Quantum Computing *Systems*: State of the Art, Summer 2005

Rodney Van Meter, Keio University rdv@tera.ics.keio.ac.jp http://www.tera.ics.keio.ac.jp/person/rdv/

August 25, 2005 @CMU

Systems Design and Implementation
Seminar Series

Goal: Design the Fastest, Most Scalable Quantum Computer Possible

One Like This?

What's a Quantum Computer?

- Uses quantum mechanical effects to accelerate computation
- Can calculate a function on all possible input values at the same time
- Getting a useful answer out is the hard part!
- Most famous result is Shor's algorithm for factoring large numbers

The Challenge

- How do we build real, non-abstract, usable quantum computing systems?
- More immediately, how do we find the problems and establish a program to build these systems?

Out I ine

- Review principles & power of QC
- Taxonomy of QC technologies
- Recent results (planet-wide)
- My research
 - quantum arithmetic
 - a quantum multicomputer
- Open problems

What is Quantum Computing?

- Uses several important quantum characteristics:
 - Superposition
 - Entanglement
 - Phase (analog)
 - Interference of waveforms
- Input to quantum algorithm is superposition of all possible inputs
- Algorithms run to force interference to eliminate wrong answers

How Fast Is It?

- Intuitively would hope for exponentially faster, since runs on all inputs
- Most general-purpose algorithm (Grover) is only O(sqrt(N)) to search N items (N = 2²L, for L-bit search space)
- Only special cases get exponential speedup

What's It Used For?

- Shor's algorithm for factoring large numbers impacts public-key cryptography
- Other mathematical hidden subgroup problems
- Grover's algorithm for "database search" (really a misnomer)
- Quantum Key Distribution (QKD) for sharing cryptographic keys (requires authenticated, untamperable classical channel)

Why Study QC?

- If successful, payoff is revolutionary
- Even if "failure":
 - New physics is being learned
 - Understanding of computational complexity is deepening
 - Engineers must deal with quantum effects and thermodynamic reversibility as devices shrink

Acceptable Quantum Phenomena

- Electron spin (up or down)
- Photon polarization (horizontal/vertical)
- Spin of atomic nucleus
- Current in a superconducting loop
- Presence/absence of a particle
- etc., etc., etc....

Measurement and Decoherence

- When a qubit is measured, a result of 0 or 1 is always returned
- Superposition collapses to a single state
- Because the superposition is critical for correct functioning, measurement usually done at end of algorithm
- Accidental measurement is one cause of decoherence, or loss of state, resulting in failure of the algorithm

Problems

- Coherence time
 - nanoseconds for quantum dot, superconducting systems
- Gate time
 - NMR-based systems slow (100s of Hz to low kHz)
- Gate quality
 - generally, 60-70% accurate
- Interconnecting qubits
- Scaling number of qubits
 - largest to date 11 qubits, most 1 or 2

Summary: Characteristics of QC

- Superposition brings massive parallelism
- Phase and amplitude of wave function used
- Entanglement
- Unitary transforms are gates
- Measurement both necessary and problematic when unwanted

So, can we surpass a classical computer with a quantum one?

Depends on discovery of quantum algorithms and development of technologies

DiVincenzo's Criteria

- 1. Well defined extensible qubit array
- 2. Preparable in the "000..." state
- 3. Long decoherence time
- 4. Universal set of gate operations
- 5. Single quantum measurements

Outline

- Review principles & power of QC
- Taxonomy of QC technologies
- Recent results (planet-wide)
- My research
 - quantum arithmetic
 - a quantum multicomputer
- Open problems

Quantum Computer Taxonomy

- flying or sedentary qubits?
- single v. ensemble
- concurrent gate support
- addressing
- natural gates ("instruction set")
- logical encoding

Quantum Computer Taxonomy (2)

- internal topology
- quantum 1/0
- time: clock speed v. decoherence
- timing: jitter and skew control
- programmability
- operating temperature
- measurement time v. gate time

Example: Layout (Internal Interconnect, Measurement)

- Quantum dots as example
- Leads to dots require space
- Double-dot structure limits layout
- Measurement device requires space (fit with every qubit? probably not)

Kane Solid-State NMR

Qubits are stored in the spin of the nucleus of phosphorus atoms embedded in a zero-spin silicon substrate. Standard VLSI gates on top control electric field, allowing electrons to read nuclear state and transfer that state to another P atom.

Kane, Nature, 393(133), 1998

Recent advances in manufacturing: can register individual P atoms in the Si lattice (Clark *et al.*, Phil. Trans. R. Soc. London A, 2003)

Desirable 2D Layouts

Even achieving scalable form of any of these will be an accomplishment!

Kane/Oskin Lattice

Black dots are location of P atoms. Small rectangles are quantum-scale leads. Large squares are standard-size VLSI leads.

Fitting it all in is tough! This is the role of system architecture...

Oskin et al., ISCA, 2003

Layout and Error Correction

- QEC requires execution of gates
- Swapping data to execute gates, requires gates
- Threshold gets worse if lots of swapping required
- QEC proven to work for linear next-nearest-neighbor layout
- QEC not known to work for linear nearest neighbor layout (as far as I know)

Layout and Architecture

- We have the basic technologies
- Choosing number and relationship of elements will build up larger blocks
- Constructing systems from blocks is domain of architecture
- Needs of quantum error correction are critical

Advanced Architecture: Scalable Ion Trap

One of the few architectures that separates storage space from action space; that is, memory and CPU.

Main group is Wineland group at NIST (USA); Monroe group at Michigan, Chuang group at MIT also making excellent progress.

(Other groups including Oxford also doing small-scale ion trap.)

Outline

- Review principles & power of QC
- Taxonomy of QC technologies
- Recent results (planet-wide)
- My research
 - quantum arithmetic
 - a quantum multicomputer
- Open problems

Trapped-Ion QIP

- Accomplishments:
 - Deutsch-Josza algorithm
 - Blatt group
 - Guide, Nature 421, 48 (2003)
 - 4 qubit entanglement
 - Wineland group
 - Monroe, AIP Conf. Proc. 551 (2001)
 - Ballistic transport
 - Wineland group
 - Rowe, Quantum Information and Computation 2, 257 (2002)
 - 3-quibit QFT
 - Chiaverini et al., Science 308 (2005)

Scalable Ion Trap QC: Architecture?

• Scaling: mictrotraps

- Large-scale QC?
 - Teleportation can be used for wiring & code conversion
 - Gate errors ~ O(10⁻⁴) possible

General Quantum Architecture

- Processing Units and Memory
- Preparation and Initialization Units
- Communication Strategies
 - Quantum Teleportation Channels
 - Swap Channels

Ion Control: Around a Corner!

Hensinger *et* al., arxiv.org/quant-ph/0508097 Christopher Monroe's lab, U. Michigan, 2005

Error Control: Analog Gate Accuracy

Rotations are analog; QEC can't correct for over- or under-rotation, so NMR sequences used to reduce sensitivity to $O(\epsilon^6)$

Vandersypen & Chuang, Rev. Mod. Phys. **76**, 1037 (2004)

NMR-like Composite Pulses

In Josephson junction; also, Rigetti *et al.* (PRL 94, 2005), 1K gates in liquid NMR

Collin et al., PRL 93 (2004)

Weak Non-Linearity Optical

Uses macro laser phenomenon interacting with single photon at each end to determine parity of two qubits – creates entanglement.

Munro, Nemoto, Spiller, NJP 7 (2005).

Qubit Transfer

Qubits can (and *must*) be transferred from e.g. nuclear spin to electron spin to photon and back again.

Matsukevich & Kuzmich, Science **306** (2004), executed w/ fidelity ~0.75.

(Various other groups working on this for various technologies; Childress *et al.* quant-ph/0502112, Mehring *et al.* PRL **90** (2003), Jelezko *et al.* PRL **93** (2004).)

QFT Implementation

3-qubit quantum Fourier transform (QFT) on beryllium ions Moved ions around, chaining & separating, measuring Took ~3.5 msec

Fidelity depended on input state – off by 8-29% from expected probability Chiaverini, *Science*, 308 (2005)

QEC Implementation

Both ion trap and optical demonstrating error-measure-correct cycle

optical: Pittman *et al.*, PRA **71** (2005) ion trap: Roos *et al.*, *Science*, **304** (2004)

Conditional-Sum Adder

O(log n) latency when long-distance gates are easy. O(n) when swap required (NTC architecture) -- with a big constant!

Better use of concurrent gates (total still O(n) or larger).

(Carry-save and carry-lookahead are other types that reach $O(\log\,n)$.

See quant-ph/9808061, quant-ph/0406142.)

Out I ine

- Review principles & power of QC
- Taxonomy of QC technologies
- Recent results (planet-wide)
- My research
 - quantum arithmetic
 - a quantum multicomputer
- Open problems

Conditional-Sum Adder (AC)

O(log n) latency when long-distance gates are easy. O(n) when swap required (NTC architecture) -- with a big constant! Better use of concurrent gates (total still O(n) or larger).

(Carry-save and carry-lookahead are other types that reach $O(log\ n)$. See quant-ph/9808061, quant-ph/0406142.)

Conditional-Sum Adder (NTC)

O(log n) latency when long-distance gates are free. O(n) when swap required (NTC architecture) -- with a big constant!

Better use of concurrent gates (total still O(n) or larger).

(Carry-save and carry-lookahead are other types that reach O(log n). See quant-ph/9808061, quant-ph/0406142.)

Two Paths to Scalability

Cray 1, 80MFLOPS, 8MB RAM, \$9M, 1976 Two choices: Make it bigger, or figure out how to

connect more than one smaller unit hopefully achieving both speed and storage capacity increases

Caltech Cosmic Cube, 64 processors (8086/7)

3MFLOPS, 8MB RAM, 1982 (prototype)

Two Paths to Scalability

Two choices:

Make it bigger, or figure out how to connect more than one smaller unit hopefully achieving both *speed* and *storage capacity* increases

Summary: Technology

- Liquid NMR: 13 qubits, but limited
- Scalable ion trap promising
- Solid-state (JJ, qdot, NMR) has hurdles
- Optics making advances
- Anything else: dark horse

Outline

- Review principles & power of QC
- Taxonomy of QC technologies
- Recent results (planet-wide)
- My research
 - quantum arithmetic
 - a quantum multicomputer
- Open problems

Summary: Error Control

- Many types of errors & techniques:
 - bit flip, phase flip: QEC
 - error propagation: FT
 - collective decoherence: DFS
 - gate accuracy: NMR composite pulses
- Theoretical grounding solid
- Next step is realistic combinations & conditions (e.g., larger block sizes, matching to technology)

Summary: Algorithm Building Blocks

- QFT well understood
- Arithmetic fundamentals advanced in last year
 - carry-lookahead, conditional-sum, better carry-ripple adders
 - higher level could still use work (multiply, divide, etc.)
- More work on mapping to realistic architectures to be done

Specific Problems

- Distance
- Implementation of QEC. FT. etc.
 - choice of algorithm, block size, mapping to specific technology & architecture
- Compilers & language tools
 - finding efficient gate sequence for given unitary transform
 - optimizing qubit motion

Open Problems

Obviously, each technology has its problems to solve; decoherence times, ion movement, gate accuracy, noise, fabrication...

The **big** issue is **scalability**, but just saying that is trite and not very informative...

I would say that scalability requires **heterogeneity**, and the demands of heterogeneity are poorly understood.

Specific Problems

- Control structures
 - Integrating into systems (for lithographicbased technologies) (can't cram arbitrary # of wires into a dilution fridge!)
 - Does every qubit need a measurement device?
- Balancing classical and quantum portions of a system and a computation (see my MS+S2004 paper)
- Understanding performance

Quantum Multicomputer Problems

- Reliable transfer protocol built on unreliable basis
 - What will performance be?
- Distributed control
 - Clock, sequencing
- Determining minimum node size
 - How will QEC work?
- Possibly, heterogeneous qubit technologies
- Node-to-node network topology

News/Current Research

- quant-ph mailing list: http://arXiv.org/
- Virtual Journal of Quantum Information (covers PRA, PRB, PRL, etc.)
- Qubit News http://quantum.fis.ucm.es/
- Quantum Pontiff http://dabacon.org/pontiff/
- Science and Nature almost every week...
- QIC, IJQI

References

- Nielsen & Chuang, Quantum Computation and Quantum Informatior (esp. Chapter 1)
- Williams, Ultimate Zero and One
- Preskill's lecture notes http://www.theory.caltech.edu/ people/preskill/ph229/
- http://www.qubit.org/
- My intro class: http://www.soi.wide.ad.jp/ class/20050012/
- http://www.tera.ics.keio.ac.jp/ person/rdv/

