Lightweight Preemptible Functions

Sol Boucher, Carnegie Mellon University

Joint work with:
Anuj Kalia, Microsoft Research
David G. Andersen, CMU
Michael Kaminsky, BrdgAl/CMU

Light-weight (adj.): Low overhead, cheap
Pre-empt-1-ble (adj.): Able to be stopped

Run a preemptible function (PF) Do something else important

Why?
e Bound resource use
e Balance load of different tasks
e Meet a deadline (e.g., real time)

time

Desiderata

e Retain programmer’s control over the CPU

e Be able to interrupt arbitrary unmodified code

e Introduce minimal overhead in the common case
e Support cancellation

e Maintain compatibility with the existing systems stack

Agenda

e Why contemporary approaches are insufficient
o Futures
o Threads
o Processes

e Function calls with timeouts
e Backwards compatibility
e Preemptive userland threading

Problem: calling a function cedes control

time
Run a preemptible function (PF) Do something else important

func()

Two approaches to multitasking

cooperative vs. preemptive

e
(-

lightwelightness vs. generality

Agenda

e Why contemporary approaches are insufficient
o Futures
o Threads
o Processes

e Function calls with timeouts
e Backwards compatibility
e Preemptive userland threading

Problem: futures are cooperative

future: lightweight userland thread scheduled by the language runtime

One future can depend on another’s result at a yield point

>

./

Agenda

e Why contemporary approaches are insufficient
o fFutgres (cooperative not preemptive)
o Threads
o Processes

e Function calls with timeouts
e Backwards compatibility
e Preemptive userland threading

Alternative: kernel threading

// Problem
buffer = decode(&img);
time_sensitive task();

// Tempting approach

pthread create(&tid, NULL,
decode, &img);

usleep(TIMEOUT);

time_sensitive_task();

pthread_join(&tid, &buffer);

10

Problem: SLAs and graceful degradation

Run a preemptible function (PF) Do something else important

SLA

time

11

Observation: cancellation is hard

Process

5/ Call tomalloc()

12

Agenda

e Why contemporary approaches are insufficient
o fFutgres (cooperative not preemptive)
o Fhreads (poor ergonomics, no cancellation)
o Processes

e Function calls with timeouts
e Backwards compatibility
e Preemptive userland threading

Problem: object ownership and lifetime

Process

Pointer [

PF Process

P Shared object
NCEWED

14

Agenda

e Why contemporary approaches are insufficient
o fFutgres (cooperative not preemptive)
o Fhreads (poor ergonomics, no cancellation) } (sacrifice programmer control)
o Preeesses (poor performance and ergonomics)

e Function calls with timeouts
e Backwards compatibility
e Preemptive userland threading

|dea: function calls with timeouts

e Retain programmer’s control over the CPU

e Be able to interrupt arbitrary unmodified code

e Introduce minimal overhead in the common case
e Support cancellation

e Maintain compatibility with the existing systems stack

16

Agenda

Why contemporary approaches are insufficient
Function calls with timeouts

Backwards compatibility

Preemptive userland threading

A new application primitive

lightweight preemptible function: function invoked with a timeout

e Faster than spawning a process or thread

e Runs on the caller’s thread

18

A new application primitive

lightweight preemptible function: function invoked with a timeout

e Interrupts at 10—100s microseconds granularity

e Pauses on timeout for low overhead and flexibility to resume

19

A new application primitive

lightweight preemptible function: function invoked with a timeout

e Preemptible code is a normal function or closure

e Invoked via wrapper like pthread_create(), but synchronous

20

The interface: 1launch() and resume()

funcstate = launch(func, 400 /*us*/, NULL);

if(!funcstate.is complete) {
work queue.push(funcstate);

¥
/] ...

funcstate = work _queue.pop();
resume (&funcstate, 200 /*us*/);

21

The interface: cancel()

funcstate = launch(func, 400 /*us*/, NULL);

if(!funcstate.is complete) {
work queue.push(funcstate);

¥
/] ...

funcstate = work _queue.pop();
cancel(&funcstate);

22

Concurrency: explicit sharing

counter = 9;
funcstate

launch(Aa. #+counter, 1, NULL);
++counter;

if(!funcstate.is complete) {
resume(&funcstate, TO COMPLETION);

¥

assert(counter == 2); // counter == ?!

23

Concurrency: existing protections work (e.g., Rust)

error[E@503]: cannot use " counter because it was mutably borrowed

13 | funcstate = launch(Aa. ++counter, 1, NULL);

e borrow occurs due to use
| of “counter’ in closure
|
borrow of "~ counter® occurs here

14 ++counter;

ANNNANNAN yse of borrowed " counter”

24

libinger: library implementing LPFs,
currently supports C and Rust programs

Implementation: execution stack

funcstate

= launch(func, TO COMPLETION, NULL);

Caller’s stack:

launch()

Preemptible function’s stack:

[caller]

func()

[stub]

26

Implementation: timer signal

funcstate

launch(func, TIMEOUT, NUL

Timeout?

Caller’s stack:

Preemptible function’s

O
resume () handleﬁ()
[caller] func()

[stub]

27

Implementation: cleanup

funcstate = launch(func, TIMEOUT, NULL);

cancel(&funcstate);

Preemptible function’s stack:

handler()

func()

[stub]

28

Preemption mechanism .
P Timeout?

launch() timeout!
S

| | 29

libinger microbenchmarks

Operation Cost (us)
launch() =
resume() =
cancel() =~ 4800*
pthread create() = 30
fork() = 200

* This operation is not typically on the critical path.

30

libinger cancels runaway image decoding quickly

B no mitigation [pthread_create() fork() [l launch()

Benign image |

Malicious image

10

Runtime (ms)

31

Agenda

Why contemporary approaches are insufficient
Function calls with timeouts

Backwards compatibility

Preemptive userland threading

Problem: non-reentrancy

Program

Preempibletinglon] S5 i sercoc
Poompibistncton| [+

Signal handlers cannot call non-reentrant code
The rest of the program interrupts a preemptible function

The rest of the program cannot call non-reentrant code?!

33

Approach 1: library copying o r

Program
Preemptble funcion| e
strtok()
libc.so
— Y

Can reuse each library copy once function runs to completion

Dynamic symbol binding

Executable

Global Offset Table (GOT)

0x900dcode — |

i

About the Author

35

libgotcha: runtime implementing
selective relinking for linked programs

Selective relinking

Executable

Global Offset Table (GOT)

P / """" |

k = strtok("k:v", @

1

/
OXCO0010FF —

About the Author

~~~~~~~~~~~~~~ libgotcha

1. Copy the library for each LPF
2. Create an SGOT for each LPF
3. Point GOT entries at libgotcha

37



Libsets and cancellation

Program l/

libset: full set of all a program'’s libraries



Approach 2: uncopyable functions

Copying doesn’t work for everything...

void *malloc(size t size) {
PREEMPTION ENABLED = false;
void *mem = /* Call the real malloc(). */;
check for_timeout();
PREEMPTION_ ENABLED = true;
return mem;

39



“Approach 3”: blocking syscalls

int open(const char *filename) {
while(errno == EAGAIN)
syscall(SYS open, filename);

¥

struct sigaction sa = {};
sa.sa_flags = SA RESTART;

40



libgotcha microbenchmarks

Symbol access | Time w/o libgotcha Time w/ libgotcha

Function call =2 NS = 14 ns
Global variable = (0 ns = 3500" ns
Baseline End-to-end time w/o libgotcha
gettimeofday() = 19 ns (65% overhead)
getpid() = 44 ns (30% overhead)

* Exported global variables have become rare. o



Agenda

Why contemporary approaches are insufficient
Function calls with timeouts

Backwards compatibility

Preemptive userland threading



libturquoise: preemptive version of the
Rust Tokio userland thread pool



hyper latency benchmark: experimental setup

compute-bound request >
2 classes:

Short: 500 ps
Long: 50 ms
Vary % long in mix

response

Measure short only

44



hyper latency benchmarks: results

= = =
o N >

Short latency (ms)

Median

=== Cooperative

—o== Preemptive

No code changes!

0.00

0.25

0.50 0.75 1.00 1.25 1.50 1.75 2.00

% long requests

60

50

40

30

20

10

99% tail
=== Cooperative
—e== Preemptive
Head-of-line blocking
200 025 050 o075 100 125 150 175 200

% long requests

45



Summary

lightweight preemptible function: function invoked with a timeout

Synchronous preemption abstraction
Supports resuming and cancellation
Interoperable with legacy software
Exciting systems applications

46



Thank you!

Reach me at sboucher@cmu.edu



