRAM access energy® 8 to 15 pJ/bit 2.5 pJ/bit

Locality = Efficiency
Scaling trends in Tables 1 and 2 suggest
Energy required to;

Read three 64-bit source and write one
destination operand is equivalent to -

One double-precision floating point
multiply accumulate @ ~56pJ

Accessing operands from 10mm away
costs 6X more @ ~300pJ

Accessing from external DRAM is 200X at
@ 10nJ

“‘GPUS AND THE FUTURE OF PARALLEL COMPUTING”, William Dally IEEE Micro 2011

15



NAND process node and corresponding channel
complexity needed to maintain system error rate
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200x 64b FPUs // 10000

1000x 16b MACs
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If the NAND controller is pad limited it would be feasible to increase die
utilization and add compute functionality with zero increase in die size
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Why NAND and not other NVM technologies

 NAND is a block device and requires a significant and growing investment in
signal processing to enable it's continued scaling

« This signal processing overhead is best situated close to NAND to minimize
the energy cost of data movement

* NAND has no delusions of being a DRAM replacement like PCM or STTRAM
with low-latency and close to byte addressable architectures which will not
tolerate any significant signal processing overhead

- Itis not about the technology — it’s the economics - SSDs exist due to

the much larger demand for consumer grade NAND devices for the

smartphone, tablet, SD Card and USB memory markets.

«  Storage-Compute likewise will succeed or fail purely on economics ($/op, J/

op) not technology

17



ITRS — Technology Trends

for DRAM and FLASH Memory
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NAND will continue to scale... vertically

... and dominate the mind-share of the best memory technologists

NAND Flash
Year of Production 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Uncontacted poly 1/2 pitch 20 18 17 15 14 13 12 1 10 9 8 8 8 8
(nm)
Number of word lines in one 64 64 64 64 64 64 64 64 64 64 64 64 64 64
NAND string

. ) FGIC FGI/C CT- CT- CT- CT- CT- CT- CT- CT- CT- CT-
Dominant Cell hpe FG | FG T T 3p | 30 | 3p | 3p | a3b | 30 | 30 | 30 | 3D | 3D
Maximum number of bits per 128G/ | 256G/ | 256G/ | 512G/ | 512G/ | 512G/ 1T/ 1T/ 1T/ 2T/
chip (SLC/MLC) 256G 512G 512G 1T 1T 1T 2T 2T 2T 4T
Minimum array 1/2 pitch -
F(nm) [15] 32nm 32nm 32nm 28nm 28nm 28nm 24nm 24nm 24nm 18nm
Number of 3D layers for array
at minimum 1/2 array pitch [16] 8 16 32 32 64 64 98 98 98 128

- ITRS Winter Public Conference Dec 2012 Hsinchu, Taiwan

Sou ree poly plug ==

SIN SPR is adopted for the isolation
between poly PLUG and BL pad

Staircase BL poly plug
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ITRS — Winter Conference, Dec 2012
“Take-away Comments”

Logic:
= No theoretical scaling limit seen yet for Si (to 2026, gate length ~6 nm).

= Power is the limiting factor, not speed. Device speed requirement is
relaxed from circuit perspectives.

»Alternative channel III-V/Ge can offer lower power with similar speed.
*Low Vz near end of roadmap (~0.5 V) posts noise/variability challenges.
=Series resistance can be a practical limitation.

DRAM:

= Capacitor scaling increasingly difficult.

*4F2 is the limit for cell size.

NVM:

=Many cell versions:

« 3-terminal (charge-based): Floating-gate and charge-trapping FETSs still
dominate. 3-D projected.

« 2-terminal (non-charge-based): FeRAM, PCRAM, MRAM, STT-RAM, for
more diverse applications. Efficient selection device needs to be

eloped and integrated.
ITRS Winter Public Conf/Dec. 5, 2012/Hsinchu, Taiwan 13
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Managed NAND

Moving Flash endurance optimization processing and channels into Flash package
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Managed NAND ¥ rusionio

A construct for IP isolation
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The Virtualization Revolution
OpenStack - Open source software for building private and public clouds.

Your Applications ‘

. . OPENSTACK
R l l CLOUD OPERATING SYSTEM
OpenStack Dashboard ’ e
2 BE 2w} N
Compute Networking Storage
1 OpenStack Shared Services

Standard Hardware

http://www.openstack.org

OpenStack/Open Compute — the launch vehicle for application
development on SSDs used as Storage Compute Elements
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Big Data — application areas

Some Application Areas

« content based image retrieval

« semantic tagging of streaming multimedia

 data intensive scientific computing

* on-line machine learning from streaming data

» cloud compute optimized for Numenta's Grok Engine

« on-line spatiotemporal clustering and classification of trading data

* hierarchical-temporal memory model based algorithmic trading in financial markets

24



Big Data Application Example — Numenta’'s Grok

An Engine for Acting on Data Streams

il |E] |E
numbers =1 =1 (=1 Sequence Memory
tegori B = B = SDRs d ical col i
e JELIELIEL | [ ] SO0 | ety [pPretictions | actions
(t':.: % % é - variable order
? E ? - - online learning
User Grok Applications
Define problem Creates models Energy pricing
Stream data Learns Energy demand
- spatial/temporal patterns Product forecasting
Outputs Anomaly detection
" PIECIENons Server loads
anomalies

b2

“Building brains to understand the world’s data
Jeff Hawkins, Feb 2013

Seagate Confidential 25



Big Data Application Example — Numenta’'s Grok

An Engine for Acting on Data Streams

Data
Today
Q" @t 0005000 sowe Challenges
‘ = People, not automated
’ 88888888 Model obsolescence
l l Streaming data
visualization models
Tomorrow
‘9 _deastreoms (e models | eemn b Actiors
\J
Key criteria

Automated model creation (B's of models)
Continuous learning
Temporal and spatial patterns

“.No Storage Required..”

“Building brains to understand the world’s data”
Jeff Hawkins, Feb 2013

Seagate Confidential 26



Data Intensive Scientific Computation

Trends in computation, communication and storage and the consequences for
data-intensive science

Simone Ferlin Oliveira, ferlin@nm.ifi.Imu.de
Karl Fiirlinger, fuerling@nm.ifi.lmu.de
Dieter Kranzlmiiller, kranzlmueller @nm.ifi.Imu.de
Ludwig-Maximilians-Universitt
Munich Network Management (MNM) Team
Oettingenstrafie 67, 80538, Munich, Germany

Keywords-data-intensive science; big data; trends

Abstract—The way we are doing science is changing: Data
analysis and computation modeling became tightly coupled.
Divergent technological trends for computer processors, storage
and memory and communication systems showed to be a real
challenge in performance of current computing systems. In
this paper we analyze the trends that influence computer
performance, point out the technical challenges and introduce
our vision in developing a guideline to an optimum distribution
of computer resources addressing primarily data transmission
issues.
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Big Data -> Useful Information

12000

§ 8

Total raw storage space (Terabytes)
g

:

2000 -

Application

Data amount

Facebook

Google
Twitter
Large Hadron Collider (LHC)

Human Genome DNA
X-ray image data

Mobile PC traffic

Large Synoptic Survey Telescope (LSST)

Cross-country (U.S.) Boeing 737

130 TB/day (user logs)
200-400 TB/day (pictures)
25 PB/day (datasets)

12 PB/day (datasets)

60 TB/day (expected)

30 TB/day (expected)

200 GB (per sequence)
1'TB/day

240 TB/flight

300 PB/month

FEEEEEE

N N N N N NN

1996
1997
1998
1999
2008
2009
2010

Table 1

DATA AMOUNT IN 2010 AND 2011.

Figure 1. EMBL-EBI: Data storage increase [9].
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SSD as a Storage Processing Element

Architecture Simulation - Parameters

CPU Power: use ITRS HP technology to evaluate dynamic and leakage power.
Number of Gates: 200M/core

Frequency: 2GHz.

Dynamic Power (per core): 5.04W

Leakage Power (per core): 0.340W

SSD Controller Power: use ITRS LOP technology to evaluate dynamic and leakage power.
Number of Gates: 20 millions per core (Assumption: 10% of the CPU).

Frequency: 1GHz.

Dynamic Power (per core): 0.156W.

Leakage Power (per core): 1.34mW.

Channel Processor Power: use ITRS LOP technology to evaluate dynamic and leakage power.
Number of Gates: 1K, 10K, 100K, 1M.

Frequency: 400MHz.

Dynamic Power (per core): 3.12uW, 31.2uW, 312uW, 3.12mW.

Leakage Power (per core): 67nW, 670nW , 6.7uW, 67uW.

DDR SDRAM: use parameters from MICRON.
Dynamic Power (per 2GB): 438.3mW.
Leakage Power (per 2GB): 88.1mW.

NAND Flash: use parameters from MICRON.
Dynamic Power (per die): 0.04W.
Leakage Power (per die): 0.003W.

Host Interface: PCle.

Dynamic Power (per GB): 37.5mW.
Leakage Power (per GB): 0.mW

29



Architecture Block Diagrams

NAND Flash Package

NAND NAND
Flash Flash
Die 1 Die 2

SSD Controller
(has one or two cores)

PCle Data buffer
<>
Host

communication

DDR SDRAM

Block Management

Wear Leveling

Garbage Collection

ECC

NAND Flash Package

NAND
Flash
Die 2

{

DDR SDRAM



Architecture Block Diagrams

“Active Flash” — Compute in SSD Controller Processor

SSD Controller NAND Flash Package
(has more than two cores)
Flash
Block Management
Data buffer :
DDR SDRAM Wear Leveling
Host Garbage Collection

communication ECC

Compute Compute NAND Flash Package

NAND
Flash
$ Die 1
DDR SDRAM
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Architecture Block Diagrams

NAND Flash Package

NAND NAND
Flash Flash
Die 1 Die 2

ECC

Processor Coprocessor
(Block Management) (Compute)

DDR SDRAM
SSD Controller

(has one or two cores)

NAND Flash Package

Die 1 Die 2 Die 3

DDR SDRAM Ecc

NAND NAND NAND
$ Flash Flash Flash

Processor Coprocessor
(Block Management) (Compute)



Baseline Face Recognition

| tCoe | 2Core | 4Core | 8-Core | 16Core

Average Processing Time of Facial Recognition Algorithm (ms)

CPI =100 52.7 26.4 13.3 6.80 3.50

CPI =10 5.50 2.90 3.40 3.00 2.90 Core = Host CPU Cores
CPI =1 3.00 2.80 2.80 2.70 2.70 CPI = clock cycles per
CPI=0.1 2.70 2.70 2.70 2.70 2.70 instruction of single core in
Average Power of Facial Recognition Algorithm (W) CPU

CPI'=100 294 289 286 287 286

CPI=10 31.5 315 33.9 36.9 45.4

CPI=1 6.36 7.12 9.17 12.6 20.1

CPI=0.1 3.76 4.70 6.57 10.3 17.7

Average Energy of Facial Recognition Algorithm (mJ)

CPI'=100 294 289 286 287 286

CPI'=10 315 315 33.9 36.9 45.4

CPI=1 6.36 7.13 9.17 12.6 20.1

CPI=0.1

3.76 4.71 6.57 10.3 17.7
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Active Flash Face Recognition

| t-Core | 2Core | 4-Core | 8Core | 16-Core

Average Processing Time of Facial Recognition Algorithm (ms)

CPI =100 52.6 26.4 13.3 6.70
CPI=10 5.40 2.80 1.50 0.800
CPI =1 0.700 0.400 0.300 0.300

Average Power of Facial Recognition Algorithm (W)

CPI =100 0.699 0.858 1.17 1.79
CPI =10 0.716 0.881 1.18 1.70
CPl=1 0.839 1.02 1.15 1.16

Average Energy of Facial Recognition Algorithm (mJ)
CPI =100 36.8 22.6 15.6 12.0

CPI =10 3.86 2.47 1.78 1.36
CPI =1 0.587 0.410 0.345 0.347

34
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Core = SSD Controller
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CPI = clock cycles per
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SPU Face Recognition

Channels |4 | 8 | 6 | 32

Average Processing Time (ms)

Time 0.300 0.200 0.100 0.0500
Average Power of Facial Recognition Algorithm (W)

Gates = 1K 0.887 1.23 1.87 2.98
Gates = 10K 0.887 1.23 1.87 2.98
Gates = 100K 0.888 1.23 1.88 2.99
Gates = 1M 0.899 1.26 1.92 3.06

Average Energy of Facial Recognition Algorithm (mJ)

Gates = 1K 0.266 0.246 0.187 0.149
Gates = 10K 0.266 0.246 0.187 0.149
Gates = 100K 0.266 0.247 0.188 0.149

Gates = 1M 0.270 0.251 0.192 0.153
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Baseline Boltzmann Machine

| tCoe | 2Core | 4Core | 8-Core | 16Core

Average Processing Time of Boltzmann Machine Algorithm (ms)

CPI = 100 0.952 0.497 0.270 0.157 0.0998

CPI =10 0.134 0.0888 0.100 0.0943 0.0913 Core = Host CPU Cores
CPI = 1 0.0931 0.0907 0.0895 0.0889 0.0886 CPI = clock cycles per
CPI=0.1 0.0888 0.0886 0.0885 0.0884 0.0884 ig;tLrJ“CtiO” of single core in
Average Power of Boltzmann Machine Algorithm (W)

CPI = 100 5.20 10.0 18.7 33.3 55.4

CPI =10 3.99 6.48 8.02 12.0 19.5

CPI =1 1.43 2.37 4.21 7.90 15.3

CPI=0.1 1.02 1.94 3.78 7.46 14.8

Average Energy of Boltzmann Machine Algorithm (mJ)

CPI =100 4.95 4.98 5.06 5.21 5.53
CPI=10 0.534 0.576 0.804 1.13 1.78
CPI =1 0.133 0.215 0.377 0.702 1.35

CP1=0.1 0.0906 0.172 0.334 0.660 1.31
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Active Flash Boltzmann Machine

| tCoe | 2-Core | 4Core | 8-Core | 16Core

Average Processing Time of Facial Recognition Algorithm (ms)

CPI =100 34.2 17 .1 8.59 4.31 2.18
CPI =10 0.528 0.690 1.00 1.59 2.63 Core = SSD Controller
CPI = 1 0.381 0.210 0.124 0.0816 0.0602 Cores

CPI = clock cycles per

Average Power of Facial Recognition Algorithm (W) instruction of single core in

CPI =100 0.521 0.679 0.993 1.62 2.85 SSD controller
CPI=10 0.528 0.690 1.00 1.59 2.63
CPI =1 0.595 0.785 1.08 1.45 1.84

Average Energy of Facial Recognition Algorithm (mJ)

CPI'=100 17.8 11.6 5.53 6.98 6.21
CPI=10 1.83 1.21 0.897 0.742 0.665
CPI=1 0.227 0.165 0.134 0.118 0.111
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SPU Boltzmann Machine

Channels | 4 | 8 | 16 | 32

Time (ms) 0.0873 0.0584 0.0493 0.0482
Average Power of Facial Recognition Algorithm (W)
Gates = 1K 0.415 0.451 0.486 0.512
Gates = 10K 0.415 0.451 0.486 0.512
Gates = 100K 0.415 0.452 0.488 0.514
Gates = 1M 0.424 0.465 0.503 0.529
Average Energy of Facial Recognition Algorithm (mJ)
Gates = 1K 0.0362 0.0263 0.0240 0.0247
Gates = 10K 0.0362 0.0263 0.0240 0.0247
Gates = 100K 0.0363 0.0264 0.0240 0.0247

Gates = 1M 0.0370 0.0271 0.0248 0.0254
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Summary

Facial recognition task — which is a proxy algorithm for content
based image retrieval - Compute on 16 channel SSD is
~ 0.2mdJ/face vs 30md/face computing on Host

Boltzmann machine task which is proxy for many machine learning

and data intensive scientific compute algorithms — Compute on SSD
is ~40X lower Joule/operation compared to Quad-Core host
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Summary — cont’d

Baseline (4-core CPI1=10)
Active Flash (4-core, CPI=10) .

SPU (16 channels, Gates=100K)

Energy Consumption (mJ)

10

15 20

25

30 35

40

SPU (16 channels, Gates=100K)

Active Flash (4-core, CPI1=10)

Baseline (4-core CPI1=10)

Boltzmann Machine

0.024

0.897

0.804

B Facial Recognition

0.188

1.78

33.9
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What electronics and computers can learn from
nature - Christoph Posch

Progress of electronic information processing over past 60 years:
» dramatic improvements:

= from 5 Joules / instruction (vacuum tube computer, 1940s)
» t0 0.0000000001 Joules / instruction (ARM968)

= 50,000,000,000 times better

» Raw performance increase about 1 million

Energy efficiency
= Chip: 10-1" J/operation
= Computer system level: 10-° J/operation
» Brain: 10-'°J/operation
= Brain is 1 million times more energy efficient!!!

S. Furber, “The Dennis Gabor Lecture 2010: Building Brains” (2010)
C. Mead, “Neuromorphic Electronic Systems” (1990)

Bio-inspired Vision - and what electronics and computers can learn from nature
Christoph Posch - Austrian Institute of Technology AIT TWEPP 2011
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» Cost of elementary operation — turning on transistor or activating a
synapse — is about the same. (10-13J)

= | ose a factor 100 because:

— capacitance of gate is a small fraction of capacitance of the node
— spend most energy charging up wires

» Use many transistors to do one operation (typically switch 10000).

— information encoding: “0”, “1”
— elementary logic operations (AND, OR, NOT)

C. Mead: “We pay a factor 10000 in energy for taking out the
beautiful physics from the transistor, mash it up into “0”"and “1”
and then painfully building it back up with gates and operations
to reinvent [e.g.] the multiplication ...”

C. Mead, “Neuromorphic Electronic Systems” Proc. IEEE, (1990)

Bio-inspired Vision - and what electronics and computers can learn from nature
Christoph Posch - Austrian Institute of Technology AIT TWEPP 2011
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At the system level, brains are at least 1 million times more power
efficient than computers. Why?

Cost of elementary operation (turning on transistor or activating synapse)
is about the same. It's not some magic about physics. (10-15 J)

Brain

Self-timed, data driven

Synapses are stochastic! Computation
dances digital>analog—digital

Synaptic memory at computation

Low resolution adaptive data-driven
guantizers (spiking neurons)

Mobility of electrons in silicon is
about 107 times that of ions in solution.

T. Delbruck, “Spiking silicon retina for digital vision". IEEE DLP lecture

Bio-inspired Vision - and what electronics and computers can learn from nature
Christoph Posch - Austrian Institute of Technology AIT TWEPP 2011

Seagate Confidential 45



Synapse
|

©oAxon

N1 spikes—pulse travels down the axon|RSEEERr—"—" AT

. Soma
|

to the synapse of target N2.
The synapse of N2—having stored its own state locally—
evaluates the importance of the information coming from N1
by integrating it with own previous state and strength of
connection to N1

Two pieces of information—signal from N1 and state of N2's
synapse—flow toward body of N2

When information reaches N2, there is only a single value—
all processing has already taken place during the
information transfer.

Storage and processing happen at the same time and in the
same place.

This LOCALITY is one of main reasons for energy efficiency
of biological brains

Bio-inspired Vision - and what electronics and computers can learn from nature
Christoph Posch - Austrian Institute of Technology AIT TWEPP 2011
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Dan Hammerstrom - DARPA

DPA Solution: A New Computational Model

New Paradigm — Non-Boolean, Probabilistic

Computing

1. Computing occurs by the physics of the devices (highly

parallel)

2. Devices perform the computational equivalent of hundreds

of discrete digital operations

3. The model can be configured into hierarchies that N

accomplish most of the computational work required by the  Sensor Data Active Edges located (in red)

application

Boolean Computation
» Processor: Intel 6 Core i7, GOPS: 6.7

+ 1 inference is 140 operations/kernel, 24
kernels are compared / pixel

+ GOPs/watt: 0.1
+ Compute time = 7,700 sec

+ 460 kilo-joules (60 watts for 7700
seconds)

é . . . . .
Example: Find Features in Sensor Data (7x7 Gabor Edge Finding, 10 Giga-pixel Array)

Analog Direct Device Computation

Processor: 10 X 10 Array of coupled oscillators Giga-

Inferences/sec = 400 (56k GOPS equivalent)
Compute time = 0.04 sec
430 milli-joules

Approved for public release; distribution is unlimited.

Seagate Confidential
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