
Lightweight Preemptible Functions
Sol Boucher, Carnegie Mellon University

Joint work with:
Anuj Kalia, Microsoft Research

David G. Andersen, CMU
Michael Kaminsky, BrdgAI/CMU

Why?
● Bound resource use
● Balance load of different tasks
● Meet a deadline (e.g., real time)

Light∙weight (adj.): Low overhead, cheap
Pre∙empt∙i∙ble (adj.): Able to be stopped

2

Run a preemptible function (PF) Do something else important
time

⏱

Desiderata

● Retain programmer’s control over the CPU

● Be able to interrupt arbitrary unmodified code

● Introduce minimal overhead in the common case

● Support cancellation

● Maintain compatibility with the existing systems stack

3

Agenda
● Why contemporary approaches are insufficient

○ Futures
○ Threads
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

4

Problem: calling a function cedes control

5

Run a preemptible function (PF) Do something else important
time

func()

Two approaches to multitasking

cooperative vs. preemptive
≈

lightweightness vs. generality

6

Agenda
● Why contemporary approaches are insufficient

○ Futures
○ Threads
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

7

Problem: futures are cooperative

future: lightweight userland thread scheduled by the language runtime

One future can depend on another’s result at a yield point

func()

8

PNG

Agenda
● Why contemporary approaches are insufficient

○ Futures (cooperative not preemptive)
○ Threads
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

9

// Problem

buffer = decode(&img);

time_sensitive_task();

Alternative: kernel threading

10

// Tempting approach

pthread_create(&tid, NULL,

 decode, &img);

usleep(TIMEOUT);

time_sensitive_task();

pthread_join(&tid, &buffer);

Run a preemptible function (PF) Do something else important

Problem: SLAs and graceful degradation

11

SLA

time

Call to malloc()

Observation: cancellation is hard

12

Process

Thread PF Thread ����⏱ CANCEL
LED

Agenda
● Why contemporary approaches are insufficient

○ Futures (cooperative not preemptive)
○ Threads (poor ergonomics, no cancellation)
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

13

Problem: object ownership and lifetime

14

Process PF Process

Shared objectPointer ☐

CANCEL
LED

Agenda
● Why contemporary approaches are insufficient

○ Futures (cooperative not preemptive)
○ Threads (poor ergonomics, no cancellation) (sacrifice programmer control)
○ Processes (poor performance and ergonomics)

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

15

}

Idea: function calls with timeouts

● Retain programmer’s control over the CPU

● Be able to interrupt arbitrary unmodified code

● Introduce minimal overhead in the common case

● Support cancellation

● Maintain compatibility with the existing systems stack

16

● Why contemporary approaches are insufficient
● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

Agenda

17

lightweight preemptible function: function invoked with a timeout

● Faster than spawning a process or thread

● Runs on the caller’s thread

A new application primitive

18

lightweight preemptible function: function invoked with a timeout

● Interrupts at 10–100s microseconds granularity

● Pauses on timeout for low overhead and flexibility to resume

A new application primitive

19

lightweight preemptible function: function invoked with a timeout

● Preemptible code is a normal function or closure

● Invoked via wrapper like pthread_create(), but synchronous

A new application primitive

20

funcstate = launch(func, 400 /*us*/, NULL);

The interface: launch() and resume()

if(!funcstate.is_complete) {

work_queue.push(funcstate);

}

// ...

funcstate = work_queue.pop();

resume(&funcstate, 200 /*us*/);

21

The interface: cancel()

funcstate = launch(func, 400 /*us*/, NULL);

if(!funcstate.is_complete) {

work_queue.push(funcstate);

}

// ...

funcstate = work_queue.pop();

cancel(&funcstate);

22

 // counter == ?!

counter = 0;

funcstate = launch(λa. ++counter, 1, NULL);

++counter;

if(!funcstate.is_complete) {

resume(&funcstate, TO_COMPLETION);

}

assert(counter == 2);

Concurrency: explicit sharing

23

error[E0503]: cannot use `counter` because it was mutably borrowed

13 | funcstate = launch(λa. ++counter, 1, NULL);
 | --- ------- borrow occurs due to use
 | | of `counter` in closure
 | |
 | borrow of `counter` occurs here
14 | ++counter;
 | ^^^^^^^^^ use of borrowed `counter`

Concurrency: existing protections work (e.g., Rust)

24

libinger: library implementing LPFs,
currently supports C and Rust programs

25

Implementation: execution stack

funcstate = launch(func, TO_COMPLETION, NULL);

26

Caller’s stack:

...

launch()

Preemptible function’s stack:

[stub]

func()[caller]

Implementation: timer signal

funcstate = launch(func, TIMEOUT, NULL);

27

Caller’s stack:

...

launch()

Preemptible function’s stack:

[stub]

func()[caller]

handler()resume()

Timeout?

funcstate = launch(func, TIMEOUT, NULL);

cancel(&funcstate);

Implementation: cleanup

28

Preemptible function’s stack:

[stub]

func()

handler()

launch() timeout!

Preemption mechanism

29

t

Timeout?

libinger microbenchmarks

30

Operation Cost (μs)

launch() ≈ 5

resume() ≈ 5

cancel() ≈ 4800*

pthread_create() ≈ 30

fork() ≈ 200
* This operation is not typically on the critical path.

libinger cancels runaway image decoding quickly

31

10

● Why contemporary approaches are insufficient
● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

Agenda

32

Signal handlers cannot call non-reentrant code

The rest of the program interrupts a preemptible function

The rest of the program cannot call non-reentrant code?!

Problem: non-reentrancy

33

Program
Preemptible function

Preemptible function

Calls to strtok()

Can reuse each library copy once function runs to completion

Approach 1: library copying

34

Program
Preemptible function

Preemptible function

strtok()

strtok()

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

Dynamic symbol binding

35

Executable

k = strtok(“k:v”, “:”);

Global Offset Table (GOT)

...

0x900dc0de

...

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc

?

libgotcha: runtime implementing
selective relinking for linked programs

36

1. Copy the library for each LPF
2. Create an SGOT for each LPF
3. Point GOT entries at libgotcha

Selective relinking

37

Executable

k = strtok("k:v", ":");

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc
Global Offset Table (GOT)

...

0x900dc0de

...

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libgotcha

0xc00010ff

SGOT
————
————

libset: full set of all a program’s libraries

Libsets and cancellation

38

Program
Preemptible function

Preemptible function

Calls to strtok()

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

Approach 2: uncopyable functions
Copying doesn’t work for everything…

void *malloc(size_t size) {

PREEMPTION_ENABLED = false;

void *mem = /* Call the real malloc(). */;

check_for_timeout();

PREEMPTION_ENABLED = true;

return mem;

}
39

“Approach 3”: blocking syscalls

int open(const char *filename) {

syscall(SYS_open, filename);

}

struct sigaction sa = {};

sa.sa_flags = SA_RESTART;

40

while(errno == EAGAIN)

libgotcha microbenchmarks

41

Symbol access Time w/o libgotcha Time w/ libgotcha

Function call ≈ 2 ns ≈ 14 ns

Global variable ≈ 0 ns ≈ 3500* ns

Baseline End-to-end time w/o libgotcha

gettimeofday() ≈ 19 ns (65% overhead)

getpid() ≈ 44 ns (30% overhead)

* Exported global variables have become rare.

● Why contemporary approaches are insufficient
● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

Agenda

42

libturquoise: preemptive version of the
Rust Tokio userland thread pool

43

2 classes:
Short: 500 μs
Long: 50 ms

Vary % long in mix

Measure short only

hyper latency benchmark: experimental setup

compute-bound request

response

44

hyper latency benchmarks: results

45

No code changes! Head-of-line blockingS
ho

rt
la

te
nc

y
(m

s)

% long requests % long requests

Median 99% tail

Preemptive

Cooperative

Preemptive

Cooperative

.

.

.

.

.

.

.

Summary

lightweight preemptible function: function invoked with a timeout

● Synchronous preemption abstraction
● Supports resuming and cancellation
● Interoperable with legacy software
● Exciting systems applications

46

Thank you!
Reach me at sboucher@cmu.edu

47

