
The	CacheLib	Caching	Engine:	Design	and	
Experiences	at	Scale

Many	Authors

0



Caching	is	Used	in	a	Diverse	Array	of	Systems
1

• You	might	be	surprised	at	all	the	use	cases	found	at	Facebook

(And	many	more!)



Caching	is	Used	in	a	Diverse	Array	of	Systems

• These	systems	to	differ	along	several	axes:
– Performance	goals
– System	topology

2

Low	Latency Large	Capacity

Strict	ConsistencyHigh	Throughput



Caching	is	Used	in	a	Diverse	Array	of	Systems

• These	systems	to	differ	along	several	axes:
– Performance	goals
– System	topology

3

CacheApplication

Backend

Remote



Caching	is	Used	in	a	Diverse	Array	of	Systems

• These	systems	to	differ	along	several	axes:
– Performance	goals
– System	topology

4

Application CacheApplication

Backend

In-Process



Caching	is	Used	in	a	Diverse	Array	of	Systems

• These	systems	differ	along	several	axes:
– Performance	goals
– System	topology
–Workload
– Domain-specific	features

5



Specialized	Caching	is	the	State-of-the-art

• Historically,	Facebook	maintained	specialized caching	implementations

6

RIPQ	[FAST	15’] f4	[OSDI	14’]

Memcache [NSDI	13’]

• Long	tradition	of	
specialization	in	academia
• Distcache,	Kvell,	Cliffhanger,	
many	more

Tao	[ATC	13’]



Specialized	Caching	is	the	State-of-the-art

• Historically,	Facebook	maintained	specialized caching	implementations

7

• Long	tradition	of	
specialization	in	academia
• Distcache,	Kvell,	Cliffhanger,	
many	more

Problem:	
Hard	to	maintain	an	increasing	number	
of	specialized	implementations
• Redundant	code
• Narrow	feature	sets
• Barrier	to	implementing	new	ideas



Solution:	CacheLib	Caching	Engine
8

• CacheLib	is	a	widely	used,				
general-purpose	caching	engine
– Enables	high-capacity	caches
– Provides	a	rich	feature	set
– Aggregates	optimizations

• Widely	adopted	at	Facebook
– replaced	many	specialized	
implementations



The	CacheLib	Caching	Engine

• Common	challenges/characteristics	of	caching	systems

• Design	of	CacheLib

• CacheLib	outperforms	specialized	implementations

• Lessons	learned	from	deploying	CacheLib	in	production

9



Identifying	Common	Challenges	in	Caching
10

CDN Storage

Lookaside SocialGraph

Largest	4	caching	systems	at	Facebook



Popularity	Distributions	are	Diffuse

• Request	popularities	are	roughly	
assumed	to	follow	the	“80/20”	rule	
• For	SocialGraph:	“50/20	rule”
• For	Storage:	“40/20	rule”
• For	CDN	“60/20	rule”

• Low	popularity	of	hot	objects	→ low	hit	
ratio

• Need	large	cache	capacities

11

Object	Popularity	Rank

N
um

be
r	o

f	R
eq

ue
st
s

80/20	rule Facebook



Object	Sizes	are	Highly	Variable
12

• Object	sizes	are	highly	variable

• Small	object	sizes	are	common
• Memcached:	56	B	per	object
• MemC3	[NSDI	13’]:	40	B	per	object
• 1	TB	of	100B	objects?

• 256	GB	DRAM	overhead

• Caches	need	low	per-object	overhead,	ability	
to	index	billions	of	objects



Common Challenges	of	the	Production	Environment

• Are	there	shared	challenges	of	a	“real	deployed	system”?

13

• Stability	requirements	for	production	caching	systems
• Bursty traffic
• Frequent	code	updates	/	restarts

• Solution:	These	challenges	could	be	addressed	once by	
a	unified	caching	implementation



The	CacheLib	Caching	Engine
• Common	challenges/characteristics	of	caching	systems
– Large	cache	capacity,	low	overhead,	production	features

• Design	of	CacheLib

• CacheLib	outperforms	specialized	implementations

• Lessons	learned	from	deploying	CacheLib	in	production

14



Caching	Engine	Requirements
15

Caching	Application

DRAM	Cache

Flash	Cache

• Want	a	library	of	customizable	cache	components
– Easy	for	programmers	(simple,	expressive	API)

• To	accommodate	workloads:
– Transparent	hybrid	DRAM-flash	caches	for	large	
capacity	

– Approximate	indexes	over	billions	of	small	objects	
• For	production	deployment:
– Sufficient	single-machine	throughput
– Broad	feature	set

CacheLib	API



The	CacheLib	API
16

find()
allocate() ItemHandle

Cache 
class

• Uniform,	thread-safe	API
– Decoupled	from	cache	configuration
– Easy	to	build	highly-concurrent,	high	
throughput	caches

– Applications	not	tightly	coupled	to	
storage	medium	(DRAM,	flash)

Caching	Application

DRAM	Cache

Flash	Cache

CacheLib	API



DRAM	Cache

Flash	Cache

CacheLib’s Caching	Implementation
17

• DRAM	uses	chained	hash	table
– 31B	per	object

• Flash	cache	partitioned	by	size
– 		< 0.2% overhead	in	practice

• Flash	has	limited	write	
endurance
– Admission policies
– Reduce	write	amplification

Small	Object	Cache	
(SOC)

Large	Object	Cache	
(LOC)

≤	2KB >	2KB

• Millions	of	objects
• In-memory	index
• Higher	overhead	tolerance

• Billions	of	objects
• Hash	objects	to	4K	flash	page
• Lower	overhead	tolerance

Admission	Policy



CacheLib’s Broad	Feature	Set
18

Persistent	
cache	across	
restarts

Cache	empty	
results	with	no	

overhead

Optimized	
caching	of	data	

structures



The	CacheLib	Caching	Engine

• Common	challenges/characteristics	of	caching	systems

• Design	of	CacheLib

• CacheLib	outperforms	specialized	implementations

• Lessons	learned	from	deploying	CacheLib	in	production

19



Existing	Systems	Do	Not	Replicate	CacheLib
20



Lookaside	Caching:	CacheLib	Outperforms	Memcached
21



HTTP	Server	Caching:	CacheLib	Outperforms	NGINX/ATS
22



The	CacheLib	Caching	Engine

• Common	challenges/characteristics	of	caching	systems

• Design	of	CacheLib

• CacheLib	outperforms	specialized	implementations

• Lessons	learned	from	deploying	CacheLib	in	production

23



CacheLib	is	an	Aggregation	Point	for	Optimizations	
• Specialized	implementations	
enable	localized	improvements

• CacheLib	exports	optimizations	
to	all	use	cases
– Example:	Optimizing	the	LOC	for	
CDN

– Hybrid	cache	performance	
improved	everywhere

24

CacheLib	Caching	Engine



CacheLib	Reduces	the	“Cost”	of	Caching
• Typical	calculation	in	provisioning	a	cache:

25

Set	marginal	cost	equal	to	marginal	benefit

Cost	(energy,	dollars,	
person-hours)

Bytes	of	Cache

Utility	(energy,	dollars,	
person-hours)

Bytes	of	Cache𝑩∗ 𝑩∗



CacheLib	Reduces	the	“Cost”	of	Caching
• Typical	calculation	in	provisioning	a	cache:

26

Set	marginal	cost	equal	to	marginal	benefit

Impact
• Cache	capacities	are	growing		
• Number	of	caches	is	growing

Cost	(energy,	dollars,	
person-hours)

Utility	(energy,	dollars,	
person-hours)

Bytes	of	Cache𝑩∗ 𝑩∗



Conclusion
27

Solution: CacheLib,	a	widely	used	general-purpose
caching	engine
• Extracts	common	caching	functionality
• Aggregates	optimizations
• Reduces	the	“cost”	of	caching
• Widely	used	at	Facebook

Problem:	
Hard	to	maintain	an	increasing	number	
of	specialized	implementations
• Redundant	code
• Narrow	feature	sets
• Barrier	to	implementing	new	ideas

Historically	cache	implementations	
were	specialized



Thank	you!

• Contact	the	authors:
• Benjamin	Berg:	bsberg@cs.cmu.edu

• See	www.cachelib.org for	more	information

28


