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Why?
● Bound resource use
● Balance load of different tasks
● Meet a deadline (e.g., real time)

Light∙weight (adj.): Low overhead, cheap
Pre∙empt∙i∙ble (adj.): Able to be stopped
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Run a preemptible function (PF) Do something else important
time

⏱



Desiderata

● Retain programmer’s control over the CPU

● Be able to interrupt arbitrary unmodified code

● Introduce minimal overhead in the common case

● Support cancellation

● Maintain compatibility with the existing systems stack
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Agenda
● Why contemporary approaches are insufficient

○ Futures
○ Threads
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading
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Problem: calling a function cedes control
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Run a preemptible function (PF) Do something else important
time

func()



Two approaches to multitasking

cooperative vs. preemptive
≈

lightweightness vs. generality
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Agenda
● Why contemporary approaches are insufficient

○ Futures
○ Threads
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading
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Problem: futures are cooperative

future: lightweight userland thread scheduled by the language runtime

One future can depend on another’s result at a yield point

func()
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PNG



Agenda
● Why contemporary approaches are insufficient

○ Futures (cooperative not preemptive)
○ Threads
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading
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// Problem

buffer = decode(&img);

time_sensitive_task();

Alternative: kernel threading
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// Tempting approach

pthread_create(&tid, NULL,

               decode, &img);

usleep(TIMEOUT);

time_sensitive_task();

pthread_join(&tid, &buffer);



Run a preemptible function (PF) Do something else important

Problem: SLAs and graceful degradation
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SLA

time



Call to malloc()

Observation: cancellation is hard
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Process

Thread PF Thread ����⏱ CANCEL
LED



Agenda
● Why contemporary approaches are insufficient

○ Futures (cooperative not preemptive)
○ Threads (poor ergonomics, no cancellation)
○ Processes

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading
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Problem: object ownership and lifetime
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Process PF Process

Shared objectPointer ☐

CANCEL
LED



Agenda
● Why contemporary approaches are insufficient

○ Futures (cooperative not preemptive)
○ Threads (poor ergonomics, no cancellation) (sacrifice programmer control)
○ Processes (poor performance and ergonomics)

● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading
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}



Idea: function calls with timeouts

● Retain programmer’s control over the CPU

● Be able to interrupt arbitrary unmodified code

● Introduce minimal overhead in the common case

● Support cancellation

● Maintain compatibility with the existing systems stack
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● Why contemporary approaches are insufficient
● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

Agenda
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lightweight preemptible function: function invoked with a timeout

● Faster than spawning a process or thread

● Runs on the caller’s thread

A new application primitive
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lightweight preemptible function: function invoked with a timeout

● Interrupts at 10–100s microseconds granularity

● Pauses on timeout for low overhead and flexibility to resume

A new application primitive
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lightweight preemptible function: function invoked with a timeout

● Preemptible code is a normal function or closure

● Invoked via wrapper like pthread_create(), but synchronous

A new application primitive
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funcstate = launch(func, 400 /*us*/, NULL);

The interface: launch() and resume()

if(!funcstate.is_complete) {

work_queue.push(funcstate);

}

// ...

funcstate = work_queue.pop();

resume(&funcstate, 200 /*us*/);
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The interface: cancel()

funcstate = launch(func, 400 /*us*/, NULL);

if(!funcstate.is_complete) {

work_queue.push(funcstate);

}

// ...

funcstate = work_queue.pop();

cancel(&funcstate);
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                      // counter == ?!

counter = 0;

funcstate = launch(λa. ++counter, 1, NULL);

++counter;

if(!funcstate.is_complete) {

resume(&funcstate, TO_COMPLETION);

}

assert(counter == 2);

Concurrency: explicit sharing
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error[E0503]: cannot use `counter` because it was mutably borrowed

13 | funcstate = launch(λa. ++counter, 1, NULL);
   |                    ---   ------- borrow occurs due to use
   |                     |            of `counter` in closure
   |                     |
   |                     borrow of `counter` occurs here
14 | ++counter;
   | ^^^^^^^^^ use of borrowed `counter`

Concurrency: existing protections work (e.g., Rust)
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libinger: library implementing LPFs, 
currently supports C and Rust programs
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Implementation: execution stack

funcstate = launch(func, TO_COMPLETION, NULL);
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Caller’s stack:

...

launch()

Preemptible function’s stack:

[stub]

func()[caller]



Implementation: timer signal

funcstate = launch(func, TIMEOUT, NULL);
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Caller’s stack:

...

launch()

Preemptible function’s stack:

[stub]

func()[caller]

handler()resume()

Timeout?



funcstate = launch(func, TIMEOUT, NULL);

cancel(&funcstate);

Implementation: cleanup
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Preemptible function’s stack:

[stub]

func()

handler()



launch() timeout!

Preemption mechanism
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t

Timeout?



libinger microbenchmarks
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Operation Cost (μs)

launch() ≈ 5

resume() ≈ 5

cancel() ≈ 4800*

pthread_create() ≈ 30

fork() ≈ 200
* This operation is not typically on the critical path.



libinger cancels runaway image decoding quickly
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● Why contemporary approaches are insufficient
● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

Agenda
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Signal handlers cannot call non-reentrant code

The rest of the program interrupts a preemptible function

The rest of the program cannot call non-reentrant code?!

Problem: non-reentrancy
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Program
Preemptible function

Preemptible function

Calls to strtok()



Can reuse each library copy once function runs to completion

Approach 1: library copying
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Program
Preemptible function

Preemptible function

strtok()

strtok()

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so



Dynamic symbol binding
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Executable

k = strtok(“k:v”, “:”);

Global Offset Table (GOT)

...

0x900dc0de

...

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc

?



libgotcha: runtime implementing 
selective relinking for linked programs
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1. Copy the library for each LPF
2. Create an SGOT for each LPF
3. Point GOT entries at libgotcha

Selective relinking
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Executable

k = strtok("k:v", ":");

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc
Global Offset Table (GOT)

...

0x900dc0de

...

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libgotcha

0xc00010ff

SGOT
————
————



libset: full set of all a program’s libraries

Libsets and cancellation
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Program
Preemptible function

Preemptible function

Calls to strtok()

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so

About the Author
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~

libc.so



Approach 2: uncopyable functions
Copying doesn’t work for everything…

void *malloc(size_t size) {

PREEMPTION_ENABLED = false;

void *mem = /* Call the real malloc(). */;

check_for_timeout();

PREEMPTION_ENABLED = true;

return mem;

}
39



“Approach 3”: blocking syscalls

int open(const char *filename) {

syscall(SYS_open, filename);

}

struct sigaction sa = {};

sa.sa_flags = SA_RESTART;
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while(errno == EAGAIN)



libgotcha microbenchmarks
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Symbol access Time w/o libgotcha Time w/ libgotcha

Function call ≈ 2 ns ≈ 14 ns

Global variable ≈ 0 ns ≈ 3500* ns

Baseline End-to-end time w/o libgotcha

gettimeofday() ≈ 19 ns (65% overhead)

getpid() ≈ 44 ns (30% overhead)

* Exported global variables have become rare.



● Why contemporary approaches are insufficient
● Function calls with timeouts
● Backwards compatibility
● Preemptive userland threading

Agenda
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libturquoise: preemptive version of the 
Rust Tokio userland thread pool
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2 classes:
Short: 500 μs
Long: 50 ms

Vary % long in mix

Measure short only

hyper latency benchmark: experimental setup

compute-bound request

response
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hyper latency benchmarks: results
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No code changes! Head-of-line blockingS
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Summary

lightweight preemptible function: function invoked with a timeout

● Synchronous preemption abstraction
● Supports resuming and cancellation
● Interoperable with legacy software
● Exciting systems applications
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Thank you!
Reach me at sboucher@cmu.edu
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