The Cachelib Caching Engine: Design and

Experiences at Scale

Many Authors

DATA
\
\,\S/') '
g = O,
iy e J..l-’"l |
Al in)
L I | |]
il
N
L

Caching is Used in a Diverse Array of Systems

* You might be surprised at all the use cases found at Facebook

CDN caches Media caches Storage

ll‘—’-j:v’-___ _____ he— IS A/vcac >
~ Countercaches 4-»3 .

6 --------------- . Content . Video Encoder
® e, P Database
- Key-value caches 5 \ i ,___G_raph__c_a_c_h_e_s____. caches
' Session B I . i 1ime .
.~ info E : Content : : line C Cp4
NNl
: = = i - ollowers
info — i - R mendations : : [_J Followers . N

(And many more!)

Carnegie
Mellon
University
Computer
Science
Department

Caching is Used in a Diverse Array of Systems

* These systems to differ along several axes:

— Performance goals

— System topology Low Latency

5

Large Capacity

\

____________________________________ Media caches
: . Photo 5 caches

P &—— ! Scaler

Counter caches | [)«—niS C

: Content
: Votes

;. VIdeo 1 : Database
. caches

Recom

= ﬂ

niversity

Computer

Dentrert High Throughput Strict Consistency

Caching is Used in a Diverse Array of Systems

* These systems to differ along several axes:
— Performance goals
— System topology

Remote

<
N

Backend

N

Caching is Used in a Diverse Array of Systems

* These systems to differ along several axes:
— Performance goals

— System topology
In-Process

<
N

Backend

N

Caching is Used in a Diverse Array of Systems

* These systems differ along several axes:
— Performance goals
— System topology
— Workload
— Domain-specific features

CDN caches Media caches Storage

E " Photo caches
.4—> : '' ;. ___ — . Scaler /V
§ Counter caches E C .

: Content : :
-------------- ! ; . Video Encoder ;
.‘/’ : Votes D T Database

Key-value cac'r'{é's' ------- \ Graph caches . caches

__________________________________ B C R R
\5 Selﬁs:)on D‘\! [:] Content i'l;:nmee DN.A@

Recom P
'S?nr%/oer ______ mendations | DFollowers

Carnegie e et
Mellon

University

Computer

Science

Department

<« >

o Hi

Specialized Caching is the State-of-the-art

istorically, Facebook maintained specialized caching implementations

Long tradition of

specialization in academia
e Distcache, Kvell, Cliffhanger,

5

RIPQ [FAST 15’] f4 [OSDI 14']

\

.Media caches
. Photo : caches

many more

E Scaler N
, @ cComerace | Ol [
: - : Conten : L\ '
5 - . : . Video Encoder -
- /" _otes. A R ' Database
o \. __________________________ caches
Content
Recom

Carnegic ﬁ

University

Computer

oot Memcache [NSDI 13’] Tao [ATC 13’]

Specialized Caching is the State-of-the-art

* Historically, Facebook maintained specialized caching implementations

Long tradition of

specialization in academia
e Distcache, Kvell, Cliffhanger,

Many more
CDJ_\!__C._a__c_h_e_s_________________, ____M_e_d_l_a__c_a_ch_e_r§___, Storﬁage
: Phot caches
Problem: -‘—’ Gl e o
o . . , i ounter caches s 4—». .
Hard to maintain an increasing number "'/' ______________ i - Content i V.deo Encoder | Datab
c c g . [) et S database
of specialized implementations -\ Key-value caches | :}v . Graph caches caches
Session L r L T
 Redundant code SR Dg 1. Content | line DN. ,g
: : : ecom Do :
e Narrow feature sets SﬁnrgfoefDH _______ «E _____ mendations i i [;]__F_Q'_'S?Y!?_r_?__g

~* Barrier to implementing new ideas

Solution: Cachelib Caching Engine

e Cachelib is a widely used,
general-purpose caching engine

— Enables high-capacity caches

: : o 754 Migrati |

— Provides a rich feature set £ e;?srt?n'g J
n» O .
T 5 =p5g4 Services
— Aggregates optimizations » 2 to CachelLib
Widely adopted at Facebook S §2s- v servic
® 1ge 400 ed a acCepoo . NEeW services

Y P o GE, ©) on CachelLib

— replaced many specialized D o7 2018 2019 2020

implementations

The Cachelib Caching Engine

 Common challenges/characteristics of caching systems

* Design of Cachelib

e Cachelib outperforms specialized implementations

* Lessons learned from deploying Cachelib in production

ldentifying Common Challenges in Caching

Largest 4 caching systems at Facebook

Photo
. Scaler B
P 5 5 . | Video Encoder |
;f .__\otes . P e : Database

caches

Content
Recom
mendations

Lookaside SocialGraph

Carnegie
Mellon
University
Computer
Science
Department

Popularity Distributions are Diffuse

80/20 rule Facebook

* Request popularities are roughly

assumed to follow the “80/20” rule SocialGraph

* For SocialGraph: “50/20 rule” g 10°

 For Storage: “40/20 rule” s

» For CDN “60/20 rule” % 103 .
* Low popularity of hot objects — low hit § 0

ratio 101 103 105 107
Object Popularity Rank

* Need large cache capacities

Carnegie
Mellon

University
go_mputer

eeeeee

Object Sizes are Highly Variable

* Object sizes are highly variable

©1.0]
* Small object sizes are common d 0s. ok
. o Y. ookKaside
* Memcached: 56 B per object §:_’O . SocialGraph Storage
 MemC3 [NSDI 13’]: 40 B per object o
e 1TB of 100B objects? g 04 CDN
* 256 GB DRAM overhead €02
5 0.0

. . ' 10B 100B 1KB 10KB 100KB 1MB
* Caches need low per-object overhead, ability Object Sizes
to index billions of objects

Carnegie
Mellon
University
Computer
Science
Department

Common Challenges of the Production Environment

* Are there shared challenges of a “real deployed system”?

 Stability requirements for production caching systems
e Bursty traffic
* Frequent code updates / restarts

* Solution: These challenges could be addressed once by
a unified caching implementation

The Cachelib Caching Engine

 Common challenges/characteristics of caching systems
— Large cache capacity, low overhead, production features

Caching Engine Requirements

 Want a library of customizable cache components

— Easy for programmers (simple, expressive API) CEIES A e

e To accommodate workloads: Cachelib API

— Transparent hybrid DRAM-flash caches for large
capacity

— Approximate indexes over billions of small objects _
* For production deployment:

— Sufficient single-machine throughput Flash Cache

— Broad feature set

Carnegie
Mellon
University
Computer
Science
Department

The Cachelib API

 Uniform, thread-safe API
— Decoupled from cache configuration

— Easy to build highly-concurrent, high :i?ié;te() ItemHandle
throughput caches
— Applications not tightly coupled to
storage medium (DRAM, flash) _
Cache
class

Caching Application

Carnegie
Mellon
University
Computer
Science
Department

Cachelib’s Caching Implementation

e DRAM uses chained hash table
— 31B per object

* Flash cache partitioned by size

— < 0.2% overhead in practice

 Flash has limited write
endurance

Small Object Cache Large Object Cache
(SOC) (LOC)

— Admission policies

— Reduce write amplification

* Billions of objects * Millions of objects
* Hash objects to 4K flash page * In-memory index

* Lower overhead tolerance * Higher overhead tolerance

Cachelib’s Broad Feature Set

Persistent Cache empty Optimized
cache across results with no caching of data
restarts overhead structures

\ Hybrid Cache Warm Restarts Negative Caching Natively Structed Items
CacheLib | v v v Arrays/Maps

Carnegie
Mellon
University
Computer
Science
Department

The Cachelib Caching Engine

* Design of Cachelib

Existing Systems Do Not Replicate Cachelib

Hybrid Cache Warm Restarts Negative Caching Natively Structed Items

CacheLib v v v Arrays/Maps
Memcached v X X X

Redis X X X Many

MemC3 X X X X

Flashield v X X X

Apache Traffic Server v X v X

Varnish X X X X
FlashCache v v X X

Flashtier v v X X

Carnegie
Mellon
University
Computer
Science
Department

21

Lookaside Caching: CacheLib Outperforms Memcached

—— (CacheLib —+— Memcached === Cachelib === Memcached
_ 100 'g' -
S, 75 jg .
o 0 15 A *
= 50 £8 Mﬂfﬁ}
= 25 ©5
|_._
0 = 0.0
81632 064 128 30 50 70 90

Cache Size [GB] Hit Ratio [%]

2

HTTP Server Caching: Cachelib Outperforms NGINX/ATSZ

—~ 40
O A
3
S5 < 30
O o~ .
£ 0 —— Cachelib
D= 9
g'cgu —— ATS
= @ 10 7%= = —=— Nginx
o O- —0— —— —O—
= 0

16b 128b 1kB 8kB 64kB 512kb
Object Size

The Cachelib Caching Engine

* Cachelib outperforms specialized implementations

24

Cachelib is an Aggregation Point for Optimizations

CDN caches Media caches

e Specialized implementations

enable localized improvements Ja- , {Pnow
g ------------- i Scae \

Gl

Storage
caches

* Cachelib exports optimizations
to all use cases

Content
Recom
mendations

— Example: Optimizing the LOC for
CDN

— Hybrid cache performance
improved everywhere

Cachelib Caching Engine

Carnegie
Mellon

University
go_mputer

eeeeee

Cachelib Reduces the “Cost” of Caching

e Typical calculation in provisioning a cache:

Cost (energy, dollars, Utility (energy, dollars, P
person-hours) person-hours)

B* Bytes of Cache B Bytes of Cache

Set marginal cost equal to marginal benefit

Carnegie
Mellon
University
Computer
Science
Department

Cachelib Reduces the “Cost” of Caching

e Typical calculation in provisioning a cache:

Utility (energy, dollars,
person-hours)

Cost (energy, dollars,
person-hours)

B™ Bytes of Cache

Set marginal cost equal to marginal benefit

Impact
* Cache capacities are growing

e
CD‘gm‘y ﬁ * Number of caches is growing
Department

Conclusion

. : : . CQ_I_\!_ga_c_h.e_s....__...-....-.., ~Mediacaches . Storage
Historically cache implementations .H; — 52;’.2‘: caches
ialized - §.ii.n_t§r__c§9h§§ B C — .
were SpECIB 1ze : Content V|deo Encoder !
® /’ pVotes =g b e ' Database
Key-value caches H ..Graph caches ~ caches
C Caca r T P b Ti :
SO @ OContent | line (I3 [@ 2
' Server \ Recom @ Dt’ll’_—' E
Sever[Je— | _.mendations: i [JF ollowers i

Problem: Squ’Fion: CtheLib, a widely used general-purpose
caching engine

Hard to maintain an increasing number
of specialized implementations
 Redundant code

 Narrow feature sets

* Barrier to implementing new ideas

Carnegie
Mellon
University
Computer
Science
Department

e Extracts common caching functionality
* Aggregates optimizations

 Reduces the “cost” of caching
 Widely used at Facebook

Thank you!

* Contact the authors:
* Benjamin Berg: bsberg@cs.cmu.edu

e See www.cachelib.org for more information

Carnegie
Mellon
University
Computer
Science
Department

