
BatchFS: Scaling the File System Control Plane with
Client-Funded Metadata Servers

Qing Zheng, Kai Ren, Garth Gibson
Carnegie Mellon University

Email: {zhengq, kair, garth} @ cs.cmu.edu

Abstract—Parallel file systems are often characterized by a
layered architecture that decouples metadata management from
I/O operations, allowing file systems to facilitate fast concurrent
access to file contents. However, metadata intensive workloads are
still likely to bottleneck at the file system control plane due to
namespace synchronization, which taxes application performance
through lock contention on directories, transaction serialization,
and RPC overheads. In this paper, we propose a client-driven file
system metadata architecture, BatchFS, that is optimized for non-
interactive, or batch, workloads. To avoid metadata bottlenecks,
BatchFS features a relaxed consistency model marked by lazy
namespace synchronization and optimistic metadata verification.
Capable of executing namespace operations on client-provisioned
resources without contacting any metadata server, BatchFS clients
are able to delay namespace synchronization until synchroniza-
tion is really needed. Our goal in this vision paper is to handle
these delayed operations securely and efficiently with metadata
verification and bulk insertion. Preliminary experiments demon-
strate that our client-funded metadata architecture outperforms
a traditional synchronous file system by orders of magnitude.

I. INTRODUCTION

File systems define the interface between applications and
the underlying storage provider. Unlike local file systems that
sit directly upon a block device, most parallel file systems
have adopted a layered architecture characterized by a ded-
icated metadata service layer backed by an object storage
infrastructure serving as the persistence layer for both file
data and file system metadata [1]–[4]. With namespace man-
agement decoupled from the data path, file system clients are
able to stream data directly through individual object storage
servers in a scale-out manner, allowing these backend servers
to better utilize available hardware resources and maximize
I/O bandwidth. Unfortunately, since file system clients are
required to perform namespace lookups and undergo semantic
checks before they can access file contents through the data
path, metadata intensive workloads can still bottleneck at the
file system metadata layer, which is typically designed as a
centralized metadata server for ease of implementation [5]–[7].

To alleviate this bottleneck, modern file systems have been
rebuilding their control planes with multiple metadata servers
[3], [8]–[15], featuring techniques ranging from static names-
pace sharding or federation, to dynamic namespace partition-
ing. In addition, some of these file systems are able to perform
directory splitting under different heuristics, representing dif-
ferent design trade-offs and facilitating fine-grained parallelism
on their metadata paths [3], [12], [13], [16]. Notwithstanding a
multi-server architecture, client-side metadata throughput can
often be throttled by lock contention on common directories,
server-side transaction ordering, and RPC overhead, let alone

other common performance issues such as load imbalance and
skewed access patterns. As exascale data centers are starting
to emerge, it can become even more challenging to achieve a
scale-out file system for metadata-hungry applications.

A file system control plane consisting of multiple dedicated
metadata servers is limited by the maximum metadata perfor-
mance that this number of machines is able to deliver1. In order
to better accommodate metadata-heavy massive-scale parallel
HPC workloads, we propose a client-driven file system meta-
data architecture that allows applications to handle their own
metadata operations locally mostly without server intervention.
Unlike existing file systems that dedicate metadata server
processes and machines to coordinate every metadata request
in a centralized way, our file system can avoid inefficient
RPC overheads and safeguards applications from unnecessary
resource contention at the server side, effectively allowing the
system to scale beyond a fixed sized control plane.

In addition, many file systems are designed for a worst-case
scenario where applications rely on a strongly consistent file
system to synchronize with each other. However, this is often
overkill for batch applications, which are usually carefully
programmed to perform tasks cooperatively with little external
coordination. Our client-driven file system design exploits this
opportunity and uses a relaxed consistency model to manage
batch application metadata.

We envision a better file system interface that can adapt to
coordinated metadata access by providing options for applica-
tions to batch metadata operations and delay semantic checks,
allowing cooperating clients to pay for synchronization only
when it is indeed necessary. Applications obtain capabilities
to locally process namespace operations by linking to a user-
level library file system, which enjoys direct access to file
system metadata represented as a set of log-structured table-
based data structures2 stored in a shared underlying persistence
layer [12], [17], [18]. Each job operates upon a file system
snapshot and self-manages its namespace. By reusing server-
side logic, applications are able to encode metadata mutations
directly into on-disk metadata representations (as well as write-
ahead log entries). When synchronization is eventually needed,
a client process can submit its modified file system image to
the global master image in order to merge updates. Part of
this design, known as metadata bulk insertion, along with the

1 Metadata servers are generally allocated entire machines because their
in-memory state will consume all available resources.

2 These data structures collectively represent a set of metadata mutation
logs that are carefully grouped by common ACL settings in order to ensure
high-level data privacy. See more details at Section II-D.

1



efficient underlying on-disk metadata representation, has been
implemented in our previous work, IndexFS [12].

To secure global namespace semantics in a decentralized
file system metadata layer, optimistic server-side namespace
verification is used to establish a total order for all legitimate
metadata operations bulk inserted by batch applications3 In
order for this to work in a scalable way, we introduce auxil-
iary metadata servers, which are temporary daemon processes
running on client resources with root privileges. Guarded by
trusted virtual machines, these worker servers are responsible
for verifying untrusted client-side file system mutations and
committing them into the global master image. In addition,
we envision an efficient mechanism for clients to pre-compute
proofs of the correctness of their file system mutations. With
these proofs, server-side namespace verification may be effec-
tively simplified as a process of proof validation4.

By reorganizing the file system control plane into a set
of decoupled and client-based metadata processing endpoints,
we envision a highly scalable file system metadata architec-
ture, BatchFS, which extends our previous work, IndexFS
[12]. IndexFS features a log-structured on-disk metadata rep-
resentation (Section II-D) and a simplified implementation
of metadata bulk insertion (Section IV). This vision paper
makes the following contributions: 1) a re-designed file system
control plane harnessing client resources to achieve scalability,
2) deferred namespace synchronization enabled by efficient
file system snapshots and fast metadata bulk insertion, 3)
optimistic server-side metadata verification enabled by client-
generated proofs, and 4) weak file system semantics targeting
batch (or cooperating) applications. While we have only par-
tially implemented BatchFS, we present its high-level design
and show our preliminary results in the rest of this paper.

II. DESIGN OVERVIEW

In general, interaction among a set of processes comes in
two forms: 1) interaction among the processes of an integrated
job or framework, and 2) interaction between unrelated jobs or
systems, which, unfortunately, specifically use the file system
as a synchronization platform. We refer to file system clients
that demonstrate the former kind of interaction as batch clients,
and the latter as interactive clients or non-cooperating clients.

A. Assumptions

In designing BatchFS, we have been guided by common
metadata access patterns and execution environments shared
by batch applications in HPC data centers.

• Batch workloads usually only access a pre-constructed set
of files for input, and normally generate their output files
in a way that deterministically avoids name conflicts.

• Batch workloads are characterized by a natural preference
for high throughput as opposed to low latency. Few place
stringent response time requirements on individual metadata

3 Applications anticipating or experiencing substantial interference from
other non-cooperating processes can fall back to synchronous (but potentially
slow) access on dedicated metadata servers.

4 We focus on high-level namespace integrity, which is stronger than the
low-level data integrity that is secured by the underlying storage infrastructure.
Namespace verification will be discussed further in Section II-F.

requests, provided overall throughput is high enough.

• Files generated by batch jobs rarely get accessed until
after these batch jobs have completed execution. There
is a special case, however, for job owners monitoring
output files in order to enable online user steering and fast
detection of wasted resources; we will deal with this case
separately in Section III.

• Batch jobs normally protect themselves against failures by
stop-and-copy checkpointing, backing up their in-memory
state into an underlying cluster file system before moving
to the next stage. In this paper, we focus on one-file-per-
process (N-N) checkpointing because one-file-per-job (N-1)
checkpointing can be transformed into N-N checkpointing
using a user-space translation layer such as PLFS [19].

• Most HPC data centers are equipped with dedicated storage
infrastructures hosting large-scale cluster file systems, which
are optimized for maximum data bandwidth but often lack
a scalable metadata path [20].

B. Interfaces

BatchFS targets the standard POSIX API. Applications in-
voke BatchFS routines with BatchFS’s client-side user library
or indirectly through FUSE [21] or MPI-IO [22]. Like its
predecessor, IndexFS [12], BatchFS handles namespace related
operations5 but redirects all data requests to a specific under-
lying storage infrastructure, which holds both file contents and
namespace metadata images generated by BatchFS. Different
from IndexFS, BatchFS allows its clients to dynamically select
between different namespace synchronization modes. This,
along with its new consistency model, is discussed further in
Section II-E.

C. Architecture

A BatchFS cluster is organized as a metadata control plane
layered on top of a scalable storage infrastructure serving as
the underlying data plane. Rather than only having a fixed
set of dedicated metadata servers like the original IndexFS,
BatchFS’s unique control plane features three different types of
metadata processing engines: primary metadata servers, auxil-
iary metadata servers, and private metadata servers, illustrated
in Figure 1.

Primary metadata servers are dedicated servers running on
dedicated server nodes. These non-scaling6 servers collectively
manage the master image of the file system, with each server
hosting a non-overlapping set of directory partitions [12], [16].
Interactive clients communicate with primary metadata servers
to update the namespace synchronously, obtaining a latest view
of the global namespace, albeit without scalable performance.

Both auxiliary and private metadata servers are designed to
be temporary metadata processing entities that run on-demand

5 In fact, as an optimization, data operations against small files (files smaller
than 64KB for example) can also be served directly from BatchFS, taking
advantage of its high efficient metadata processing backbone [12], [17].

6 While some file systems, like IndexFS, can add additional dedicated
servers, this is a slow, physical provisioning action done by an administrator.
We consider this non-scalable because it is so slow and unlikely to be triggered
by the needs of specific jobs.

2



Underlying Storage Infrastructure (e.g. Parallel File System)

…

D
ed

ic
at

ed
Se

rv
er

 N
od

es
Sc

al
ab

le
C

lie
nt

 R
es

ou
rc

es
BatchFS

Primary MDS

PFS
Client

Per-verified-batch 
RPC calls

Server Node

Client Node

MDS: Metadata Server
PFS: Parallel File System

Batch App
BatchFS

Private MDS

PFS
Client

Trusted VM
BatchFS

Auxiliary MDS

PFS
Client

Interactive Client

Per-operation 
RPC calls

Per-batch 
RPC calls

Fig. 1. BatchFS is designed as file system metadata middleware layered on
top of an existing cluster file system or an object storage platform exposing a
flat namespace, which allows BatchFS to reuse the data path offered by these
underlying storage substrates already optimized and tuned for maximum
bandwidth. BatchFS features a client-driven metadata architecture that can
shift server computation to client machines to achieve highly agile scalability.

using client resources. We call these “client-funded metadata
servers”. BatchFS library code linked into each application
constitutes a private metadata server, which can be viewed as
a full-fledged but untrusted metadata server associated with
a file system snapshot and subject to access control provided
synchronously by the underlying scalable data plane. These
embedded metadata servers enable batch clients to access and
modify their private namespaces locally without contacting any
primary metadata servers, until they want their local mutations
to be visible to non-cooperating jobs.

Auxiliary metadata servers are trusted daemon processes
responsible for merging client-side namespace mutations into
the global master image. Outsourcing this potentially heavy
computation to auxiliary metadata servers shields primary
metadata servers from becoming a performance bottleneck, and
leads to better utilization of the underlying system.

D. Metadata Representation

In IndexFS, the global file system namespace is represented
by a set of large directory entry tables with embedded inodes
and possibly embedded file contents as well. Each file is
mapped to a unique row inside the table. When flushed to disk,
each table will be transformed into a set of log-structured table-
based data structures formatted as SSTables (Sorted String
Table). SSTables [23], [24] are immutable data containers
that are partially ordered so that newer table entries always
supersede older ones. SSTable serves as the physical format for
metadata migration and bulk insertion [12], [17]. In addition, a
tree of SSTables form a file system snapshot. BatchFS extends
IndexFS and inherits its efficient metadata processing engine to
support high-performance metadata mutation, migration, and
bulk insertion.

As a new feature, BatchFS allows batch clients to request
snapshots (collections of SSTables) of the current file system
image, which they can use to establish a private copy of
the snapshot namespace. SSTables no longer referenced in
any file system snapshot can be safely discarded. In addition,
files marked deleted in all SSTables can be purged from the
underlying storage infrastructure without leaving null pointers.

To generate a snapshot for a requesting client, a primary
metadata server performs an in-memory cache flush and sends
the client a manifest that lists all SSTables comprising the
current file system image. To prohibit a malicious client from
accessing restricted data by scanning an entire file system
snapshot inappropriately, BatchFS generates separate SSTables
for each user-group combination so that every file referred in
an SSTable has the same permission bits7. This way, high-level
access control can be directly enforced by the underlying stor-
age infrastructure. Note that this is designed for environments
with simple ACL practices, which we expect in most HPC data
centers. Similarly, user quota control is also synchronously
enforced by the underlying storage infrastructure. For ease
of implementation, quota management may only apply to file
data, as the size of metadata is almost always dwarfed by the
size of data in the file system as a whole.

E. Consistency Model

BatchFS features a relaxed consistency model targeting
HPC applications. BatchFS clients associated with different
snapshots of the file system can observe distinct namespaces.
Interactive clients communicating with non-scaling primary
metadata servers are kept in sync with the master image of the
file system, which reflects all committed operations executed
at the global namespace. Any individual metadata operation
accepted by a primary metadata server is immediately commit-
ted, with its consequence immediately becoming visible to all
subsequent file system calls and snapshots. On the other hand,
batch workloads associated with local private metadata servers
are logically disconnected from primary metadata servers. In
fact, each batch client operates within its own file system image
that originates from a specific snapshot of the master image.
Metadata operations accepted by a private metadata server are
immediately executed in the private namespace albeit remain
uncommitted and invisible to other parallel file system clients,
until an auxiliary server validates and publishes these changes.

Initially, BatchFS clients act as interactive clients, trans-
mitting every metadata operation to a primary metadata server
for global execution. Batch applications wishing to exploit
BatchFS’s fast “asynchronous” metadata interface explicitly
call BatchFS to establish their own private namespaces, con-
verting themselves to batch execution mode (possibly for only
a subtree of the overall namespace). BatchFS clients can switch
back to the original synchronous execution mode whenever
server coordination is needed. This entails closing the current
private namespace, flushing changes to the underlying storage
infrastructure, starting a new auxiliary metadata server, and
asking it to merge the corresponding namespace mutations into
the global file system image. We expect most batch applica-
tions to stay in batch execution mode until they complete a
checkpoint or terminate.

F. Namespace Verification

To protect namespace integrity in the presence of untrusted
clients, changes to a client namespace must be verified by an
auxiliary metadata server before being inserted into the global

7 This means a client with permission to read a directory must also be
allowed to read the attributes (and embedded file data, if any) of the files
under that directory.

3



namespace8. In BatchFS, any client namespace re-producible
from a legal sequence of file system operations is considered
a legitimate candidate for namespace merging. Unfortunately,
in practice, it could be hard for an auxiliary metadata server
to guess the valid operation sequence that happens to yield
a given client namespace. To resolve this problem, BatchFS
requires every client to submit, in addition to the resulting
namespace changes, a “proof” of the correctness of its names-
pace mutations. As such, an auxiliary metadata server should
be able to efficiently verify a client namespace by validating
its associated proof.

A proof can be easy to construct (but unnecessarily large)
if it is provided directly as the original sequence of operations
executed at the client side. With such a proof, an auxiliary
metadata server can perform checks simply by re-executing
those operations and comparing results. To reduce the proof
size, clients can reorder and merge commutative and associa-
tive file system operations. This leads to reduced verification
computation, allowing client mutations to be checked faster.
In the extreme, we envision a logic-based namespace certifi-
cation process where clients provide formal proofs that their
namespace changes respect the file system’s semantics. An
auxiliary metadata server could validate these proofs without
re-executing any file system operations, without using cryp-
tography, and without consulting any external trusted entities.
Once the validation succeeds, the associated namespace can be
safely trusted and accepted. We refer to this as self-provable
metadata representation, inspired by similar techniques in other
contexts [25], [26].

To reconcile conflicts between global file system seman-
tics and asynchronous namespace management, BatchFS em-
ploys optimistic concurrency control [27] commonly seen in
database systems to order metadata operations. That is, clients
do not do two-phase locking; they optimistically assume there
will be no conflict. However, instead of using the generic
notion of read/write set to verify its “transactions”, BatchFS
applies file system semantics to verify namespace integrity
and consistency. For example, a file creation can be reordered
with a chmod if it is compatible with both the before and
after permissions [28]. This resists a batch of file system
operations from being unnecessarily rejected. In addition,
different from a traditional database, BatchFS allows a batch
of client-side namespace mutations to fail partially during the
verification phase and does not necessarily roll back the whole
“transaction”. This avoids a minor infraction from destroying
a potentially large amount of work. Rejected namespace mu-
tation notifications are available to users in external logs and
associated files may be retained with mechanically modified
names by BatchFS for users to resolve conflicts later.

III. ADAPTATION OF JOB MONITORING APPLICATIONS

BatchFS’s design is in part motivated by the compatibil-
ity of a relaxed consistency model with batch applications.
However, weak consistency could introduce problems for job
monitoring utilities, which normally rely on strongly consistent
file systems to achieve live user feedback, such as progress

8 This verification and commit process can be delayed (potentially forever)
until the first non-cooperating access, or delayed verification may be processed
in the background in order to reduce (eventual) access latency.

Setup-I: Single IndexFS Server Setup-II: Dual IndexFS Servers

Setup-III: Full IndexFS Servers Setup-IV: Client-Side Bulk Insertion

HDFS Name Node HDFS Date Node IndexFS Server
IndexFS Clients IndexFS Clients with Bulk Insertion

……

… …

Fig. 2. IndexFS with four different setups to model different amount of
server resources. All our machines are from the NSF PRObE Kodiak cluster
[30] and are configured with dual 2.6 GHz AMD Opteron processors, 8
GB of memory, two 1 TB 7200 rpm SATA disks, and a 1000 Mbps Ethernet
NIC, with each running 64-bit Ubuntu 12.04 upon Linux 3.2.16. Note that
this configuration was set up for ease of testing, real clusters often use
dedicated hardware for the storage infrastructure and their file system servers.

indication and data preview, because they appear to be non-
cooperating processes.

In practice, live feedback, progress indication in particular,
can be estimated via a proxy, such as the size of output files
generated by a batch job, which can in turn simply be a stale
number as opposed to an up-to-date value [29]. Based on this
observation, BatchFS includes a separate metadata interface
targeted at monitoring utilities. Designed with weak consis-
tency in mind, this special interface provides applications with
“metadata snapshots” (snapshots of file size for example) that
do not necessarily represent a latest value but are designed
to return newer versions under a sequence of repeated file
system calls. With this interface, progress monitoring can be
efficiently implemented without forcing batch jobs to perform
unnecessary synchronization, thus ensuring high performance.

IV. MEASUREMENTS

In this section, we report experiments done on our previ-
ous work, IndexFS [12], to show the promise of BatchFS’s
file system metadata architecture. As BatchFS’s predecessor,
IndexFS allows its clients to complete file creation opera-
tions locally if these files are known to be new, and will
later bulk insert all these cached operations into the global
namespace using a single SSTable insertion. This feature, a
simple metadata bulk insertion, is extended by BatchFS to
provide additional features such as ACL-specific file system
snapshots, self-provable metadata representation, client-funded
auxiliary metadata servers, and optimistic concurrency control.
As a result, performance measurements of IndexFS showed in
this section can be viewed as an optimistic projection of future
BatchFS performance.

To show the efficiency of IndexFS’s metadata bulk inser-
tion, a consistent client-side metadata write-back cache, we ran
our experiments with this cache mechanism either enabled or
disabled. More specifically, we measured performance on an
IndexFS cluster where IndexFS was layered upon HDFS [31].
It consisted of 8 HDFS data nodes and 1 HDFS metadata node
(an HDFS name node) and was configured with four different
settings, as is illustrated in Figure 2.

To model metadata-intensive applications, we used a syn-
thetic micro-benchmark tool, mdtest [32], to insert zero-byte

4



0.6 0.6 0.6 0.6
11 13 13 1215 17 19 1718 22 29 34

139

188
203

216

0

50

100

150

200

250

8 16 32 64

To
ta

l M
et

ad
at

a 
Th

ro
ug

hp
ut

 (K
 o

p/
s)

Total Number of Clients

HDFS Baseline Single IndexFS Server
Dual IndexFS Servers Full IndexFS Servers
Client-Side Bulk Insertion

6

9

13

17

0

4

8

12

16

20

8 16

Full IndexFS Servers
Client-Side Bulk Insertion

mknod performance getattr performance

Fig. 3. With bulk insertion, BatchFS’s predecessor, IndexFS, is able to
outperform HDFS by 360x and IndexFS without bulk insertion by as much
as 18x. Bulk insertion also results in better metadata read performance, but
metadata footprint is too large for 100% cache hits and getattrs may
have to wait on HDFS data nodes.

files into multiple newly created directories. We generated a
two-phase workload. In the first phase, N clients each create
one private directory and then insert files into that directory.
In the second phase, each of these clients performs getattr
in a random order on the files created under its own directory.
In total, M million files will be created and stat’d, where M is
the total number of IndexFS servers or bulk insertion clients.
The total number of clients, N, varies from 8 to 64.

Our experimental results are illustrated in Figure 3. In
general, with the presence of a client-side metadata write-back
cache, clients are able to drive an 800% to 36,000% increase
in file creation throughput, in addition to better metadata
read performance. This can in part be attributed to the faster
metadata path, the more aggressive usage of client resources,
as well as a local in-memory metadata cache provided by their
embedded metadata processing modules. Moreover, compared
with synchronous metadata processing that must be coordi-
nated by a set of centralized metadata servers, allowing clients
to self-manage their private namespaces indeed leads to better
utilization of the underlying hardware resources, since the
same system is delivering much higher throughput when bulk
insertion is activated.

V. RELATED WORK

Serverless file systems [8], [33] are often characterized by
a set of symmetric file servers that are each capable of serving
the whole file system namespace. This architecture is used
by BatchFS’s primary and client-funded auxiliary metadata
servers to achieve both high scalability and high efficiency.
To improve write performance, PLFS [19], [34] devised a
library-based user-level index structure capable of shaping I/O
access patterns and aggregating small files, which allows it to
avoid performance bottlenecks at the underlying cluster file
system. PLFS inspired our approach to improving speed by
decoupling sharing where possible and showed us where read
performance would be of concern [35]. BatchFS’s client-side
metadata write-back cache can also be used to buffer small
files. In addition, BatchFS’s log-structured table-based on-disk
metadata representation is general purpose and integrated with
the file system.

RPC is an important but performance limiting component
in distributed file systems. Mercury [36] is an efficient RPC

subsystem optimized for HPC data centers. It uses the tradi-
tional TCP/IP based network channel to send control messages
but redirects bulk data to dedicated RDMA channels for fast
transfer. BatchFS features a similar optimization mechanism
that separates the file system control plane and data plane.
In addition, BatchFS uses SSTables stored in the shared
underlying storage infrastructure as a virtual communication
channel to enable efficient metadata access and bulk insertion.

Modern HPC file systems often use dedicated I/O nodes for
integrated data buffering and I/O forwarding [37], [38]. These
techniques are orthogonal and complementary to BatchFS,
which could utilize them for its private, auxiliary, or primary
metadata servers.

BatchFS employs optimistic concurrency control protocol
[27] commonly seen in data-intensive and database systems
to increase concurrency. However, BatchFS does not enforce
transaction atomicity as it allows a batch of metadata oper-
ations to fail partially during verification without rollback.
In addition, BatchFS, like other weakly consistent systems
[39]–[41], allows its applications to later merge conflicts and
retry specific operations if the initial verification was rejected
by the server.

Optimistic concurrency control and conditional operations
have been used on file data in order to enable richer file system
primitives for application coordination [42]–[44]. BatchFS is
different from these techniques in that it focuses on metadata
concurrency and targets batch applications that do not use the
file system as a synchronization mechanism.

In order to secure auxiliary metadata servers, BatchFS
relies on VMs to isolate these servers from adversary attacks.
This can also be achieved through remote attestation, which is
available in today’s software distributions [45], [46] as well as
commodity security co-processors such as industry standard
Trusted Platform Modules. Finally, BatchFS’s self-provable
metadata representation is designed upon the observation that
validating an answer is much simpler than solving the original
problem [25], [26].

VI. CONCLUSION

Metadata scalability is limited in today’s HPC parallel
file systems because (1) it usually employs an RPC per
operation; (2) its semantics require the status results of one
operation to be known before the next is submitted; (3) its
authorization enforcement requires dedicated (fixed number of)
server machines; and (4) its durable representation of metadata
is usually updated with random seeks for every mutation. With
techniques for deferring and batching metadata operations,
for reconciling concurrent weakly consistent mutations with
optimistic concurrency control, for log-structured and indexed
on-disk representation, for trusting code running in a user-
contributed virtual machine, and for weakened semantics in
high performance file systems, BatchFS proposes to allow the
cooperating processes of a single job to pre-execute all of their
own metadata operations on a snapshot of the file system
namespace, presenting all resulting mutations back to the
central file system in as few as a single batch, and providing a
“proof” of the correctness and authorization of these mutations
for optimistic concurrency control and selective reconciliation

5



as late as possible to maximize job independence and through-
put. Moreover, BatchFS allows user jobs to allocate virtual
machines running file system server code to scale metadata
throughput with resources that local administrators would not
want to dedicate to file system servers. To show the promise of
this vision for scalable metadata services, BatchFS reports on
a less expansive implementation of client-embedded metadata
write-back caching, which shows 800% to 36,000% throughput
improvement over today’s common implementations based on
a single or a few dedicated metadata servers.

ACKNOWLEDGMENT

This research was supported in part by the DOE and Los Alamos Na-
tional Laboratory, under contract number DE-AC52-06NA25396 subcontracts
161465 and 153593 (IRHPIT), the National Science Foundation under awards
CNS-1042537 and CNS-1042543 (PRObE, www.nmc-probe.org), and Intel
as part of the Intel Science and Technology Center for Cloud Computing
(ISTC-CC). We also thank the member companies of the PDL Consortium
(Actifio, APC, EMC, Facebook, Google, Hewlett-Packard, Hitachi, Huawei,
Intel, Microsoft, NEC, NetApp, Oracle, Samsung, Seagate, Symantec and
Western Digital).

REFERENCES

[1] D. Hildebrand and P. Honeyman, “Exporting storage systems in a
scalable manner with pnfs,” in MSST, 2005.

[2] P. Schwan, “Lustre: Building a file system for 1000-node clusters,” in
Linux Symposium, 2003.

[3] S. A. Weil, S. A. Brandt, E. L. Miller et al., “Ceph: A scalable, high-
performance distributed system,” in OSDI, 2006.

[4] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “Rados: A
scalable, reliable storage service for petabyte-scale storage clusters,” in
PDSW, 2007.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in SOSP, 2003.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in MSST, 2010.

[7] K. V. Shvachko, “Hdfs scalability: The limits to growth,” login, vol. 35,
no. 2, pp. 6–16, 2010.

[8] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” in FAST, 2002.

[9] B. Welch, M. Unangst, Z. Abbasi et al., “Scalable performance of the
panasas parallel file system,” in FAST, 2008.

[10] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, “Pvfs: A parallel
file system for linux clusters,” in Linux Showcase and Conference, 2000.

[11] S. A. Weil, K. T. Pollack, S. A. Brandt et al., “Dynamic metadata
management for petabyte-scale file systems,” in SC, 2004.

[12] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “Scaling file system metadata
performance with stateless caching and bulk insertion,” in SC, 2014.

[13] “Giraffa: A distributed highly available file system,”
https://code.google.com/a/apache-extras.org/p/giraffa/, 2013.

[14] Y. Wang, J. Zhou, C. Ma, W. Wang, D. Meng, and J. Kei, “Clover:
A distributed file system of expandable metadata service derived from
hdfs,” in CLUSTER, 2012.

[15] “Requirements for federated file systems,” http://www.ietf.org/rfc/
rfc5716.txt.

[16] S. Patil and G. Gibson, “Scale and concurrency of GIGA+: File system
directories with millions of files,” in FAST, 2011.

[17] K. Ren and G. Gibson, “TableFS: Enhancing metadata efficiency in the
local file system,” in USENIX ATC, 2013.

[18] J. Esmet, M. Bender, M. Farach-Colton, and B. C. Kuszmaul, “The
TokuFS streaming file system,” in HotStorage, 2012.

[19] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint filesystem
for parallel applications,” in SC, 2009.

[20] S. Lang, P. Carns, R. Latham et al., “I/o performance challenges at
leadership scale,” in SC, 2009.

[21] “FUSE,” http://fuse.sourceforge.net/.
[22] P. Corbett and et al., “Overview of the mpi-io parallel i/o interface,” in

Input/Output in Parallel and Distributed Computer Systems. Springer,
1996, pp. 127–146.

[23] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “BigTable: a
distributed storage system for structured data,” in OSDI, 2006.

[24] LevelDB, “A fast and lightweight key/value database library,” http://
code.google.com/p/leveldb/.

[25] G. C. Necula and P. Lee, “Safe kernel extensions without run-time
checking,” in OSDI, 1996.

[26] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish, “Verifying computations with state,” in SOSP, 2013.

[27] P. A. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Computing Surveys (CSUR), vol. 13, no. 2,
pp. 185–221, 1981.

[28] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and
E. Kohler, “The scalable commutativity rule: Designing scalable soft-
ware for multicore processors,” in SOSP, 2013.

[29] R. Ross, “Hec posix i/o api extensions,” www.pdsi-scidac.org/docs/
sc06/hec-posix-extensions-sc2006-workshop.pdf.

[30] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd, “Probe: A thousand-
node experimental cluster for computer systems research.”

[31] HDFS, “Hadoop file system,” http://hadoop.apache.org/.
[32] “mdtest: HPC benchmark for metadata performance,” http://sourceforge.

net/projects/mdtest/.
[33] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.

Roselli, and R. Y. Wang, “Serverless network file systems,” in SOSP,
1995.

[34] A. Torres and D. Bonnie, “Small File Aggregation with PLFS,”
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/
LA-UR-13-22024, 2013.

[35] J. He, J. Bentt, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun,
“Discovering structure in unstructured i/o,” in PDSW, 2012.

[36] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. Ross, “Mercury: Enabling remote procedure call for
high-performance computing,” in CLUSTER, 2013.

[37] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan, “Scalable i/o forwarding framework for
high-performance computing systems,” in CLUSTER, 2009.

[38] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class
storage systems,” in MSST, 2012.

[39] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the
coda file system,” in SOSP, 1991.

[40] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, “Managing update conflicts in bayou, a weakly
connected replicated storage system,” in SOSP, 1995.

[41] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP, 2007.

[42] S. Lang, R. Latham, R. Ross, and D. Kimpe, “Interfaces for coordinated
access in the file system,” in IASDS, 2009.

[43] P. Carns, R. Ross, and S. Lang, “Object storage semantics for replicated
concurrent-writer file systems,” in IASDS, 2010.

[44] P. Carns, K. Harms, D. Kimpe, R. Ross, J. Wozniak, L. Ward, M. Curry,
R. Klundt, G. Danielson, C. Karakoyunlu, J. Chandy, B. Settlemeyer,
and W. Gropp, “A case for optimistic coordination in hpc storage
systems,” in PDSW, 2012.

[45] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
virtual machine-based platform for trusted computing,” in SOSP, 2003.

[46] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh, D. Williams,
and F. B. Schneider, “Logical attestation: An authorization architecture
for trustworthy computing,” in SOSP, 2011.

6

www.nmc-probe.org
http://www.ietf.org/rfc/rfc5716.txt
http://www.ietf.org/rfc/rfc5716.txt
http://fuse.sourceforge.net/
http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/
www.pdsi-scidac.org/docs/sc06/hec-posix-extensions-sc2006-workshop.pdf
www.pdsi-scidac.org/docs/sc06/hec-posix-extensions-sc2006-workshop.pdf
http://hadoop.apache.org/
http://sourceforge.net/projects/mdtest/
http://sourceforge.net/projects/mdtest/
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-22024
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-22024

	Introduction
	Design Overview
	Assumptions
	Interfaces
	Architecture
	Metadata Representation
	Consistency Model
	Namespace Verification

	Adaptation of Job Monitoring Applications
	Measurements
	Related Work
	Conclusion
	References



