The Cachelib Caching Engine: Design and

Experiences at Scale
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Caching is Used in a Diverse Array of Systems

* You might be surprised at all the use cases found at Facebook
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Caching is Used in a Diverse Array of Systems

* These systems to differ along several axes:

— Performance goals

— System topology Low Latency
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Caching is Used in a Diverse Array of Systems

* These systems to differ along several axes:
— Performance goals
— System topology
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Caching is Used in a Diverse Array of Systems

* These systems to differ along several axes:
— Performance goals

— System topology
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Caching is Used in a Diverse Array of Systems

* These systems differ along several axes:
— Performance goals
— System topology
— Workload
— Domain-specific features

CDN caches Media caches Storage

E " Photo caches
.4—> : '' ;. ___ — . Scaler /V
§ Counter caches E C .

: Content : :
-------------- ! ; . Video Encoder ;
.‘/’ : Votes D T Database

Key-value cac'r'{é's' ------- \ Graph caches . caches

__________________________________ B C R R
\5 Selﬁs:)on D‘\! [:] Content i'l;:nmee DN.A@

Recom P
'S?nr%/oer ______ mendations | DFollowers

Carnegie e et
Mellon

University

Computer

Science

Department

<« >




o Hi

Specialized Caching is the State-of-the-art

istorically, Facebook maintained specialized caching implementations

Long tradition of

specialization in academia
e Distcache, Kvell, Cliffhanger,
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Specialized Caching is the State-of-the-art

* Historically, Facebook maintained specialized caching implementations

Long tradition of

specialization in academia
e Distcache, Kvell, Cliffhanger,
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Solution: Cachelib Caching Engine

e Cachelib is a widely used,
general-purpose caching engine

— Enables high-capacity caches

: : o 754 Migrati |

— Provides a rich feature set £ e;?srt?n'g J
n» O .
T 5 =p5g4 Services
— Aggregates optimizations » 2 to CachelLib
Widely adopted at Facebook S §2s- v servic
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— replaced many specialized D o7 2018 2019 2020

implementations




The Cachelib Caching Engine

 Common challenges/characteristics of caching systems

* Design of Cachelib

e Cachelib outperforms specialized implementations

* Lessons learned from deploying Cachelib in production




ldentifying Common Challenges in Caching

Largest 4 caching systems at Facebook
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Popularity Distributions are Diffuse

80/20 rule Facebook

* Request popularities are roughly

assumed to follow the “80/20” rule SocialGraph

* For SocialGraph: “50/20 rule” g 10°

 For Storage: “40/20 rule” s

» For CDN “60/20 rule” % 103 .
* Low popularity of hot objects — low hit § 0

ratio 101 103 105 107
Object Popularity Rank

* Need large cache capacities
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Object Sizes are Highly Variable

* Object sizes are highly variable

©1.0]
* Small object sizes are common d 0s. ok
. o Y. ookKaside
* Memcached: 56 B per object §:_’O . SocialGraph Storage
 MemC3 [NSDI 13’]: 40 B per object o
e 1TB of 100B objects? g 04 CDN
* 256 GB DRAM overhead €02
5 0.0

. . ' 10B  100B 1KB  10KB 100KB 1MB
* Caches need low per-object overhead, ability Object Sizes
to index billions of objects
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Common Challenges of the Production Environment

* Are there shared challenges of a “real deployed system”?

 Stability requirements for production caching systems
e Bursty traffic
* Frequent code updates / restarts

* Solution: These challenges could be addressed once by
a unified caching implementation




The Cachelib Caching Engine

 Common challenges/characteristics of caching systems
— Large cache capacity, low overhead, production features




Caching Engine Requirements

 Want a library of customizable cache components

— Easy for programmers (simple, expressive API) CEIES A e

e To accommodate workloads: Cachelib API

— Transparent hybrid DRAM-flash caches for large
capacity

— Approximate indexes over billions of small objects _
* For production deployment:

— Sufficient single-machine throughput Flash Cache

— Broad feature set
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The Cachelib API

 Uniform, thread-safe API
— Decoupled from cache configuration

— Easy to build highly-concurrent, high :i?ié;te() ItemHandle
throughput caches
— Applications not tightly coupled to
storage medium (DRAM, flash) _
Cache
class

Caching Application
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Cachelib’s Caching Implementation

e DRAM uses chained hash table
— 31B per object

* Flash cache partitioned by size

— < 0.2% overhead in practice

 Flash has limited write
endurance

Small Object Cache Large Object Cache
(SOC) (LOC)

— Admission policies

— Reduce write amplification

* Billions of objects * Millions of objects
* Hash objects to 4K flash page * In-memory index

* Lower overhead tolerance * Higher overhead tolerance




Cachelib’s Broad Feature Set

Persistent Cache empty Optimized
cache across results with no caching of data
restarts overhead structures

\ Hybrid Cache Warm Restarts Negative Caching Natively Structed Items
CacheLib | v v v Arrays/Maps
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The Cachelib Caching Engine

* Design of Cachelib




Existing Systems Do Not Replicate Cachelib

Hybrid Cache Warm Restarts Negative Caching Natively Structed Items

CacheLib v v v Arrays/Maps
Memcached v X X X

Redis X X X Many

MemC3 X X X X

Flashield v X X X

Apache Traffic Server v X v X

Varnish X X X X
FlashCache v v X X

Flashtier v v X X
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Lookaside Caching: CacheLib Outperforms Memcached

—— (CacheLib —+— Memcached === Cachelib === Memcached
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HTTP Server Caching: Cachelib Outperforms NGINX/ATSZ
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The Cachelib Caching Engine

* Cachelib outperforms specialized implementations
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Cachelib is an Aggregation Point for Optimizations

CDN caches Media caches

e Specialized implementations

enable localized improvements Ja- , {Pnow
g ------------- i Scae \

Gl

Storage
caches

* Cachelib exports optimizations
to all use cases

Content
Recom
mendations

— Example: Optimizing the LOC for
CDN

— Hybrid cache performance
improved everywhere

Cachelib Caching Engine
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Cachelib Reduces the “Cost” of Caching

e Typical calculation in provisioning a cache:

Cost (energy, dollars, Utility (energy, dollars, P
person-hours) person-hours)

B* Bytes of Cache B Bytes of Cache

Set marginal cost equal to marginal benefit
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Cachelib Reduces the “Cost” of Caching

e Typical calculation in provisioning a cache:

Utility (energy, dollars,
person-hours)

Cost (energy, dollars,
person-hours)

B™ Bytes of Cache

Set marginal cost equal to marginal benefit

Impact
* Cache capacities are growing

e
CD‘gm‘y ﬁ * Number of caches is growing
Department



Conclusion
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Problem: Squ’Fion: CtheLib, a widely used general-purpose
caching engine

Hard to maintain an increasing number
of specialized implementations
 Redundant code

 Narrow feature sets

* Barrier to implementing new ideas
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e Extracts common caching functionality
* Aggregates optimizations

 Reduces the “cost” of caching
 Widely used at Facebook



Thank you!

* Contact the authors:
* Benjamin Berg: bsberg@cs.cmu.edu

e See www.cachelib.org for more information
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