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ABSTRACT

The 𝑘d-tree is a widely used data structure for managing multi-

dimensional data. However, most existing 𝑘d-tree designs suffer

from the memory wall—bottlenecked by off-chip memory latency

and bandwidth limitations. Processing-in-memory (PIM), an emerg-

ing architectural paradigm, offers a promising solution to this issue

by integrating processors (PIM cores) inside memory modules and

offloading computational tasks to these PIM cores. This approach

enables low-latency on-chip memory access and provides band-

width that scales with the number of PIM modules, significantly

reducing off-chip memory traffic.

This paper introduces PIM-𝑘d-tree, the first theoretically grounded

𝑘d-tree design specifically tailored for PIM systems. The PIM-𝑘d-

tree is built upon a novel log-star tree decomposition that leverages

local intra-component caching. In conjunction with other innova-

tive techniques, including approximate counters with low overhead

for updates, delayed updates for load balancing, and other PIM-

friendly aspects, the PIM-𝑘d-tree supports highly efficient batch-

parallel construction, point searches, dynamic updates, orthogonal

range queries, and 𝑘NN searches. Notably, all these operations are

work-efficient and load-balanced even under adversarial skew, and

incur only 𝑂 (log∗ 𝑃) communication overhead (off-chip memory

traffic) per query. Furthermore, we prove that our data structure

achieves whp an optimal trade-off between communication, space,

and batch size. Finally, we present efficient parallel algorithms for

two prominent clustering problems, density peak clustering and

DBSCAN, utilizing the PIM-𝑘d-tree and its techniques.

CCS CONCEPTS

• Theory of computation→ Parallel algorithms; Distributed

algorithms; •Computer systems organization→Heterogeneous

(hybrid) systems; Parallel architectures.
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1 INTRODUCTION

The 𝑘d-tree (𝑘-dimensional tree) is one of the most widely used

space-partitioning data structures for managing multi-dimensional

data. It organizes a set of 𝐷-dimensional points
1
using a search

tree, and supports a variety of query types, including point search,

orthogonal range query, and 𝑘 nearest neighbor (𝑘NN) search. Be-

yond search tasks, 𝑘d-trees are also fundamental components in

numerous clustering problems in computational geometry. The 𝑘d-

tree supports low-to-medium-dimensional applications efficiently

(𝐷 < 15 in practice), offering linear space consumption, predictable

tail latency for many queries (due to its balanced tree structure),

simple algorithms for queries, and adaptability to dynamic updates.

Since its invention in the 1970s [10], 𝑘d-trees have been widely

adopted in academia and industry. Applications span computational

geometry [25, 53, 76, 81, 97], machine learning [12, 44, 90, 103, 110],

computer graphics [28, 58, 67, 111], radars and robotics [20, 64, 78,

88, 107], and scientific simulations [13, 23, 47, 85].

However, as data volumes have grown substantially in recent

decades, 𝑘d-trees have increasingly suffered from thememory wall
problem. The widening gap between (fast growing) computation

speed and (slowly improving) memory access speed has made off-

chip data movement the dominant cost and primary bottleneck in

modern systems. While multi-level caching can mitigate this issue,

its effectiveness is limited to workloads with high data locality

whose workloads fit within the cache hierarchy.

1
Based on the original terminology in [10], a 𝑘d-tree maintains 𝑘-dimensional data.

However, to avoid overloading 𝑘 in the more frequently-used 𝑘 nearest neighbor

(𝑘NN) scenario, we denote the number of dimensions as 𝐷 in this paper, and use 𝑘 in

the scenario of 𝑘NN or clustering problems.
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Processing-in-memory (PIM), also known as near-data-processing

(NDP), has recently reemerged as a promising architectural and

hardware solution to the memory wall problem. By embedding com-

putational units (PIM cores) inside memory modules, PIM enables

computation to be performed where the data reside. The traditional

von Neumann architecture allows only one type of data movement,

where data must be fetched to the CPU from the memory over

off-chip channels. In contrast, PIM-based systems also enable com-

putation to be offloaded to PIM cores. This approach enhances

both performance and energy by exploiting the low-latency and

low-energy on-chip memory accesses of the PIM cores, while also

benefiting from on-chip memory bandwidth and computational

capacity that scales with the number of PIM modules. Off-chip

communication (i.e., off-chip data movement) can be significantly

reduced by utilizing on-chip memory accesses and local processing

on PIM cores. See §2.1 for additional background on PIM.

This paper focuses on the design and analysis of a PIM-friendly

batch-parallel, dynamic (i.e., batch-dynamic) 𝑘d-tree with strong as-

ymptotic guarantees. Following prior work on PIM [55, 57], we ana-

lyze algorithms using the Processing-in-Memory (PIM) Model [54].

Adapting today’s shared-memory 𝑘d-trees to PIM systems poses

several challenges. First, PIM-friendly data structures must mini-

mize off-chip communication. Second, these PIM data structures

must maintain a good load balance (both for computation and com-

munication) across all PIM modules. Because PIM systems typically

operate in bulk-synchronous parallel (BSP) rounds [100], it is cru-

cial to avoid stragglers that dominate the execution time in each

round. However, achieving load balance under adversarial skew is

nontrivial. It requires either (i) dividing tasks and data into very

fine granularity (thereby increasing off-chip communication) or

(ii) replicating data on multiple PIM modules (adding additional

space overhead). This tension highlights a fundamental challenge

in PIM data structure design—(C0) how to achieve a good trade-off

between load balance, reduced off-chip communication, and low

space consumption?

In addition to (C0), other challenges unique to 𝑘d-trees include:

(C1) Communication Overhead in Searches: Operations on a

𝑘d-tree storing 𝑛 data points typically incur a communication over-

head of 𝑂 (log𝑛) rather than the ideal communication overhead

of 𝑂 (1). This overhead arises primarily from the 𝑂 (log𝑛)-length
search path within the search tree: 𝑂 (log𝑛) communication per

top-down search query and 𝑂 (𝑘 log𝑛) per 𝑘NN search query.

(C2) Dynamic Update Overhead (of Auxiliary Structures): 𝑘d-

trees augment each node with auxiliary metadata, such as a counter

for subtree size. However, maintaining these metadata directly dur-

ing dynamic updates introduces additional overhead, particularly

in terms of off-chip communication costs in the PIM setting.

(C3) Lack of Summarization for Node Properties: To achieve

low costs for 𝑘d-tree operations on PIM, it is beneficial to construct

descriptive summaries for each node, which capture information

such as positional data and local neighborhood geometry. However,

the semi-balanced structure of 𝑘d-trees (see §2.2) presents unique

challenges. Existing summarization techniques either fail to accom-

modate imbalanced tree shapes [54, 55] or impose excessive costs

in communication or space [57].

We address the aforementioned challenges through the design

of the PIM-𝑘d-tree, a PIM-friendly batch-dynamic 𝑘d-tree. Our

approach begins with a novel log-star decomposition, which par-

titions the 𝑘d-tree into 𝑂 (log∗ 𝑃) groups to mitigate (C1). Within

each group, we construct intra-group caching on each node, storing

metadata about other nodes in the same group to reduce off-chip

communication during search operations. To tackle (C3) while

maintaining low update and space overhead, we introduce a node

categorization scheme based on subtree size, i.e., the number of de-

scendants of each node. This categorization facilitates load-balanced

decomposition even under imbalanced tree shapes. To support this

and also to address (C2), we design a PIM-friendly approximate

counter to maintain subtree sizes. These counters are lightweight,

are updated infrequently, and are sufficiently accurate to ensure

𝑂 (log𝑛) tree height whp2. In combination with other techniques

(push-pull search [55], delayed updates and efficient constructions),

our design achieves a good trade-off between skew resistance, re-

duced communication, and space consumption; thereby addressing

the core challenge (C0).

In summary, our main contribution is the design and analysis of

PIM-𝑘d-tree, which supports efficient construction, point queries

(LeafSearch), dynamic updates (Insert and Delete), orthogonal

range queries and (approximate) 𝑘NN on a PIM system. The cost

bounds
3
of these operations can be found in Table 1. In addition,

we prove a lower bound for the trade-off between search communi-

cation cost, space and batch size in the PIM setting in Theorem 5.1

and show that the cost bounds of our PIM-𝑘d-tree are optimal whp.
Our lower bound proof relies on the recent lower bounds for cell-

probe dynamic succinct dictionaries [65]. Furthermore, we present

PIM-friendly algorithms for two commonly-occurring clustering

problems: density peak clustering (DPC) [84] and DBSCAN [31],

which utilize the PIM-𝑘d-tree and its techniques. All of our algo-

rithms and data structures have the following properties:

• Work-Efficient: The sum of the CPU and PIM work asymp-

totically matches the CPU work of the best prior shared-

memory designs.

• PIM-Offloaded: The majority of the work is offloaded to

the PIM modules. The CPU has asymptotically less work

than shared-memory designs.

• Highly-Parallel and Skew-Resistant: Our design has low

(polylogarithmic) CPU span and load-balanced PIM execu-

tion whp even against adversarial skew.

• Communication-Reduced:We reduce the (external-memory)

communication factor from 𝑂 (log𝑛) or 𝑂 (log𝑀 𝑛) in prior

work to our PIM-based communication factor of 𝑂 (log∗ 𝑃).
• Nearly Linear Space: Our design has space consumption

that is only a factor of𝑂 (log∗ 𝑃) greater than optimal (linear).

The paper is organized as follows. §2 reviews 𝑘d-trees, the PIM

model and other preliminaries used in this paper. §3 presents the

main structure of our PIM-𝑘d-tree design and the main techniques

we use. §4 describes the efficient algorithms for PIM-𝑘d-tree opera-

tions and their cost bounds. §5 proves the lower bounds and shows

2
We use 𝑂 (𝑓 (𝑛) ) with high probability (whp) (in 𝑛) to mean 𝑂 (𝑐 𝑓 (𝑛) ) with
probability at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1.

3
All these cost bounds (including both shared-memory and PIM-based results) in-

clude an implicit linear factor of the dimension 𝐷 , not shown in the asymptotic nota-

tion. Additionally, we will represent logarithms of the form max{1, log( ·) ( ·) } and
max{1, log∗ ( ·) } using log( ·) ( ·) and log∗ ( ·) , respectively. We believe this improves

the readability of the paper.
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Table 1: Space, work, and communication bounds in the PIMModel for different approaches. Total work refers to the sum of the

CPU and PIM work (for shared-memory designs, total work equals CPU work, and is shown as a single column). Communication
refers to the sum total of words sent to/from the shared memory (PIM modules) for shared-memory designs (PIM designs,

respectively). Work and communication bounds for operations marked with★ are for a batch of 𝑆 operations. † are whp bounds

and ‡ are in-expectation bounds. See Table 2 for all notations.

Approach Space Operation CPU work Total work Communication

Log-tree [1, 79] 𝑂 (𝑛) LeafSearch
★ 𝑂

(
𝑆 log2 𝑛

𝑆

)†
𝑂

(
𝑆 log2 𝑛

𝑆

)†
Insert/Delete

★ 𝑂 (𝑆 log𝑛)† 𝑂 (𝑆 log𝑛)†

PKD-tree [70] 𝑂 (𝑛)

Construction 𝑂 (𝑛 log𝑛)† 𝑂
(
𝑛 log𝑀 𝑛

)†
LeafSearch

★ 𝑂
(
𝑆 log 𝑛

𝑆

)†
𝑂
(
𝑆 log 𝑛

𝑆

)†
Insert/Delete

★ 𝑂

(
𝑆
𝛼 log

2 𝑛

)†
𝑂

(
𝑆
𝛼 log𝑀 𝑛 log𝑛

)†
𝑘NN★ 𝑂 (𝑆𝑘 log𝑛)‡ 𝑂 (𝑆𝑘 log𝑛)‡

(1 + 𝜖)-ANN★ 𝑂 (𝑆𝑘𝜖−𝐷 log𝑛)‡ 𝑂 (𝑆𝑘𝜖−𝐷 log𝑛)‡

PIM-𝑘d-tree 𝑂 (𝑛 log∗ 𝑃)

Construction 𝑂 (𝑛(log 𝑃 + log log𝑛))† 𝑂 (𝑛 log𝑛)† 𝑂 (𝑛 log∗ 𝑃)†

LeafSearch
★ 𝑂

(
𝑆 min{log∗ (𝑃), log 𝑛

𝑆
}
)†

𝑂
(
𝑆 log 𝑛

𝑆

)†
𝑂
(
𝑆 min{log∗ 𝑃, log 𝑛

𝑆
}
)†

Insert/Delete
★ 𝑂

(
𝑆
𝛼 (log 𝑃 + log log𝑛) log𝑛

)†
𝑂

(
𝑆
𝛼 log

2 𝑛

)†
𝑂

(
𝑆
𝛼 log

∗ 𝑃 log𝑛

)†
𝑘NN★ 𝑂 (𝑆𝑘 log∗ 𝑃)‡ 𝑂 (𝑆𝑘 log𝑛)‡ 𝑂 (𝑆𝑘 log∗ 𝑃)‡

(1 + 𝜖)-ANN★ 𝑂 (𝑆𝑘𝜖−𝐷 log
∗ 𝑃)‡ 𝑂 (𝑆𝑘𝜖−𝐷 log𝑛)‡ 𝑂 (𝑆𝑘𝜖−𝐷 log

∗ 𝑃)‡

ParGeo [46, 101] 𝑂 (𝑛) DPC 𝑂 (𝑛(1 + 𝜌) log𝑛)‡ 𝑂 (𝑛(1 + 𝜌) log𝑛)‡
2d-DBSCAN 𝑂 (𝑛(𝑘 + log𝑛))† 𝑂 (𝑛 log𝑀 𝑛)†

PIM Clustering
𝑂 (𝑛 log∗ 𝑃) DPC 𝑂 (𝑛(log 𝑃 + log log𝑛 + 𝜌 log∗ 𝑃))‡ 𝑂 (𝑛(1 + 𝜌) log𝑛)‡ 𝑂 (𝑛(1 + 𝜌) log∗ 𝑃)‡

𝑂 (𝑛) 2d-DBSCAN 𝑂 (𝑛 log 𝑃)† 𝑂 (𝑛(𝑘 + log𝑛))† 𝑂 (𝑛)†

Table 2: Notations used in this paper.

Notation Definition

𝑃 Number of PIM modules

𝑀 CPU cache size (in words)

𝑛 Number of data points stored in the 𝑘d-tree (i.e., its size)

𝐷 Number of dimensions

𝑆 Batch size

𝑇 (𝑁𝑖 ) Number of descendants of tree node 𝑁𝑖 (including itself)

𝑘 Size of query neighborhood (in range query, 𝑘NN, clustering)

𝛼 Balance parameter for 𝑘d-trees, 𝛼 = 𝑂 (1) (see §2.2)
𝜎 Over-sampling rate for 𝑘d-trees (§2.2)

𝛽 Approximate counter probability parameter (§3.3)

𝜌 Cubical density in density peak clustering (§6.1)

the optimality of our design. In §6, we use PIM-𝑘d-tree techniques

to solve two clustering problems as illustrations of its applications.

§7 and §8 provide additional discussions and conclude the paper.

2 PRELIMINARIES

2.1 PIM Architecture and Computation Model

In this paper, we use the Processing-In-Memory (PIM) Model [54]

to analyze algorithms and data structures. Experimental results

from prior work [55, 57] show that the PIM Model is a good repre-

sentation of a bank-level-in-memory-processing (BLIMP) system,

which is commonly used in commercial real-world PIM systems

like UPMEM [99] and Samsung PIMs [86].

The PIMModel is composed of a host CPU side and a PIM side of

𝑃 PIM modules. The CPU side features a standard multicore archi-

tecture with a shared on-chip cache that holds𝑀 words. Each PIM

module integrates a small on-chip local memory of 𝑂 (𝑁 /𝑃) words
(where 𝑁 denotes the problem size or the total space consumed),

collectively referred to as PIM memory, and a general-purpose but

relatively weak compute unit known as the PIM core. The host CPU

is capable of loading programs onto PIM modules, initiating their

execution, and monitoring their completion. In terms of data ac-

cess, the host CPU interacts with both its on-chip cache and the

off-chip local memory of all PIM modules. However, each PIM core

is restricted to accessing its own local memory. Communication

between the host CPU and the PIM modules is achieved through

the CPU execution of read/write instructions over the local memo-

ries of the PIM modules. PIM modules cannot communicate with

each other directly; they rely on memory read/write manipulations

by the CPU. This model operates under the assumption that pro-

grams execute in rounds similar to bulk-synchronous parallel (BSP)

rounds [100], where in each round, the CPU can (1) conduct CPU

computations, (2) read / write data to the local memory of PIM

modules, or (3) launch PIM programs and wait for their completion.

To evaluate algorithms that involve both CPU and PIM compo-

nents (distributed across 𝑃 PIM modules), the PIM Model integrates

both shared-memory and distributed metrics. For computations on

the multicore CPU, it quantifies the CPU work (the total number

of instructions executed by the CPU) and CPU span (the critical

path length), under a binary forking model [5, 16, 18] with a work-

stealing scheduler [19]. For off-chip communication, it measures

the communication time, which is defined as themaximum num-

ber of word-sized messages sent to/from any PIM module within

a round. (To facilitate comparisons with shared-memory compu-

tations, we also define the (off-chip) communication, which is

the sum total of words sent to/from the off-chip shared memory
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(PIM modules) for shared-memory algorithms (PIM algorithms,

respectively).) For PIM programs, it measures the PIM time, the

maximum work on any PIM core within a round. For executions

with multiple rounds, the given cost metric is determined separately

for each round, and the results of each round are aggregated to

produce the final bound. Because both communication time and

PIM time are based on the maximum across all PIM modules, it is

crucial to design algorithms that ensure good load balance across

PIM modules, even under adversarially chosen (skewed) workloads.

Definition 1 (PIM-balanced [54]). An algorithm is PIM-balanced
if it takes𝑂 (𝑊 /𝑃) PIM time and𝑂 (𝐼/𝑃) communication time, where

𝑊 is the PIM work across all 𝑃 modules and 𝐼 is the communication.

The PIM-𝑘d-tree is a batch-parallel data structure. Queries and

updates are processed in batches of 𝑆 ≥ 1 operations of the same

type, executed in parallel [55, 57, 89]. Our algorithm applies to

any batch size 𝑆 , but our analysis focuses on large batch sizes

(i.e., 𝑆 = Ω(𝑃 log
2 𝑃)), as in the analysis of existing parallel data

structures [3, 15, 40, 54, 56, 57, 98, 102].

The PIM-𝑘d-tree adopts the PIM Model with its relatively simple

PIM architecture in order to explore the fundamental theoretical

challenges (e.g., CPU-PIM communication, load balancing) in PIM,

which can be generalized to multiple real-world PIM platforms

without being overfitted to machine-specific features.

Practical Relevance. The PIMModel [54] has been used as an ana-

lytical tool in prior works [45, 55, 57, 75], manywith experiments. In

particular, Kang et al. [55] showed that optimized algorithms under

the PIM Model translate to practical and efficient implementations

on real-world UPMEM machines [99], with all metrics in theory

having their practical insights. Hence, while this paper focuses on

theory, its results are expected to be of practical relevance.

Prior PIM-based Indexes. Early works on PIM-based index struc-

tures [26, 27, 68] adopt range-partitioning structures, where the

key space is divided into disjoint key ranges and each key range

is stored locally on a PIM module. Such designs are optimized in

off-chip communication, but suffer from adversarial skew.

More recent skew-resistant indexes [54, 55, 57] first randomly

distribute tree/skiplist nodes to PIM modules for skew resistance,

and then divide the search index into different layers and apply

different replication strategies to each layer to reduce off-chip com-

munication. However, their techniques cannot be directly applied

to 𝑘d-trees due to the challenges mentioned in §1.

None of the prior PIM work studied 𝑘d-trees.

Other Applications on PIM. Although the idea of PIM dates back

to the 1970s [95], it has gained renewed attention recently, due to the

development in 3D-stack memory fabrication [50] and the release of

real-world PIM products [49, 86, 99]. Hundreds of academic works

have been published (see the references of [7, 73, 74]). PIM systems

have been widely used in accelerating applications of databases [9,

11, 51, 54, 55, 57, 59, 66], machine learning [21, 24, 48, 83, 108, 109],

graph processing [43, 61, 91, 96], genome analysis [22, 33, 34, 60, 71]

and security [2, 4, 32, 38, 42].

2.2 𝑘d-trees and PKD-trees

𝑘d-tree. The 𝑘d-tree is one of the most widely-used space-partition-

ing indexes for managing multi-dimensional data. The 𝑘d-tree is

a space-partition binary tree, with each of the interior (non-leaf)

nodes signifying an axis-aligned splitting hyperplane ⟨𝑑, 𝑥⟩, where
𝑑 is a dimension and 𝑥 is a value. Despite no strict requirement, the

classic 𝑘d-tree implementation picks the dimension with the widest

stretch and uses the object-medians as the splitting hyperplane.

Points to the left of the hyperplane (those with the 𝑑-th dimension

coordinates smaller than 𝑥) are stored in the left subtree and the

others are stored in the right subtree. This will lead to a perfectly

balanced tree structure with log
2
𝑛 tree height.

However, this classic 𝑘d-tree solution is generally considered as

a static data structure: finding the exact median is not only slow, but

almost any update to the tree causes a tree rebuild. A classic solution

to avoid frequent rebuilds is the logarithmic method [1, 10, 79],

which maintains 𝑂 (log𝑛) of such perfectly-balanced trees with

power-of-2 sizes. However, querying on 𝑂 (log𝑛) 𝑘d-trees leads to
a significant slowdown, usually by more than a logarithmic factor.

Parallel 𝑘d-tree (PKD-tree).Men et al. [70] recently introduced

the PKD-tree, which achieves high efficiency both theoretically

and practically. Their key insight is to allow bounded imbalance in

the tree, slightly relaxing the height guarantees. Theoretically, it

is shown that the known 𝑘d-tree query bounds are not affected by

relaxing the height guarantee to be log
2
𝑛 +𝑂 (1) instead of log

2
𝑛.

Practically, their experimental results showed that the benchmark

query performance on a large variety of query types remains mostly

unchanged as long as the imbalance ratio at every node is at most

9-to-1. Hence, a scapegoat-like reconstruction-based rebalancing

scheme, where a node is reconstructed whenever its imbalance

exceeds 9-to-1, yields a highly efficient update algorithm for 𝑘d-

trees in practice.

More formally, we define the subtree size T(Ni) for a node 𝑁𝑖

in a tree as the number of descendants (including itself) of 𝑁𝑖 in

the tree. Following Men et al. [70], we define a 𝑘d-tree to be 𝜶 -

balanced iff for every non-leaf node 𝑁𝑖 , 𝑇 (𝑐)/𝑇 (𝑐′) is bounded by

(1 + 𝛼), where 𝑐 and 𝑐′ are the children of 𝑁𝑖 and 𝑇 (𝑐) ≥ 𝑇 (𝑐′).4
We say a 𝑘d-tree is strictly-balanced iff 𝛼 = 𝑂 (1/log𝑛); its height
is guaranteed to be log𝑛 + 𝑂 (1). A 𝑘d-tree is semi-balanced iff

𝛼 = 𝑂 (1); its height is guaranteed to be 𝑂 (log𝑛). In the remainder

of this paper, we assume that all 𝑘d-trees are semi-balanced (and

may be strictly-balanced).

To achieve high efficiency, instead of building the tree one level

each, PKD-tree builds a treelet skeleton (the interior nodes for sev-

eral levels) based on a carefully selected sample set, and flushes all

points to the leaves together. By controlling the skeleton size close

to the cache size, the algorithm can achieve optimal I/O complexity.

To build ℎ levels at a time, a sketch sized 2
ℎ ·𝜎 needs to be sampled,

where 𝜎 is the over-sampling rate.

The following two lemmas present bounds for construction and

updates on the PKD-tree (see also Table 1). These bounds are an-

alyzed using the binary-forking work-span model [5, 16, 18] and

the ideal-cache (I/O) model [36] (where𝑀 and 𝐵 are the cache and

cache line sizes, respectively).

Lemma 2.1 (Shared-memory Construction [70]). A PKD-tree

of size 𝑛 can be constructed in optimal 𝑂 (𝑛 log𝑛) work, 𝑂 (log2 𝑛)
span and 𝑂 (Sort(𝑛)) = 𝑂 ( 𝑛

𝐵
log𝑀 𝑛) cache complexity, all whp.

4
In [70], 𝛼-balanced is defined as the subtree sizes of each child of 𝑁𝑖 being within a

factor of (0.5±𝛼 ) of𝑇 (𝑁𝑖 ) , for 𝛼 ∈ [0, 0.5]; our results also hold for this definition.
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Lemma 2.2 (Shared-memory Updates [70]). Updating (inserting

or deleting) a batch of size𝑚 = 𝑂 (𝑛) on an 𝛼-balanced PKD-tree of

size 𝑛 has amortized 𝑂 (log2 𝑛/𝛼) work per element, 𝑂 (log2 𝑛) span,
and amortized 𝑂 (log (𝑛/𝑚) + (log𝑛 log𝑀 𝑛)/𝐵𝛼) cache complexity

per element, all whp.

In this paper, the PIM-𝑘d-tree will further improve these shared-

memory bounds by using PIM features.

2.3 Other Preliminaries

Load Balance.We use balls-into-bins lemmas to prove load balance

on PIM systems, where a bin is a PIMmodule and a ball with weight

𝑤 corresponds to a task with𝑤 work or𝑤 communication.

Lemma 2.3 (Weighted Balls into Bins [87]). Uniformly ran-

domly placing weighted balls with total weight𝑊 =
∑
𝑤𝑖 and each

𝑤𝑖 <𝑊 /(𝑃 log 𝑃) into 𝑃 bins yields 𝑂 (𝑊 /𝑃) weight per bin whp.

Iterated Functions.Weuse log
(𝑖 )
𝐵

𝑛 :=

{
log𝐵 𝑛 𝑖 = 1

log𝐵

(
log
(𝑖−1)
𝐵

𝑛

)
𝑖 ≥ 2

in this paper. We also use the log-star function defined as log
∗
𝐵
𝑛 :=

min{𝑖 | log(𝑖 )
𝐵

𝑛 ≤ 1}. We omit the notion of base 𝐵 when 𝐵 = 2.

3 PIM-𝑘D-TREE DATA STRUCTURE

In this section, we introduce our design of the PIM-𝑘d-tree. Recall

that there exist multiple challenges (C0-C3 in §1) in designing PIM-

efficient 𝑘d-trees. The main challenge for construction is to achieve

PIM-balance—different PIM modules should execute similar work-

load even if the update/query distribution is adversarially skewed.

A straightforward design for a PIM-based 𝑘d-tree is to partition

the tree into 𝑃 disjoint subtrees and store each on a different PIM

module. However, an adversary can construct a batch with all the

queries touching a small subspace, overflowing the work on the PIM

modules where the corresponding subtrees reside while making

the other PIM modules idle.

To resolve this problem, the PIM-𝑘d-tree randomly stores all the

tree nodes on different PIM modules using hash-based approaches,

so that balls-into-bins analysis (Lemma 2.3) guarantees that the

paths can be searched simultaneously across different PIM mod-

ules in a load-balanced fashion. Such distributed nodes are called

master nodes in this paper. However, a naive design only with

distributed master nodes cannot reduce the amount of off-chip

communication—one remote access will occur on every tree edge

during searches, since the master nodes of the parent and children

are stored on different PIM modules, which makes the amount of

communication no different from shared-memory designs. This

contradicts the purpose of using PIM systems.

To reduce communication without violating load balance, the

PIM-𝑘d-tree builds local on-chip caching on each master node, with

replicated information from its nearby tree nodes that are likely to

be collocated during searches. Later search queries will only need

to traverse these on-chip caches locally on one PIM module and do

not need to go to other master nodes on other PIM modules.

In §3.1, we introduce how to organize this caching and replication

with low overheads in space and updates and without violating

load balance. Then in §3.2 we give a construction algorithm to build

the PIM-𝑘d-tree structure (including all the caching). §3.3 and §3.4

present other techniques we use to maintain tree properties with

lightweight overheads.

3.1 Main Structure

Log-star Tree Decomposition. As a first step to build a PIM-𝑘d-

tree, we decompose all the nodes in a𝑘d-tree into (log∗ 𝑃+1) groups
by subtree size as follows. Denote𝐻 𝑗 = log

( 𝑗 ) 𝑃 for 1 ≤ 𝑗 ≤ log
∗ 𝑃 ,

and 𝐻0 = 𝑃 . Recall from §2.2 that 𝑇 (𝑁𝑖 ) is the number of 𝑁𝑖 ’s

descendants in the 𝑘d-tree. If 𝑇 (𝑁𝑖 ) ≥ 𝐻0 = 𝑃 , then we categorize

𝑁𝑖 to be in Group 0. Otherwise, there exists a positive integer

𝑗 ∈ [1, log∗ 𝑃] where 𝐻 𝑗 ≤ 𝑇 (𝑁𝑖 ) < 𝐻 𝑗−1, and we categorize 𝑁𝑖 to

be in Group 𝑗 .

Figure 1 shows an example of decomposing the top part of a tree

using the log-star decomposition. Each group in the decomposition

is a forest, each of whose tree is a subtree of the original 𝑘d-tree.

The smaller 𝑗 is, the higher position Group 𝑗 lies in.

The log-star tree decomposition depends only on the subtree

size (the number of descendants) of each node, unlike the prior

PIM-tree [55] which uses the height of each node. This is because a

𝑘d-tree can be semi-balanced, so that a node’s height is an imprecise

indicator of its position in the tree. For example, in an 𝛼-balanced

tree with 𝛼 = 2, a node with log𝑛 depth from the root can range

from being a leaf to having Θ(
√
𝑛) descendants.

ReplicationMethod I: Top-downCaching.We use the following

replication strategy in the PIM-𝑘d-tree based on the log-star tree

decomposition:

• All Group 0 nodes and their tree structure are replicated on

all 𝑃 PIM modules.

• For each node 𝑁𝑖 in Group 𝑗 (1 ≤ 𝑗 ≤ log
∗ 𝑃 ), together with

the storage of the master node, the PIM-𝑘d-tree stores on the

same PIM module a copy of 𝑁𝑖 ’s every descendant in Group

𝑗 and their corresponding intra-group subtree structure.

We give an example of the top-down caching in Figure 2c. In an

ideal case, with the log-star tree decomposition and the replication,

a search from root to leaf will only require 𝑂 (log∗ 𝑃) off-chip com-

munication. Traversing each group is local on one PIM module in a

replicated intra-group subtree, and off-chip communication is only

required across the borders between different groups.

ReplicationMethod II: Bottom-up Caching. In addition to repli-

cation strategy I to benefit top-down tree searches, we also intro-

duce bottom-up caching to benefit the bottom-up tree searches

that occur as part of 𝑘NN queries. To be specific, for each node

𝑁𝑖 in Group 𝑗 ≥ 1, we store both the master node and a chain

of all 𝑁𝑖 ’s ancestors in Group 𝑗 on the same PIM module. An ex-

ample is given in Figure 2d. In an ideal case, similar to top-down

searches, such bottom-up caching ensures that a bottom-up search

incurs𝑂 (log∗ 𝑃) off-chip communication due (solely) to inter-group

pointer chasing.

Final Replication Strategy: Dual-way Caching. We combine

both the top-down caching and the bottom-up caching in the PIM-

𝑘d-tree, as shown in Figure 2b. Both top-down searches and bottom-

up searches will benefit from the local replicated nodes to reduce

off-chip communication. In an ideal case, a search path between

any two positions in the PIM-𝑘d-tree will incur at most 𝑂 (log∗ 𝑃)
off-chip communication.
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Group 0
Subtree size of each node: 𝛀(𝐏)
Group height: 𝐎 𝐥𝐨𝐠 n − 𝐥𝐨𝐠 𝑷

Group 1
Subtree size of each node: 𝛀(𝐥𝐨𝐠 𝐏)

Group height: 𝐎 𝐥𝐨𝐠 𝑷 − 𝐥𝐨𝐠(𝟐)𝑷

Group 2

Subtree size: 𝛀(𝐥𝐨𝐠(𝟐)𝐏)

Group height: 𝐎 𝐥𝐨𝐠(𝟐)𝑷 − 𝐥𝐨𝐠(𝟑)𝑷

Continue the decomposition

Figure 1: An example of the log-star decomposition in the top part of a tree, showing Groups 0, 1, and 2. Nodes with the same

color/hashing are in the same group. The red dash line represents the borders between groups. The decomposition depends

only on the subtree size 𝑇 (𝑁𝑖 ) of each node 𝑁𝑖 , rather than 𝑁𝑖 ’s height. The height of each group is proved in Lemma 3.2.
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(b) Dual-way caching.
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(d) Bottom-up caching.

Figure 2: Examples of applying different replication strategies to an intra-group subtree with 7 internal nodes from Group

𝑗 ( 𝑗 ≥ 1). Different colors represent 7 different PIM modules where the data are physically stored. Nodes with solid frames

are master nodes. Nodes with dashed frames are replicated copies built in caching. Solid node-linking lines are intra-module

(on-chip) bidirectional pointers, and dashed node-linking lines are inter-module (off-chip) bidirectional pointers.
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Space Consumption. We will now show a PIM-𝑘d-tree with 𝑛

data points takes 𝑂 (𝑛 log∗ 𝑃) space (Theorem 3.3). We first prove

that the number of nodes in each group is bounded.

For a given 𝑡 > 0, we define nodes 𝑁𝑖 with 𝑇 (𝑁𝑖 ) ≥ 𝑡 as high-

level nodes, and nodes with 𝑇 (𝑁𝑖 ) < 𝑡 as low-level nodes. High-

level nodes both of whose children are also high-level nodes are

inner high-level nodes, and high-level nodes with at least one low-

level child are borderline nodes. All the high-level nodes comprise

a single subtree of the upper part of the 𝑘d-tree, with the borderline

nodes being the leaves in this subtree.

Lemma 3.1 (Bounded Number of High-level Nodes). For an

𝛼-balanced 𝑘d-tree with size 𝑛 and any 𝑡 > 0, the number of nodes

𝑁𝑖 in the 𝑘d-tree with 𝑇 (𝑁𝑖 ) ≥ 𝑡 is 𝑂 (𝑛/𝑡).

Proof. It suffices to prove that the number of borderline nodes

is 𝑂 (𝑛/𝑡), since all high-level nodes form a binary tree.

For each of the less than 2𝑛 low-level nodes in the original 𝑘d-

tree with 𝑛 keys, determine its unique lowest ancestor that is a

borderline node. For each borderline node 𝑁𝑖 with two low-level

children, all of its descendants (other than 𝑁𝑖 itself) regard 𝑁𝑖 as

their lowest borderline ancestor; since𝑇 (𝑁𝑖 ) ≥ 𝑡 , this is at least 𝑡−1
low-level nodes. For each borderline node 𝑁𝑖 with one high-level

child 𝑐 and one low-level child 𝑐′, all descendants of 𝑐′ regard 𝑁𝑖 as

their lowest borderline ancestor. Because𝑇 (𝑐)/𝑇 (𝑐′) ≤ (1 + 𝛼) and
𝑇 (𝑐) ≥ 𝑡 , we have 𝑇 (𝑐′) ≥ 𝑡/(1 + 𝛼). Thus in either case, there are

Ω(𝑡) low-level nodes for each borderline node, and hence at most

𝑂 (𝑛/𝑡) borderline nodes, implying 𝑂 (𝑛/𝑡) high-level nodes. □

Lemma 3.1 indicates that Group 𝑗 will have𝑂

(
𝑛/log( 𝑗 ) 𝑃

)
nodes

in total. We now prove that the height of each group is also bounded.

Lemma 3.2 (Bounded Height of Log-star Decomposition).

For a 𝑘d-tree and its log-star decomposition, the maximum height of

all intra-group subtrees in Group 𝑗 ≥ 1 is 𝑂

(
log
( 𝑗 ) 𝑃

)
.

Proof. To handle the corner case 𝑗 = 1, define log
(0) 𝑃 to be

𝑃 . Because the 𝑘d-tree is 𝛼-balanced, the subtree size of the larger

child of a non-leaf node 𝑁𝑖 will be at least a factor of (1+𝛼)/(2+𝛼)
smaller than𝑇 (𝑁𝑖 ). Thus each level we go down in the 𝑘d-tree, the

subtree sizes will decrease by at least this factor. The highest nodes

in Group 𝑗 have subtree sizes of Θ
(
log
( 𝑗−1) 𝑃

)
, and the lowest

nodes have subtree sizes of Θ
(
log
( 𝑗 ) 𝑃

)
. Thus, the height of Group

𝑗 must be at most log 1+𝛼
2+𝛼

(
log
( 𝑗−1) 𝑃

log
( 𝑗 ) 𝑃

· Θ(1)
)
= 𝑂

(
log

log
( 𝑗−1) 𝑃

log
( 𝑗 ) 𝑃

)
=

𝑂

(
log
( 𝑗 ) 𝑃

)
. □

Theorem 3.3 (Space Consumption). An 𝛼-balanced PIM-𝑘d-tree

containing 𝑛 data points takes a total of𝑂 (𝑛 log∗ 𝑃) space to store all
the data points and auxiliary structures.

Proof. The theorem is proved by showing that each group takes

𝑂 (𝑛) space to store its replicas. First, due to Lemma 3.1, Group 0

has 𝑂 (𝑛/𝑃) nodes, and there are 𝑃 copies, resulting in 𝑂 (𝑛) space.
For Group 𝑗 ≥ 1, the number of additional replicated node

copies equals the number of ancestor-descendant pairs inside this

group, multiplied by 2× due to dual-way caching. In other words,

the space overhead equals 2× the sum of the number of intra-

group ancestors over all the nodes inside the group. There are

𝑂

(
𝑛/log( 𝑗 ) 𝑃

)
nodes in the group (Lemma 3.1), and the number of

the intra-group ancestors of each node is bounded by the group

height, which is𝑂

(
log
( 𝑗 ) 𝑃

)
by Lemma 3.2. Thus, each group takes

𝑂 (𝑛) space. □

3.2 The Construction Algorithm

In this section, we describe the algorithm for constructing a PIM-

𝑘d-tree with cost analysis. This algorithm will also be a subroutine

in the batched update algorithms in §4.2.

Construction on a Single Module.We first propose an on-chip

algorithm to construct a PIM-𝑘d-tree sized𝑛′, shown in Algorithm 1.

This module could be either the CPU host or one PIM module (and

𝑛′ should fit into the CPU cache or the PIM local memory). The

high-level idea is that we first build a 𝑘d-tree in parallel as in [70].

Then we decompose the 𝑘d-tree using log-star decomposition, and

create replicas for each intra-group subtree in parallel.

Lemma 3.4 (On-chip construction). Algorithm 1 takes a com-

putation cost of 𝑂 (𝑛′ log𝑛′) work and 𝑂 (log2 𝑛′) span whp.

Proof. By Lemma 2.1, Line 2 in Algorithm 1 costs 𝑂 (𝑛′ log𝑛′)
work whp and 𝑂 (log2 𝑛′) span. Lines 8-10, 12, 16-17, 20-23 and

25-28 can be implemented using linear-work parallel primitives

based on semi-sort [30] and prefix sum [16]. Lines 7, 11, 19 and 24

can be implemented using linear-work treefix operations [16] and

tree construction [3]. All of these takes at most 𝑂 (𝑛′ log∗ 𝑃) work
whp and at most 𝑂 (log𝑛′ log log𝑛′) span whp. □

The Main Algorithm for Construction. Now we describe the

main algorithm to construct an entire PIM-𝑘d-tree across all PIM

modules (Algorithm 2). The high-level idea is that we first sample

some points to build a sketch that fits in the CPU cache, acting as

the highest part of the 𝑘d-tree. Then we offload the construction of

each lower subtree and its replicas on a PIM module. Finally, we

send back the constructed tree structure to the CPU and redistribute

all the master nodes and their replicas to the PIM modules.

To ensure load balance, the sketch size is set to 𝑂 (𝑃𝜎) which
fits in the CPU cache. We divide the remaining part of the 𝑘d-tree

into a forest with 𝑃 subtrees. By choosing 𝜎 = log
3 𝑛, all the 𝑃

subtrees will have size 𝑂 (𝑛′/𝑃) [70]. Thus, if the CPU cache size

𝑀 = Ω(𝑃 log
3 𝑛), we can afford to assign each PIM module with

a subtree and offload the construction of these subtrees and their

replicas to the PIM side. Finally, we send back the constructed

replicas and rearrange a load-balanced storage. Only three phases

of CPU-PIM interaction are needed, and the cost bounds are given

in Theorem 3.5.

Theorem 3.5 (PIM-𝑘d-tree Construction). Assume a PIM sys-

tem with CPU cache size 𝑀 = Ω(𝑃 log
3 𝑛). Constructing a PIM-𝑘d-

tree containing 𝑛′ points takes 𝑂 (𝑛′ (log 𝑃 + log log𝑛′)) CPU work,

𝑂 (log𝑛′ + log2 𝑃 + (log log𝑛)2) CPU span, 𝑂 ( 𝑛′
𝑃
log

𝑛′
𝑃
) PIM time

and 𝑂 ( 𝑛′
𝑃
log
∗ 𝑃) communication time, all whp.

Proof. Because we can directly use the shared-memory con-

struction when𝑛′ = 𝑂 (𝑀), we discuss here only the case when𝑛′ =
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Algorithm 1: On-chip PIM-𝑘d-tree Construction

Input: A sequence of data points 𝑃𝑡𝑠 [1 : 𝑛]
Output: A corresponding PIM-𝑘d-tree 𝑇𝑟𝑒𝑒

1 Function On_Chip_Build(𝑃𝑡𝑠) :
2 𝑇𝑟𝑒𝑒′ ← Parallel PKD-tree construction on 𝑃𝑡𝑠

// During PKD-tree construction, also record

the subtree sizes T() of each internal node

3 𝐺𝑟𝑜𝑢𝑝𝑠 ← Log_star_decompose(𝑇𝑟𝑒𝑒′)

4 𝑇𝑟𝑒𝑒 ← Replicate(𝑇𝑟𝑒𝑒′,𝐺𝑟𝑜𝑢𝑝𝑠)
5 return 𝑇𝑟𝑒𝑒

6 Function Log_star_decompose(𝑇 [1 : 𝑛]) :
7 Leaffix: Compute the subtree size of each node

8 parallel for each node 𝑁𝑖 in 𝑇 do

9 If 𝑁𝑖 and parent(𝑁𝑖 ) not in the same group then

10 Label 𝑁𝑖 as "group root"

11 Rootfix: Each node gets its closest ancestor who is a

"group root"

12 𝐺𝑟𝑜𝑢𝑝𝑠 ← A set of subtrees, where nodes with the same

"group root" ancestor fall into the same subtree

13 return 𝐺𝑟𝑜𝑢𝑝𝑠

14 Function Replicate(𝑇 ′ [1 : 𝑛],𝐺𝑟𝑜𝑢𝑝𝑠) :
15 parallel for each subtree 𝑆𝑇 in 𝐺𝑟𝑜𝑢𝑝𝑠 do

16 If 𝑆𝑇 == Group 0 nodes then

17 Replicate 𝑃 copies of 𝑆𝑇 into 𝑇

18 Else then

// Build top-down subtree caching

19 Rootfix: Record the height of each node in 𝑆𝑇

20 Replicate 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_ℎ𝑒𝑖𝑔ℎ𝑡 copies of subtree 𝑆𝑇

21 parallel for each node in each subtree copy do

22 If Node ID is smaller than copy ID then

23 Remove the node from the subtree copy

24 Leaffix: Combine all subtree copies into 𝑇

// Build bottom-up ancestor caching

25 parallel for each copied node in each subtree

copy do

26 Create pair {copied node ID, subtree root ID}

27 Semi-sort the pairs with pair.first

28 Combine the sorted pairs into ancestor chains

29 return 𝑇

Ω(𝑀). We use 𝜎 = log
3 𝑛 here to ensure load balance in later execu-

tions [70]. Line 3 inAlgorithm 2 takes𝑂

(
𝑃 log

3 𝑛(log 𝑃 + log log𝑛)
)

CPU work and𝑂 (log2 𝑃 + (log log𝑛)2) CPU span whp. Line 5 takes

𝑂 (𝑛′ (log 𝑃 + log log𝑛′)) CPU work and 𝑂 (log𝑛′) CPU span (the

height of the tree). Line 7 takes 𝑂 ( 𝑛′
𝑃
log

𝑛′
𝑃
) PIM time whp due to

Lemma 3.4. Line 8 takes𝑂 ( 𝑛′
𝑃
log
∗ 𝑃) communication time whp due

to Theorem 3.3. Line 9 takes𝑂 (𝑛′ log∗ 𝑃) CPU work and𝑂 (log2 𝑛′)
span. Line 10 sends 𝑂 (𝑛′ log∗ 𝑃) total communication. We will

prove the load balance on Line 10 in §3.4. □

Algorithm 2: PIM-𝑘d-tree Construction in PIM Systems

Input: A sequence of data points 𝑃𝑡𝑠 [1 : 𝑛]
Output: A corresponding PIM-𝑘d-tree 𝑇𝑟𝑒𝑒 across 𝑃 PIM

modules

1 Function Build_PIM-𝑘d-tree(𝑃𝑡𝑠) :
// In CPU cache: Lines 2-6

2 𝑃𝑡𝑠′ ← Sample 𝑃 · 𝜎 points from 𝑃𝑡𝑠

3 𝐶𝑎𝑐ℎ𝑒𝐹𝑜𝑟𝑒𝑠𝑡 [1 : 𝑃] ← On_Chip_Build(𝑃𝑡𝑠′)
4 parallel for Each node 𝑁𝑖 in 𝑃𝑡𝑠 do

5 𝑖𝑑𝑥 ← Search 𝑁𝑖 in 𝐶𝑎𝑐ℎ𝑒𝐹𝑜𝑟𝑒𝑠𝑡

6 Send 𝑁𝑖 to PIM module 𝑖𝑑𝑥

// On PIM module 𝑖: Lines 7-8

7 𝑇𝑖 ←On_Chip_Build(Received points)

8 Send 𝑇𝑖 to CPU

// In CPU cache: Lines 9-10

9 Collect all 𝑇𝑖 and build replications on the highest levels

10 𝑇𝑟𝑒𝑒 ← Send each intra-group subtree copy to a

random PIM module and store

11 return 𝑇𝑟𝑒𝑒

Construction isWork-efficient. For Theorem 3.5, we can see that

the total computation work on the CPU and PIM is 𝑂 (𝑛′ log𝑛′),
making the construction algorithm work-efficient compared to

shard-memory designs [17, 70, 102]. Meanwhile, the CPU execution

is polylogarithm span and the PIM execution is load-balanced whp,

exploiting adequate parallelism in the system.

3.3 Approximate Probabilistic Counters

In our 𝑘d-tree design for PIM, in order to keep the tree 𝛼-balanced,

it is essential to deploy a counter on each internal node to record

the size of the subtree. Ideally speaking, all replicas should main-

tain an accurate version of the subtree size counter so that a search

anywhere in the PIM system can immediately detect any 𝛼-balance

violations. However, this would incur unaffordable update costs,

because the changes in counter values during update would accu-

mulate in the higher parts of the tree, while our replication strategy

in §3.1 is to create more copies at higher levels, which would all

need updating.

Although there existmany approximate counter designs in stream-

ing/sketching algorithms (e.g., [52, 62, 63, 69, 104]), they mainly

focus on optimizing space usage and sweep times. We are more in-

terested in the Morris counter family (originally [72]; see the more

recent Steele counters [93, 94, 105]), which perform lazy updates.

However, these designs are either too frequently updated in our

settings or not accurate enough to be directly used in the PIM-𝑘d-

tree, which might violate 𝛼-balance (affecting the tree height) or

increase the costs for dynamic updates.

Approximate Counter Design. We introduce our approximate

probabilistic counter variant (Algorithm 3) for PIM-𝑘d-trees by cou-

pling the update probability with both the subtree size and the total

tree size. The high-level idea is that to avoid frequent counter up-

dates while keeping a well-estimated value whp in 𝑛, every time an
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Algorithm 3: Increment an approximate counter

Input: An approximate counter 𝐶𝑜𝑢𝑛𝑡𝑒𝑟

1 Function Increment-Counter(𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ) :
2 𝑉 ← 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 .value

3 𝑝 ← log𝑛/(𝛽𝑉 )
4 If Success in a coin throwing with probability 𝑝 then

5 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ′.value← 𝑉 + 1/𝑝
6 return 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ′

incremental operation is requested, the actual counter with value

𝑉 is updated with probability 𝑝 = log𝑛/(𝛽𝑉 ). Here 𝛽 = 𝑂 (1) is the
approximate counter probability parameter .
Estimation Accuracy. Lemma 3.6 shows that our approximate

counters are accurate enough under certain conditions.

Lemma 3.6 (Counter Accuracy). Assume that Δ𝑉 incremental

operations are executed on a probabilistic counter with original value

𝑉 . Let 𝑉 ′ be the final counter value after incrementing using Algo-

rithm 3. Then 𝑉 ′ −𝑉 = Δ𝑉 + 𝑜 (Δ𝑉 ) whp in 𝑛 if Δ𝑉 = Ω(𝛽𝑉 ) and
Δ𝑉 = 𝑂 (𝑉 ).

Proof. Let 𝑉1 = 𝑉 + Δ𝑉 . The estimated counter value is no

worse than the case where every of the Δ𝑉 increments succeeds

with probability 𝑝 = log𝑛/(𝛽𝑉1). 𝑉 ′ − 𝑉 equals 1/𝑝 multiplied

by a binomial random variable with success probability of 𝑝 and

Δ𝑉 trials. By a Chernoff bound [80, 87], we have 𝑃𝑟 {𝑉 ′ − 𝑉 ≥

(1 + 𝜖)Δ𝑉 } ≤ exp(−𝜖2Δ𝑉𝑝/2) = exp

(
−𝜖

2Δ𝑉 log𝑛

2𝛽𝑉1

)
= 𝑛
− 𝜖2Δ𝑉

2𝛽𝑉
1 =

𝑛−𝜖
2Ω (1)

. □

There is an analogous lemma for decrement operations, where

the Chernoff bound shows that 𝑃𝑟 {𝑉 − 𝑉 ′ ≥ (1 + 𝜖)Δ𝑉 } ≤
exp

(
−𝜖

2Δ𝑉 log𝑛

2𝛽𝑉

)
= 𝑛−𝜖

2Ω (1)
.

Effect on the TreeHeight. In our PIM-𝑘d-tree, we keep an approx-

imate counter on every copy of every node. By setting 𝛽 = Θ(𝛼),
we can ensure that the 𝑘d-tree is 𝛼-balanced whp even when using

these approximate probabilistic counters to record the subtree sizes

of each node. Lemma 3.7 shows that using approximate counters in

the PIM-𝑘d-tree does not change the tree height bounds. In §4.2, we

will show how to maintain these approximate counters with low

cost for Insert/Delete queries.

Lemma 3.7 (Tree height). Suppose our approximate counters are

used for subtree sizes, with 𝛽 = Θ(𝛼). Then the height of a PIM-𝑘d-

tree is (i) 𝑂 (log𝑛) whp for 𝛼 = 𝑂 (1) and (ii) log𝑛 + 𝑂 (1) whp for

𝛼 = 𝑂 (1)/log𝑛.

Proof. The tree height analysis from PKD-tree [70] takes as

input that each recursive level of sampling-based construction gen-

erates an 𝛼-balanced sketch whp in 𝑛, and concludes that the tree

has a height described above. Similarly, if that analysis takes as

input that our approximate counters keep every internal node 𝛼-

balanced whp in 𝑛, it will conclude that the PIM-𝑘d-tree has the

same height bounds. □

3.4 Auxiliary Techniques for Load Balance

Push-Pull Search.We use push-pull search [55, 57] as a key rou-

tine in the PIM-𝑘d-tree to guarantee load balance under skewed

workloads. Compared with distributed systems, PIM systems have

an additional powerful host side (§2.1), which enables many shared-

memory techniques to be adopted. The push-pull search exploits

such features by taking advantage of both sides, compared with the

always-offloading designs of many previous distributed algorithms.

Push-pull search uses the contention information in the batch to

decide where the computation in a PIM-𝑘d-tree is actually executed

(in CPU cache or on PIM modules). We give an example here for

LeafSearch (i.e., a top-down search from root to leaf) to illustrate

how push-pull search works. Within a PIM execution round with

batch size 𝑆 , suppose that𝑚 queries want to search the internal

node𝑁𝑖 to decide which child subtree to go to. As long as𝑚 is below

a threshold that would cause load imbalance (defined below), then

all the𝑚 search queries are pushed (i.e., sent) to the PIM module

that stores 𝑁𝑖 , and the search traverses the local replicated intra-

group subtree of 𝑁𝑖 . Otherwise, if𝑚 exceeds the threshold, then 𝑁𝑖

and pointers to its children are pulled (i.e., fetched) from the PIM

side to the CPU, and a parallel search is carried out on the CPU.

During pulling, the local intra-group caching is not fetched to avoid

communication imbalance. After the on-CPU search, the𝑚 queries

are divided into two groups based on which child node to go to,

and push-pull detection is recursively executed level-by-level until

all leaves are reached. By resolving potential contentions on the

CPU, each round is PIM-balanced:

Lemma 3.8 (Push-pull Search [55]). On a search tree with node

fanout 𝐶 and applying our caching, we set the push-pull threshold

to be 𝜏 = 𝐶 · 𝐻𝐺1 where 𝐻𝐺1 is the maximum height of intra-group

subtrees. Then a batch of 𝑆 = Ω(𝜏𝑃 log 𝑃) LeafSearch queries incurs

𝑂 (𝑆/𝑃) communication time whp to traverse each group.

Delayed Construction on Group 1. For Groups 𝑗 ≥ 1, each

intra-group subtree is sized𝑂

(
log
( 𝑗−1) 𝑃/log( 𝑗 ) 𝑃

)
, where we will

again define log
(0) 𝑃 to be 𝑃 . When creating replicated intra-group

subtrees on PIM modules (Algorithm 2, Line 10), we need to ensure

that log
( 𝑗−1) 𝑃/log( 𝑗 ) 𝑃 = 𝑂 (𝑆/(𝑃 log 𝑃)), so that Lemma 2.3 can

be applied to guarantee load balance. Any 𝑆 = Ω((log 𝑃/log log 𝑃) ·
𝑃 log 𝑃) such that 𝑆 ≤ 𝑀 suffices for Group 𝑗 = 2, and hence for

all Groups 𝑗 ≥ 2. Since𝑀 = Ω(𝑃 log
3 𝑛) and 𝑛 ≥ 𝑃 (otherwise the

entire tree fits in the CPU cache), such 𝑆 exist. For Group 1, however,

each intra-group subtree is sized 𝑂 (𝑃/log 𝑃), so load balance will

not be satisfied if the replicas are directly pushed to the PIM side

in the same phase.

We propose a delayed construction strategy on nodes in Group

1 for guaranteed load balance. In the first batch of construction, for

all the nodes that are in an intra-group subtree sized Ω(𝑆/𝑃 log 𝑃),
only their master nodes are constructed and their local caching is

not built. These master nodes are marked as unfinished. We record

the total number of unfinished intra-group subtrees on the CPU.

If this number is smaller than 𝑃 log 𝑃 , we keep executing the later

batches coming from the outside. When this accumulated number

exceeds 𝑃 log 𝑃 , an extra execution phase is triggered where the

caching of all unfinished nodes are constructed.
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Proof for load balance in Theorem 3.5. Nowwe analyze the

case to construct a tree with size 𝑆 = Ω(𝑃 log
2 𝑃). With delayed con-

struction, each master node who is not delayed in the current round

will have a local caching size of 𝑂 (log 𝑃) which is 𝑂 (𝑆/(𝑃 log 𝑃)).
This allows Lemma 2.3 to be used and guarantees the load balance

of work and communication in the current round.

The load balance for the extra construction phase of unfinished

nodes is also guaranteed. Since the entire tree is 𝛼-balanced, all

unfinished Group 1 subtrees have the same asymptotic numbers of

unfinished nodes. Constructing at least 𝑃 log 𝑃 unfinished subtrees

together allows the usage of Lemma 2.3. □

Lemma 3.9 (Communication overheadwithunfinished nodes).

For a batch of 𝑆 = Ω(𝑃 log 𝑃) queries, assume that each query touches

at most 𝑂 (𝑆/(𝑃 log 𝑃)) nodes in one intra-group subtree. Let 𝑡 be the

communication time in a PIM-𝑘d-tree to finish the construction of

unfinished nodes first and execute the batch, where the construction

cost is ignored. Then the communication time is Θ(𝑡) whp to exe-

cute the query batch while still leaving the nodes unfinished in the

PIM-𝑘d-tree.

Proof. Each unfinished intra-group subtree introduces an extra

communication of 𝑂 (𝑆/(𝑃 log 𝑃)), and there are at most 𝑃 unfin-

ished subtrees in the system The communication overhead of unfin-

ished nodes is𝐶 = Θ(𝑡𝑃)+𝑂 (𝑃 log 𝑃 ·𝑆/(𝑃 log 𝑃)) = Θ(𝑡𝑃)+𝑂 (𝑆) =
Θ(𝑡𝑃). After introducing push-pull search and delayed construction,
load balance can be strictly guaranteed. Thus the communication

time of leaving the nodes unfinished is still Θ(𝑡) whp. □

4 OPERATIONS

In this section, we show how the PIM-𝑘d-tree efficiently supports

LeafSearch, dynamic updates, and nearest neighbor and orthog-

onal range queries. All operations are whp work-efficient, PIM-

balanced, and have𝑂 (log∗ 𝑃) communication and space overheads.

4.1 Leaf Search

The LeafSearch(𝑄) operation takes a query batch 𝑄 consisting of

𝑆 points as input, and for each query point returns the leaf node

the point would reside in. In shared-memory implementations,

this operation takes 𝑂 (𝑆 log(𝑛/𝑆)) work and communication whp

(Table 1).

Algorithm 4 presents pseudocode for LeafSearch(𝑄). The high-
level idea is to first search through Group 0 by dividing the searches

evenly onto arbitrary PIM modules, and then use push-pull search

to traverse through each Group 𝑗 ≥ 1. Theorem 4.1 bounds the

cost of this algorithm. The proof is a direct combination of shared-

memory search [70], Lemma 3.8 and Lemma 3.9.

Theorem 4.1 (LeafSearch costs). A batch of 𝑆 = Ω(𝑃 log
2 𝑃)

LeafSearch on a PIM-𝑘d-tree of size𝑛 takes𝑂 (𝑆 min{log∗ 𝑃, log 𝑛
𝑆
})

CPU work,𝑂 (log∗ 𝑃 log𝑛) CPU span,𝑂 ( 𝑆
𝑃
min{log∗ 𝑃, log 𝑛

𝑆
}) com-

munication time and 𝑂 ( 𝑆
𝑃
log

𝑛
𝑆
) PIM time, all whp.

4.2 Dynamic Updates

We first discuss how to implement batch-dynamic Insert on a PIM-

𝑘d-tree. Our batched Insert adopts a partial reconstruction method

similar to [70] and executes in a two-stage fashion. In the first stage,

Algorithm 4: LeafSearch

Input: A batch of points 𝑄 [1 : 𝑆]
Output: Leaf node addresses 𝐿𝑓 [1 : 𝑆]

1 Function LeafSearch(𝑄) :
// On CPU: Lines 2-5

2 Initialize 𝑆𝑢𝑏𝑠𝑒𝑡 [1 : 𝑃]
3 parallel for 𝑖 ← 1 : 𝑃 do

4 𝑆𝑢𝑏𝑠𝑒𝑡 [𝑖] ← 𝑄

[
(𝑖−1)𝑆

𝑃
+ 1 : 𝑖𝑆

𝑃

]
5 Send each 𝑆𝑢𝑏𝑠𝑒𝑡 [𝑖] to PIM module 𝑖

// On PIM module 𝑖: Lines 6-9

6 Initialize 𝐺1𝑅𝑜𝑜𝑡𝑠 [1 : 𝑆
𝑃
]

7 parallel for 𝑗 ← 1 :
𝑆
𝑃
do

8 𝐺1𝑅𝑜𝑜𝑡𝑠 [ 𝑗] ← Traverse Group 0 to find the Group 1

root node with key 𝑆𝑢𝑏𝑠𝑒𝑡 [𝑖] [ 𝑗]
9 Send 𝐺1𝑅𝑜𝑜𝑡𝑠 [·]to CPU

// On CPU: Line 10

10 𝐿𝑓 [1 : 𝑆] ← Collect 𝐺1𝑅𝑜𝑜𝑡𝑠 [1 : 𝑃]
// Between CPU and PIM: Lines 11-13

11 for 𝑔𝑖𝑑 ← 1 to log
∗ 𝑃 do

12 parallel for 𝑗 ← 1 : 𝑆 do

13 𝐿𝑓 [ 𝑗] ← Use push-pull search to traverse the

subtree in Group 𝑔𝑖𝑑 rooted at 𝐿𝑓 [ 𝑗] for 𝑄 [ 𝑗]
14 return 𝐿𝑓 [1 : 𝑆]

we execute a LeafSearch helper to locate the positions in the

PIM-𝑘d-tree for new points to be inserted, with two modifications

compared with the original LeafSearch. In the second stage, we

commit the insertion to the positions found in the first stage.

Modification I to LeafSearch Helper: Counter Updates. Ev-

ery internal node in the PIM-𝑘d-tree includes an approximate

counter denoting the approximate number of points contained

in its subtree (§3.3). When we execute the LeafSearch helper from

root to leaf, every time the helper touches an internal node, we

would want to increment the approximate counter of the node,

because the new point will be inserted into its subtree. When we

traverse a group, we traverse until we reach the lowest node on the

search path that is still in the group. Then we use Algorithm 3 (with

𝛽 = Θ(𝛼)) to increment the approximate counter on this lowest

node. If the increment is successful, we update all copies of this

node. In addition to incrementing the counters of the lowest nodes,

this update also increments the counters of their ancestors in the

same group.

Lemma 4.2 (Counter maintenance cost). Maintaining the ap-

proximate counters during a batch of 𝑆 = Ω(𝑃 log
2 𝑃) Inserts takes

an amortized 𝑂 ( 𝑆
𝛼𝑃

log
2 𝑛) PIM time and 𝑂 ( 𝑆

𝛼𝑃
log𝑛 log∗ 𝑃) com-

munication time whp.

Proof. A lowest node inGroup 𝑗 has a subtree size ofΘ(log( 𝑗 ) 𝑃).
Thus, the success probability for an increment isΘ(log𝑛/𝛼 log

( 𝑗 ) 𝑃).
Each successful increment triggersΘ(log( 𝑗 ) 𝑃) communication (the

number of copies) and 𝑂 ((log( 𝑗 ) 𝑃)2) PIM work (by Lemma 3.2,

each copy has 𝑂 (log( 𝑗 ) 𝑃) ancestors). Thus, for Group 𝑗 , the cost
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to maintain approximate counters is an amortized Θ( 1𝛼 log𝑛) com-

munication and 𝑂 ( 1𝛼 log
( 𝑗 ) 𝑃 log𝑛) PIM work. The total communi-

cation (PIM work) is an amortized Θ( 1𝛼 log𝑛) (𝑂 ( 1𝛼 log
2 𝑛), respec-

tively) per insertion. In addition, 𝑆 = Ω(𝑃 log
2 𝑃) and Lemma 2.3

guarantee PIM balance whp. □

Modification II to LeafSearch Helper: Terminal Position.

The original LeafSearch returns a leaf node as the terminal po-

sition. In the Insert version, however, we apply increments to

the approximate counters during the search and detect whether 𝛼-

balance is violated at the current position. If imbalance is detected,

the current node is returned without further heading to the leaf.

Stage 2: Partial Reconstruction. After Stage 1, where all imbal-

anced internal nodes are returned, we rebuild the entire imbalanced

subtree together with the new points to be inserted using Algo-

rithm 2. If no imbalance occurs on one search path and a leaf node is

returned, we directly insert the new points into the leaf. In addition,

we also promote nodes on the search path into upper groups based

on the updated approximate counter value of the nodes.

InsertionCost. The overall cost of Insert is shown in Theorem 4.3.

Theorem 4.3 (Insertion). Inserting 𝑆 = Ω(𝑃 log
2 𝑃) points into

a PIM-𝑘d-tree of size 𝑛 takes𝑂 ( 𝑆𝛼 (log 𝑃 + log log𝑛) log𝑛) CPU work,

𝑂 (log2 𝑛) CPU span, 𝑂 ( 𝑆
𝑃𝛼

log
∗ 𝑃 log𝑛) communication time and

𝑂 ( 𝑆
𝑃𝛼

log
2 𝑛) PIM time, all whp and amortized.

Proof. Weuse an amortization argument similar to PKD-tree [70]

for the costs of partial reconstruction. Algorithm 2 takes whp

𝑂 (𝑛′ (log 𝑃 + log log𝑛′)) CPU work, 𝑂 (𝑛′ log 𝑛′
𝑃
) PIM work and

𝑂 (𝑛′ log∗ 𝑃) communication to build a subtree of size 𝑛′ (see The-
orem 3.5). For an 𝛼-balanced subtree of size 𝑛′, we would need to

insert another Θ(𝛼𝑛′) new points to trigger a partial reconstruc-

tion due to imbalance. The amortized cost per point on this subtree

root is 𝑂 ( 1𝛼 (log 𝑃 + log log𝑛
′)) CPU work, 𝑂 ( 1𝛼 log𝑛′) PIM work

and 𝑂 ( 1𝛼 log
∗ 𝑃) communication. Now sum over the tree height

𝑂 (log 𝑃), which gives an amortized𝑂 ( log𝑛𝛼 (log 𝑃 + log log𝑛)) CPU
work, 𝑂 ( 1𝛼 log

2 𝑛) PIM work and 𝑂 ( log𝑛𝛼 log
∗ 𝑃) communication

whp. Finally, we combine Lemma 3.8 for load balance, Theorem 4.1

for search cost and Lemma 4.2 for overhead to maintain approxi-

mate counters, all of which lead to the final bounds. □

Deletion. The Delete operation on PIM-𝑘d-tree is a symmetric

case to Insert. Their executions are extremely similar, starting

with LeafSearch to update the approximate counters and find

the highest nodes with imbalance, and then partially reconstruct-

ing all imbalanced subtrees whose requested points are removed.

Theorem 4.4 gives the cost bounds of Delete; the proof is omitted.

Theorem 4.4 (Deletion). Deleting 𝑆 = Ω(𝑃 log
2 𝑃) points from

a PIM-𝑘d-tree containing 𝑛 points takes𝑂 ( 𝑆𝛼 (log 𝑃 + log log𝑛) log𝑛)
CPU work, 𝑂 (log2 𝑛) CPU span, 𝑂 ( 𝑆

𝑃𝛼
log
∗ 𝑃 log𝑛) communication

time and 𝑂 ( 𝑆
𝑃𝛼

log
2 𝑛) PIM time, all whp and amortized.

4.3 Nearest Neighbors and Orthogonal Ranges

𝑘 Nearest Neighbors. A 𝑘 nearest neighbor (𝑘NN) query takes a

point 𝑝 as input and returns the 𝑘 nearest neighbors of 𝑝 inside the

dataset. Given arbitrary datasets, 𝑘NN queries might require worst-

case poly(𝑛) work, but better bounds exist if there are constraints
on the dataset distribution.

A sequential 𝑘NN algorithm first locates the leaf for the 𝑘NN

center. Then it uses a Fibonacci heap to maintain the 𝑘 nearest

candidates. We denote 𝑟 as the radius of this candidate set (𝑟 = ∞
for fewer than 𝑘 candidates). The 𝑘NN backtracks for all leaf nodes

with distance less than 𝑟 and terminates when all untracked leaves

are further than 𝑟 away. The PIM-𝑘d-tree executes 𝑘NN in a similar

fashion, but parallelizes the searches across PIM modules.

The 1977 claim [35] that 𝑘NN in a 𝑘d-tree takes an average-case

𝑂 (𝑘 log𝑛) work has recently [46] been proven for 𝑘NN-friendly

datasets (see Definition 2 in theAppendix for the precise definition).

In practice, when 𝑘 ≪ 𝑛, the small neighborhoods are very likely

to meet the locally uniform property of 𝑘NN-friendly datasets. The

PIM-𝑘d-tree improves the bounds from those works [35, 46] to the

ones in Theorem 4.5.

Theorem 4.5 (𝑘NN costs). If the dataset is 𝑘NN-friendly, then

executing a batch of 𝑆 = Ω(𝑃 log
2 𝑃) 𝑘-NN queries over 𝑛 points

takes 𝑂 (𝑆𝑘 log∗ 𝑃) CPU work, 𝑂 (𝑘 log 𝑆) CPU span, 𝑂 ( 𝑆𝑘
𝑃

log
∗ 𝑃)

communication time and 𝑂 ( 𝑆𝑘
𝑃

log𝑛) PIM time, all in expectation.

Proof. [46] proved that a 𝑘NN query on a 𝑘NN-friendly dataset

touches 𝑂 (𝑘) leaf nodes in expectation. During the backtracking,

the dual-way caching can be used for local traversing. Thus, we

can combine Lemmas 3.7, 3.8, and 3.9 and Theorem 4.1 to get the

final bounds. □

Approximate Nearest Neighbors (ANN). Suppose point 𝑞 in

the 𝑘d-tree is the 𝑘-th nearest neighbor of a given point 𝑝 . Then

a (1 + 𝜖)-approximate 𝑘 nearest neighbor query returns a point

𝑞′ such that 𝑑𝑖𝑠𝑡 (𝑝, 𝑞) ≤ 𝑑𝑖𝑠𝑡 (𝑝, 𝑞′) ≤ (1 + 𝜖)𝑑𝑖𝑠𝑡 (𝑝, 𝑞). A shared-

memory sequential ANN algorithm [6] executes the same as 𝑘NN,

except that it terminates when all untracked leaves are further than

𝑟/(1 + 𝜖) away. It takes 𝑂 (𝑆𝑘𝜖−𝐷 log𝑛) work and communication.

Meanwhile, PIM-𝑘d-tree takes 𝑂 (𝑘𝜖−𝐷 log
∗ 𝑃) communication per

query, and is PIM-balanced and work-efficient, as shown in Theo-

rem 4.6.

Theorem 4.6 (ANN costs). Executing a batch of 𝑆 = Ω(𝑃 log
2 𝑃)

(1 + 𝜖)-approximate 𝑘 nearest neighbor queries over 𝑛 points takes

𝑂 (𝑆𝑘𝜖−𝐷 log
∗ 𝑃) CPU work,𝑂 (𝑘 log 𝑆) CPU span,𝑂 ( 𝑆𝑘𝜖−𝐷

𝑃
log
∗ 𝑃)

communication time and𝑂 ( 𝑆𝑘𝜖−𝐷
𝑃

log𝑛) PIM time, all in expectation.

Proof. The priority search method has been proven to touch

only Θ(𝑘𝜖−𝐷 ) nodes per query and takes work 𝑂 (ℎ) for each

touched node [6], where ℎ is the tree height. We can combine Lem-

mas 3.7, 3.8, and 3.9 and Theorem 4.1 to get the final bounds. □

Orthogonal Range Queries. An orthogonal range query takes a

box whose borders are orthogonal to the dimensions of the dataset

as input, and returns all the points in the dataset that lie in the

given box. Our PIM-𝑘d-tree supports such queries using a top-

down search and keeping track of all candidate tree nodes whose

representative bounding box intersects with the query box.

Lemma 4.7 gives the worst-case bound for the execution of or-

thogonal range queries. When we build a strictly-balanced PIM-𝑘d-

tree with 𝛼 = 𝑂 (1)/log𝑛 and ℎ = log𝑛 +𝑂 (1), the work bound in
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Lemma 4.7 is reduced to 𝑂

(
𝑘 + 𝑛

𝐷−1
𝐷

)
. The total communication

bound cannot be reduced using PIM since the original bound for

shared-memory implementation [17] is already tight.

Lemma 4.7 (Orthogonal range qery). An orthogonal range

query takes worst-case𝑂

(
𝑘 + 2

𝐷−1
𝐷

ℎ
)
PIM work and communication,

where ℎ is the PIM-𝑘d-tree height and 𝑘 is the number of points in the

query box. The execution is PIM-balanced whp when the total number

of touched nodes is Ω(𝑃 log
2 𝑃).

5 LOWER BOUNDS AND OPTIMALITY

Trading-off Communication and Space. In our replication strat-

egy for the PIM-𝑘d-tree, we apply an intra-group caching policy to

every group in the log-star decomposition. However, we can see

that there exists a variant design where we only apply the policy to

the first 𝐺 groups. Such design leads to a space overhead of 𝑂 (𝑛𝐺)
and a communication factor of 𝑂 (𝐺 + log(𝐺 ) 𝑃).

In the previous sections, we adopt a communication-optimized

version with𝐺 = log
∗ 𝑃 . Nevertheless, there exist space-optimized

designs taking 𝑂 (𝑛𝑔) = 𝑂 (𝑛) linear space and a communication

factor of 𝑂 (log(𝑔) 𝑃), where 𝑔 is an arbitrary positive constant.

Trading-off Communication and Batch Size. In all our bounds

for operations (Theorems 4.1 and 4.3 to 4.6), we only require 𝑆 =

Ω(𝑃 log
2 𝑃). However, if we allow a batch size of 𝑆 = Ω(𝑃 log 𝑃 ·

𝐶 log𝐶 𝑃), we can set the push-pull threshold to be Θ(𝐶 log𝐶 𝑃),
and use chunked trees rather than binary trees—combining up to

𝑂 (𝐶) binary nodes into one B-tree-like node with fanout 𝑂 (𝐶).
Each chunk is stored on a single PIM module, and the caching

strategy is applied in chunk granularity. Consequently, the search

communication becomes 𝑂 (𝐺 + log(𝐺 )
𝐶

𝑃) per query if the space

overhead is 𝑂 (𝑛𝐺) for 1 ≤ 𝐺 ≤ log
∗
𝐶
𝑃 .

Increasing the batch size reduces the overheads of our approach.

By using 𝐶 = Θ(log(𝜖 ) 𝑃) with arbitrary constant 𝜖 ≥ 1, we can

achieve𝑂 (1) communication per search and𝑂 (𝑛) space whp. How-
ever, in settings where queries arrive at the CPU over time, indi-

vidual queries may wait longer to be processed, as a larger query

batch needs to accumulate before processing starts.

Lower Bounds.We now prove that the trade-off between search

communication, space and batch size in the PIM-𝑘d-tree is optimal.
Our main results can be summarized into Theorem 5.1.

Theorem 5.1 (Lower Bound). For a binary search tree containing

𝑛 points and with height Θ(log𝑛), any PIM-based data structure that

is skew-resistant for any search batch size 𝑆 = Ω(𝑃 log 𝑃 ·𝐶 log𝐶 𝑃)
and supports𝑂 (log(𝐺 )

𝐶
𝑃) worst-case communication per search query

(between any two arbitrary positions in the tree) must take Ω(𝑛𝐺)
space, where 1 ≤ 𝐺 ≤ log

∗
𝐶
𝑃 − log∗

𝐶
log
∗
𝐶
𝑃 .

Proof. The worst-case search cost between two positions is at

most double the LeafSearch cost, so we foucs on LeafSearch.

We first prove the case for 𝑆 = Θ(𝑃 log
2 𝑃), where the push-pull

threshold is 𝑂 (log 𝑃) and the master data chunk size is 𝑂 (1).
We transform the PIM LeafSearch problem into the cell-probe

lower bound problem for dynamic succinct dictionaries [65]. We

encode the search path for a LeafSearch query into a Θ(log𝑛)
word, where a bit is 1 if the path takes the left child of an internal

node and is 0 if the right child is taken. Then LeafSearch becomes

querying for key-value pairs in a succinct dictionary.

Our group-by-group caching strategy expands in a same way

as the optimal key arrangement tree in [65]. Each of the 𝐺 groups

of intra-group caching in the PIM aligns with a compressed auxil-

iary structure in the cell-probe model that require an 𝑂 (1) query
cost (i.e., memory access in the cell-probe model [106]) to traverse.

Thus, the space overhead in the PIM corresponds to the query cost

in the cell-probe model. On the other hand, the dominant factor

in communication 𝑂 (log(𝐺 ) 𝑃) in PIM is the height of the lowest

distributed levels without caching. In our transformation between

the two problems, such lowest distributed levels in PIM align with

the number of wasted bits per key in the cell-probe model to di-

rectly store uncompressed bits of information per key. Thus, the

LeafSearch communication cost in the PIM Model corresponds to

the space overhead in the cell-probe model.

Such a transformation guarantees that the trade-off between

space and communication in the PIM Model shares the same lower

bounds with the communication-space trade-off of dynamic suc-

cinct dictionaries in the cell-probe model. Thus, we directly apply

Lemma 5.2 from [65] (below) to get the bound for 𝑆 = 𝑂 (1).
For 𝑆 = 𝑃 log 𝑃 ·𝐶 log𝐶 𝑃 , the push-pull threshold andmaster data

chunk size could be 𝐶 log𝐶 𝑃 . The caching strategy is still optimal

when using tree node fanout 𝐶 . This gives the final results. □

Lemma 5.2 (Dynamic Succinct Dictionary [65]). In a cell-

probe model with word-size𝑤 = Θ(log𝑛) and 1 ≤ 𝐺 ≤ log
∗ 𝑃 , any

dynamic succinct dictionary storing at most 𝑛 keys with𝑂 (log(𝐺 ) 𝑃)
wasted bits per key must have expected insertion, deletion or query

time of at least Ω(𝐺).

Optimality.We conclude that our PIM-𝑘d-tree is optimal whp: Our

PIM-𝑘d-tree has the same trade-off Pareto frontier as the optimal

ones in Theorem 5.1, except that PIM-𝑘d-tree has a whp term due

to randomization for adversarial skew resistance.

6 APPLICATION TO CLUSTERING PROBLEMS

In this section, we showcase how to execute two widely-used clus-

tering algorithms (density-peak clustering [84] and DBSCAN [31])

using the PIM-𝑘d-tree and its techniques. Similar to §4, the cluster-

ing algorithms are work-efficient and PIM-balanced, and achieve

nearly linear communication and space.

6.1 Density Peak Clustering

The density peak clustering (DPC) problem takes as input𝑛 points, a

distance function 𝑑𝑖𝑠𝑡 (·, ·) and two user-input parameters 𝑑𝑐𝑢𝑡 > 0

and 𝜖 > 0. It proceeds using the following three steps. (i) First,

compute the density of each node 𝑥 , which is the number of points

in a ball centered at 𝑥 and with radius 𝑑𝑐𝑢𝑡 . (ii) Next, for each point

𝑥 , connect 𝑥 to its dependent point, which is the nearest neighbor

of 𝑥 that has a higher density than 𝑥 . (iii) Finally, remove all the

connected edges with a distance higher than 𝜖 . The DPC will output

a forest of trees as clusters.

A shared-memory parallel DPC [46] takes 𝑂 (𝑛(1 + 𝜌𝑎𝑣𝑔) log𝑛)
average-case work and communication on a 𝑘NN-friendly dataset

(see Definition 2 or [46]), where 𝜌𝑎𝑣𝑔 is the average cubical density
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with side length 2𝑑𝑐𝑢𝑡 . We will show how to improve this bound

using PIM systems.

Density Computation. To calculate the density of each point, we

build a PIM-𝑘d-tree on the 𝑛 points in the dataset, and construct a

radius search with distance 𝑑𝑐𝑢𝑡 . The radius search performs in a

similar way to 𝑘NN, where we first locate the leaf node and then

backtrack the 𝑘d-tree to traverse all cells that intersect with the

𝑑𝑐𝑢𝑡 -radius sphere.

Dependent Point Computation. To connect each point to its

dependent point, we construct a priority search 𝑘d-tree [39, 46] on

the PIM system. In a priority search 𝑘d-tree, each point is associated

with a priority, and each internal node is associated with a value

that records the highest priority among all points in its represented

bounding box (i.e., its subtree). In DPC, this priority value is the

density we calculated in step (i).

We only need to construct a static priority search 𝑘d-tree for

DPC, so we can use Algorithm 2 for the construction. We only need

to update all the priority values when we partition the points in

each recursive calls of a construction, and all asymptotic bounds in

Theorem 3.5 are not changed.

After the priority search 𝑘d-tree is constructed, we conduct a

1NN priority search for each point, where the backtracking only

traverses the nodes with a higher priority value.

Cluster Construction. After we connect each point to its depen-

dent point, we remove all edges that exceed distance 𝜖 in parallel

and conduct a parallel connected components algorithm [92].

Cost Analysis. Theorem 6.1 presents the costs of our PIM-friendly

DPC algorithm, showing that our design is work-efficient, PIM-

offloaded, PIM-balanced, communication-reduced and space-efficient.

Theorem 6.1 (DPC costs). For 𝑛 = Ω(𝑃 log
3 𝑃) 𝑘NN-friendly

points with average density 𝜌 , a DPC on PIM takes 𝑂 (𝑛(log 𝑃 +
log log𝑛 + 𝜌 log∗ 𝑃)) CPU work, 𝑂 (log3 𝑛) CPU span, 𝑂 ( 𝑛

𝑃
(log 𝑛

𝑃
+

𝜌 log𝑛)) PIM time and 𝑂 ( 𝑛
𝑃
(1 + 𝜌) log∗ 𝑃) communication time, all

in expectation, and takes 𝑂 (𝑛 log∗ 𝑃) space.

Proof. The construction of PIM-𝑘d-trees takes 𝑂 (𝑛(log 𝑃 + log
log𝑛)) CPU work, 𝑂 (log2 𝑃 + log𝑛) CPU span, 𝑂 ( 𝑛

𝑃
log

𝑛
𝑃
) PIM

execution time and𝑂 ( 𝑛
𝑃
log
∗ 𝑃) communication time, all whp (The-

orem 3.5). For step (i), each range query touches𝑂 (𝜌) leaf nodes on
average, which takes 𝑂 (𝑛𝜌 log𝑛) PIM work and 𝑂 (𝑛𝜌 log∗ 𝑃) com-

munication. In step (ii), it is proved [46] that each priority search

touches 𝑂 (1) leaf nodes. Finding connected components [92] takes

an expected𝑂 (𝑛) CPUwork,𝑂 (log3 𝑛) span and𝑂 ( 𝑛
𝑃
) communica-

tion time if each vertex/edge is hashed to a random PIMmodule. □

6.2 DBSCAN

The DBSCAN (density-based spatial clustering of applications with

noise) problem takes as input 𝑛 points, a distance function 𝑑𝑖𝑠𝑡 (·, ·)
and two user-input parameters 𝜖 > 0 and 𝑘 > 0. A point 𝑥 is labeled

as a core point iff |{𝑥 ′ | 𝑑𝑖𝑠𝑡 (𝑥 ′, 𝑥) ≤ 𝜖}| ≥ 𝑘 . DBSCAN returns a

set of clusters where each core point belongs to exactly one cluster.

Two core points 𝑥 and 𝑦 belong to the same cluster iff there exist

a list of core points 𝑥 = 𝑥1, 𝑥2, · · · , 𝑥 𝑗 = 𝑦 connecting 𝑥 and 𝑦 s.t.

𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥𝑖+1) ≤ 𝜖 for 𝑖 = 1.. 𝑗 − 1. A non-core point can belong to

multiple clusters that are less than 𝜖 distance away. A non-core

point is labeled as a border point if it belongs to at least one cluster,
or labeled as a noise point if it does not belong to any cluster.

Sequential 2-dimensional DBSCAN takes𝑂 (𝑛(𝑘+log𝑛))work [29,
37, 41], and a shared-memory work-efficient parallel version takes

𝑂 (log𝑛) span and 𝑂 (𝑛 log𝑀 𝑛) communication whp. We will im-

prove these bounds for 𝐷 = 2 using PIM systems, as in Theorem 6.3.

High-dimensional DBSCANs (𝐷 ≥ 3) have a lower bound of poly-

nomial work [37], which is hard to improve even using PIM.

To implement 2d-DBSCAN on PIM, we follow a four-step exe-

cution flow: (i) grid computation, (ii) core marking, (iii) cell graph

construction, and (iv) cluster construction.

Grid Computation. All points are placed into disjoint cells with

side length 𝜖/
√
2. Each cell is stored on a random PIM module

using a hash mapping. If the number of points in a cell exceeds

𝑛/(𝑃 log 𝑃), we recursively divide the cell into sub-cells until the

number in each sub-cell is 𝑂 (𝑛/(𝑃 log 𝑃)). We map the sub-cells to

random PIM modules and also maintain the tree structure of the

division.

Mark Cores. When the number of points in a cell is larger than

𝑘 , then all these points are labeled as core points. Otherwise, all

these points are collocated with their neighboring cells to count the

number of neighbors in their 𝜖-neighborhood. We use push-pull

search here to always send the cell with fewer points to the cell

with more points when collocating cell points.

Cell Graph Construction. If two neighboring cells have a pair of

core points with distance ≤ 𝜖 , then all the points in these two cells

belong to the same cluster. We link an edge between the two cells,

and eventually output a cell graph. We solve the problem using

the unit-spherical emptiness checking (USEC) with line separation

method from [101], which first performs a per-cell sort over all

nodes on one axis, and builds in parallel an index of wavefronts to

check the intersection within distance 𝜖 . Similar to core marking,

we still use push-pull search in this step for load balance.

Cluster Construction. After a cell graph is constructed, a con-

nected components algorithm is executed to collapse all connected

cells into the same cluster, which gives the final clustering result.

Cost of the Sorting Step in USEC. The following lemma and

proof present and analyze a PIM-friendly algorithm for performing

the sorting step of USEC.

Lemma 6.2 (Sorting). Sorting𝑚 elements on PIM together with

other 𝑛 = Ω(𝑃 log 𝑃) work in a batch, takes 𝑂 (𝑚 log 𝑃) CPU work,

𝑂 (log𝑚) CPU span, 𝑂 (𝑚 log(𝑚
𝑃
+ 1)) PIM work and 𝑂 (𝑚) commu-

nication, and is PIM-balanced whp.

Proof. (i) If 𝑚 = 𝑂 (𝑛/(𝑃 log 𝑃)), send the 𝑚 elements to one

PIM module and sort there.

(ii) If 𝑚 = Ω(𝑃 log
2 𝑃 + 𝑛/(𝑃 log 𝑃)), then first sample 𝑃 log 𝑃

elements to be sorted in the CPU cache and output 𝑃 ranges that

have equivalent numbers of elements per range whp. Then assign

each range to a PIM module, and send all the𝑚 elements to the

corresponding range to be sorted. Searching through the sample

structure takes𝑂 (𝑚 log 𝑃) work, and the sorting takes𝑂 (𝑚 log
𝑚
𝑃
)

PIM work and is balanced across the PIM modules.

(iii) If𝑚 = Ω(𝑛/(𝑃 log 𝑃)) but𝑚 = 𝑂 (𝑃 log
2 𝑃), then the𝑚 ele-

ments fit in the CPU cache. We divide the𝑚 elements into multiple

groups, each containing 𝑛/(𝑃 log 𝑃) elements. Each group is sent
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to a random PIM module to be sorted, and then different groups

are merged on the CPU. The recursive level of the CPU merging is

𝑂 (log𝑚) = 𝑂 (log 𝑃), so the CPU work is 𝑂 (𝑚 log 𝑃). □

Cost Analysis. Theorem 6.3 presents the costs of our PIM-friendly

DBSCAN, showing that our design is work-efficient, PIM-offloaded,

PIM-balanced, communication-reduced and space-efficient.

Theorem 6.3 (DBSCAN cost). A 2-dimensional (𝜖, 𝑘)-DBSCAN
on PIM for 𝑛 = Ω(𝑃 log

3 𝑃) points takes 𝑂 (𝑛 log 𝑃) CPU work,

𝑂 (log3 𝑛) CPU span, 𝑂 ( 𝑛
𝑃
(𝑘 + log 𝑛

𝑃
)) PIM time and 𝑂 ( 𝑛

𝑃
) com-

munication time, all whp, and takes 𝑂 (𝑛) space.

Proof. The grid computation takes 𝑂 (𝑛) work and guarantees

all later steps are PIM-balanced. Core marking takes 𝑂 (𝑘𝑛) work,
because each cell receives at most𝑂 (𝑘) points from all its neighbors,

and takes𝑂 (𝑛) communication due to push-pull search. USEC takes

𝑂 (𝑛) work for wavefront building and all other substeps, except for
its sorting substep, which takes 𝑂 (𝑛 log 𝑃) CPU work, 𝑂 (𝑛 log 𝑛

𝑃
)

PIM work and 𝑂 (𝑛) communication (Lemma 6.2). All the bounds

are whp. Because we use recursive cells with small enough sizes

and push-pull search, Theorem 4.1 and lemmas 3.7 to 3.9 guarantee

that all steps are PIM-balanced whp. □

7 DISCUSSION

A Generalized Design for Search Trees on PIM. Our optimal

search tree design, incorporating log-star decomposition and intra-

group dual-way caching, can be directly generalized to many types

of (semi-)balanced trees, including and not limited to, B+-trees [55],

skip lists [54], oct-trees [14], RC-trees [3], etc. For highly imbal-

anced trees, such as radix trees, the existence of the PIM-trie de-

sign [57] suggests that our design may be adaptable to such trees.

Meanwhile, for other trees that require different construction/up-

date schema (such as plane sweep trees [8, 82] or log-structured

merge-trees [77]), we hypothesize that while the main structure

of PIM-𝑘d-tree remains applicable, significant modifications to the

construction/update schema would be necessary.

The generalized PIM-𝑘d-tree design applied to all these trees

reduces the communication factor from 𝑂 (log𝑛), 𝑂 (log𝑀 𝑛) or
𝑂 (log 𝑛

𝑆
) in external-memory models to a PIM-model factor of

𝑂 (log∗ 𝑃). At the same time, CPU work is asymptotically reduced,

with themajority of the required work offloaded to the PIMmodules

in a work-efficient and PIM-balanced manner (even under adver-

sarial skew). These benefits come at the cost of a nearly constant

space overhead of 𝑂 (log∗ 𝑃).
Round Complexity. Another metric of interest is the round com-

plexity, i.e., the number of bulk-synchronous rounds [54]. In the

bulk-synchronous setting, an off-chip communication 𝑐2 that de-

pends on the results of an off-chip communication 𝑐1 must be in a

later round. In addition, the bounded CPU cache memory provides a

limit to how many messages to PIM modules can be buffered at the

CPU in between communication rounds. Depending on the cache

size𝑀 , additional rounds may be required to flush these messages,

even when there is no communication dependency.

Accordingly, we define a work-span-style analysis for rounds

as follows. Define the communication span of an algorithm as the

longest chain of off-chip communication dependencies. Then an

algorithm with communication amount 𝑐 and communication span

𝑠 takes Ω( 𝑐
𝑀
+ 𝑠) rounds. The analysis can be applied to both PIM

and shared-memory algorithms.

For all our PIM-based algorithms, we reduce the total communi-

cation amount over the prior shared-memory algorithms (Table 1).

Meanwhile, we reduce the communication span (the off-chip search

path length) to 𝑂 (log 𝑃) from the 𝑂 (log𝑛) required in the shared-

memory algorithms. Because each of our rounds is load-balanced

and can take full use of the entire cache, we achieve a round com-

plexity of Θ( 𝑐
𝑀
+ 𝑠) for all our algorithms.

8 CONCLUSION

This paper presents PIM-𝑘d-tree, the first space-partitioning index

designed for processing-in-memory (PIM) systems. It supports con-

struction, LeafSearch, dynamic updates, orthogonal range query

and 𝑘 nearest neighbor (𝑘NN) search, and can be applied to clus-

tering problems such as DPC and DBSCAN. PIM-𝑘d-tree achieves

work efficiency, high load balance, low off-chip communication and

nearly linear space overhead in the PIM model. We prove that its

design is optimal whp in balancing search communication, space

and batch size. Key techniques include (i) a log-star tree decomposi-

tion based on subtree sizes, (ii) an intra-group caching strategy that

asymptotically reduces communication with low update and space

overhead while enabling guaranteed load balance, (iii) an approxi-

mate counter design with low update overhead and high accuracy,

serving as auxiliary metadata, and (iv) an efficient construction, act-

ing as a core subroutine for operations. Future research directions

include extending the optimal tree design to other tree structures

in the PIM settings, and implementing a space-partitioning index

on a real-world PIM system.
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A DEFINITION OF 𝑘NN-FRIENDLY DATASETS

Definition 2 (𝑘NN-friendly dataset [46]). Let 𝜖1 and 𝜖2 be positive

constants. A 𝑘NN-friendly dataset has the following constraints:

(1) Constant Dimension: 𝐷 = 𝑂 (1).
(2) Compact Cells: For any cell represented by a 𝑘d-tree node

containing fewer than (1 + 𝜖2)𝑘 points, the ratio of the longest

side to the shortest side is bounded by (1 + 𝜖1).
(3) Locally Uniform: Suppose the dataset 𝑃 is sampled from

a probabilistic density function 𝜇. 𝜇 should be constant in

expectation over all samples of 𝑃 within a hyper-spherical

region centered at the 𝑘NN query point with radius ≤ 3𝑅
√
𝐷 ,

where 𝑅 is the diagonal length of the cell corresponding to the

smallest subtree that contains the query point and more than

𝑘 points.

(4) Bounded Expansion Ratio: For each 𝑘d-tree node containing
fewer than 𝑘 nodes, its sibling contains at most (1+𝜖2)𝑘 points.
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