

High Performance IO – What is it and can today's systems and applications really take advantage it?

May 10, 2012 Tom Ambrose

Who am I?

- **Tom Ambrose**
- Sr. Director of Engineering Systems, Technology, & Architecture at Emulex Corporation
- B.S. ECE from Carnegie Mellon University
- 15+ years in ASIC design/management
- **■** 5 years in current Architecture role

Agenda

- Emulex Overview
- Adaptor Types
- **■** Today's adaptors: Features and Performance
- Architecture: Queues and QoS
- Topics for Investigation
- References

Emulex Corporate Overview

Corporate Facts

- **Founded in 1978**
- Based in Costa Mesa, CA
- **■** Employees Approx. 960
- **■** Strong Financials
- **2011 Revenue \$496 MM**
- **FQ3:12 Revenue \$125 MM**
- **FQ3:12 Net Cash \$339 MM**
- **NYSE Symbol ELX**

Host Server Products

- **Fibre Channel SAN**
- **Enhanced Ethernet Solutions**
- **■** Converged Networking
- Virtualization Infrastructure
- **■** Connectivity Management
- Data Center Proven
- **■** Remove Server Management
- **Performance Analysis**

Embedded Storage

- **■** System-level embedded I/O
- Resilient high capacity disk solutions
- **FC-SAS JBOD conversion** preserves FC backend
- High throughput, solution oriented silicon
- Trusted abstraction layer software

-

Interface Card Types

HBAs

Host Bus Adapter is usually used to describe FC, SAS, and SATA interface cards

NICs

Network Interface Controller (NIC) is usually used to describe Ethernet
 LAN interface cards

■ HCA

Host Channel Adapter (HCA) is usually used to describe Infiniband interface cards

CNAs

 Converged Network Adapter is usually used to describe Ethernet interface cards that support BOTH network and storage traffic

Today's Adaptors - Features

- PCle gen3 x8 64Gbs to/from the host
- 10G Ethernet moving to 40G
 - Servers transitioning from 1G to 10G now, then to 40G, then to 100G
- Fibre Channel 8G moving to 16G
 - Storage Area Networks (SANs) for high performance
- Many stateless offloads
 - Checksums, IPv4/IPv6, LSO/LRO, RSS, HDS,, etc.
- Multi-protocol stateful offloads
 - FCoE, iSCSI, TCP, RDMA
 - Connections, sessions, logins, outstanding IOs, etc.
- Side band management interface
 - Configuration, inventory, management traffic pass-thru
- Low power support
 - PCIe low power/sleep state; Side band management still runs
 - Energy Efficient Ethernet

-

Today's Adaptors – More Features

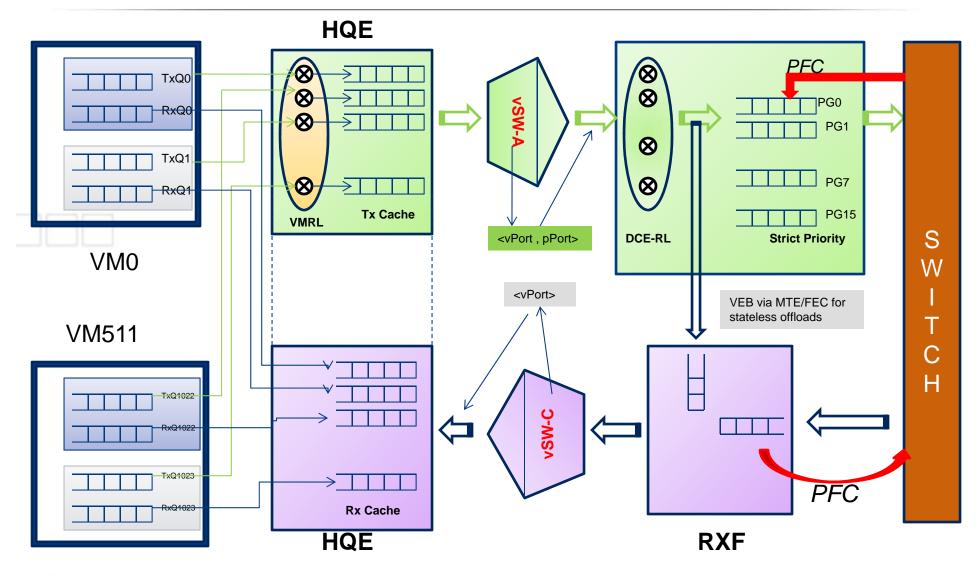
- Data Integrity T10PI, minimizing SDC from soft errors
- Enhanced Ethernet support
 - Allowing lossless and lossy traffic classes to be define
 - Priority Flow Control, Congestion Notification, Quality of Service
 - Needed to meet FCoE requirements
- Supporting server virtualization many functions, many queues
 - PCI-SIG Single Root IO Virtualization (SR-IOV)
 - Allowing Virtual Machines to have their own PCIe functions
 - IEEE Virtual Ethernet Bridging (VEB) and Virtual Ethernet Port Aggregation (VEPA)
 - Supports forwarding of traffic to/from VMs on the same host
 - Includes MC/BC replication, access control lists, promiscuous modes, etc.

Multiple levels of private networks

- Virtual LAN tags
- Coke and Pepsi on the same physical network each with separate dept. networks (Marketing, Engineering, Finance)

Today's Adaptors – High performance

- 1M+ IOs per second for storage protocols
- **5M+ packets per second Ethernet**
- Pushing IO latencies down
 - NIC and RDMA to the low single digit uS range
 - Storage protocols to the single digit uS range


How do we do it?

- Lots of logic gates
- **Lots** of RAMs and CAMs
- **■** Lots of firmware
- **Multiple processors per chip**
 - About a dozen!
 - 400-600MHz

QoS Servicing Overview

Investigation Topics – How can you help?

- With today's adaptors providing low IO latency and high throughput/bandwidth, Operating Systems and Applications need to scale to make use of it
- Balancing of host CPU cores between compute and IO
 - Optimizing IO paths through the application, driver, kernel, hypervisor, etc.
 - Design with IO performance in mind

Investigation Topics – How can you help?

- With flash and other future storage technologies, the maximum response times are much lower than with rotating media
- Hierarchical storage vs. heterogeneous
 - Is the a way to predict when the storage will respond to an IO request allowing the adaptor pre-fetch the appropriate buffer entries (application, VM, etc.) to truly take advantage?
 - When working in a heterogeneous storage system, can IOs be scheduled to be speed matched and balanced to avoid head-ofline blocking, starvation, etc.?

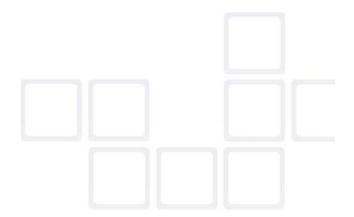
Investigation Topics – How can you help?

- Adaptors can provide accurate (ns) time stamping of IOs than can be used for performance monitoring and tuning
- The analysis and tuning is mostly a manual process today
 - Could this be used to for better/automated coordination of system tasks?

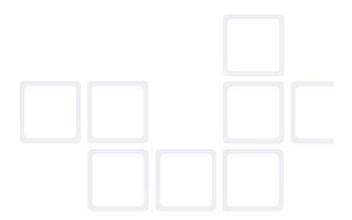
Networking and Storage- References

Industry Standards

- Fibre Channel. ANSI T10,T11,FCIA http://www.ansi.org,
 http://www.fibrechannel.org/,
 www.T10.org,
 www.T11.org
- Ethernet: iSCSI, FCoE. IEEE. http://www.ieee.org
- Infiniband: IBTA. http://www.infinibandta.org


Protocols

- SCSI. Small Computer Systems Interface.
- FCP. Fibre Channel Protocol. http://www.t10.org/index.html
- iSCSi. Internet SCSI. www.snia.org , http://en.wikipedia.org/wiki/ISCSI
- FCoE. FC over Ethernet. T11. http://fcoe.com/, http://www.t11.org/fcoe.com/, http://www.t11.org/fcoe.com/,
- RoCE. RDMA over Converged Ethernet. http://www.ethernetalliance.org/


Questions?

Thank you!

SEMULEX