POSTER: Towards Secure Execution of Untrusted Code for
Mobile Edge-Clouds

Jiagi Tan
Carnegie Mellon University
tanjiagi@cmu.edu

Rajeev Gandhi

Carnegie Mellon University
rgandhi@ece.cmu.edu

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification—Safety

Properties

Keywords
Mobile Edge-Clouds, Safety Properties, Theorem Proving

1. INTRODUCTION

Mobile personal devices such as smartphones and tablets
are ubiquitous today, and they are growing in storage, com-
pute, and sensing capabilities. Collectively, these mobile
devices in close physical proximity present a rich pool of
both compute/storage resources and personal data. Mobile
edge-clouds are clouds comprised entirely of mobile nodes in
close physical proximity without any infrastructure support
such as back-end compute clouds [1]. Mobile nodes serve as
both the compute nodes, and the source of data for mobile
edge-clouds. Mobile edge-clouds allow the compute/storage
resources and data stored across multiple mobile devices to
be pooled to form a single compute resource, and they enable
applications across independent mobile devices, particularly
when high-bandwidth, low-latency connections to the Inter-
net may be degraded (e.g. in massive crowds in stadiums),
or unavailable (e.g. during disaster response). However, a
key security risk which may prevent users from participat-
ing in mobile edge-clouds is that their mobile devices need
to execute code from other untrusted edge-cloud nodes [5].
Hence, we propose a system which allows nodes in a mobile
edge-cloud to securely execute code from untrusted clients.
Example. Consider a “person-finder” application, where
a client device desires photos from nearby edge-cloud nodes
containing the face of a given person. The client device
can pack the face of the target person with the code for a
face recognition algorithm, and send the code to edge-cloud
nodes. The edge-cloud nodes will then run the provided
code on their stored photos, returning the matching photos

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
WiSec’ 14, July 23-25, 2014, Oxford, United Kingdom.

ACM 978-1-4503-2972-9/14/07.

Utsav Drolia
Carnegie Mellon University

utsav@cmu.edu

Priya Narasimhan
Carnegie Mellon University

priya@cs.cmu.edu

to the client. Thus, nearby devices will send only matching
photos to the client, eliminating the need for devices to send
all their data to a central location for processing.
Assumptions and Threat Model. We call the providers
of compute/storage resources and data the nodes of a mobile
edge-cloud, and we call the initiators of computation clients.
We assume that clients and nodes are mutually distrusting,
and that clients and nodes have no prior knowledge of the
identities of other nodes or clients. Clients can submit arbi-
trary processing tasks in the form of machine code. These
tasks can be malicious, and may try to crash or alter the
nodes they run on. We assume that nodes in the edge-cloud
will faithfully execute client-submitted code, and we focus
on the security of nodes running untrusted client code.
Proposed System. We propose a system for nodes in a
mobile edge-cloud to securely execute untrusted code sub-
mitted by clients. We require client code to obey memory
and control-flow safety properties which will isolate edge-
cloud nodes from the client code. Our system will use theo-
rem proving techniques to automatically prove that our de-
sired safety properties hold in the submitted machine code.
Specifically, we apply theorem proving to machine code pro-
grams for ARM processors, which are widely used on mobile
devices. Thus, we enable untrusted clients to submit code to
nodes in our mobile edge-cloud without code vetting or sign-
ing by a central authority. This provides great versatility,
as clients can submit arbitrary tasks to nodes as needed.
Contributions. Our planned contributions are: (1) De-
velop a novel method to automatically generate a concrete
safety policy comprising memory and control-flow safety prop-
erties sufficient to isolate untrusted user programs on mo-
bile edge-cloud nodes. (2) Automatically prove theorems of
conformance to a safety policy on unmodified machine code
programs for a mobile platform (ARM Linux binaries). (3)
Develop novel formalizations for reasoning about the effects
of system calls as observed by user programs. (4) Develop
a novel toolchain which passes information from theorem
proving to a compiler to help developers write code which
provably meets our desired safety policy. Thus, program-
mers will not need to write assertions or proofs.

2. DESIGN

Overall Approach. We plan to implement our secure
edge-cloud execution system for ARM devices running Linux,
and our system will allow clients to submit tasks as user pro-
grams in the form of binaries for execution by edge-cloud
nodes. Then, we use theorem proving to prove that de-



sired safety properties hold in the code. Client-submitted
code must meet our desired safety properties, or the proof
process will fail, and edge-cloud nodes will not execute the
code. Concretely, these tasks are ARM Linux binary pro-
grams, and we rely on the operating system to provide iso-
lation between the OS and user programs, and between the
edge-cloud tasks and other user programs.

As a proof-of-concept, we currently implement the theo-
rem proving process for safety properties on a desktop en-
vironment, and we envision running this process on mobile
devices in future. We implement the proving of safety prop-
erties for ARM machine code programs. We prove safety
properties in machine code, rather than in the source code
of high-level languages such as C, so that we do not need to
include the compiler in the Trusted Computing Base (TCB).
We work with machine code rather than virtual machine
bytecode (e.g. Dalvik bytecode) so that we can exclude the
virtual machine from the TCB.

Memory and Control-Flow Safety. We would like
edge-cloud tasks to have memory and control-flow safety.
We require that all memory read and write instructions have
memory address targets restricted to the user-addressable
parts of the virtual memory address space, i.e. the program
stack and heap areas, and data and constants (bss) sec-
tions. We also require that all jump targets are restricted to
addresses in the text section of the binary of the user-level
task. We disallow edge-cloud tasks from calling code that is
not present in the task binary, effectively isolating the task.
This also implies that user tasks must be statically linked.
User tasks are also not allowed to make any calls to functions
in shared libraries. Additionally, to prevent stack-smashing
attacks, we also require that target addresses of memory
writes do not alter return addresses in relevant registers.
Mechanization and Proof Automation. To formally
prove that our desired safety properties hold in the machine
code of client-submitted tasks, we use a validated formaliza-
tion of ARM machine code instructions [2, 3]. We use the
HOLA4 [4] proof assistant to carry out our proofs. We decom-
pile ARM machine code to obtain Hoare triple theorems for
each instruction [3], which describe the machine state before
and after each instruction. Then, we augment these theo-
rems to include assertions that our memory and control-
flow safety properties hold. Next, we plan to use a logic
rule to syntactically indicate that the single-instruction the-
orems have been strengthened with our memory and control-
flow safety assertions, inspired by ARMor [6]. Then, we
plan to use hierarchical judgments [6] to compose the per-
instruction safety theorems to obtain a whole-program safety
theorem. The novelty of our proof process is that we aim
to perform the safety proof without requiring an explicit
user-supplied safety policy, as was required by ARMor [6].
Programmer Assistance. As we require that edge-cloud
clients must submit code which meets the safety properties
desired by edge-cloud nodes, developers of mobile edge-cloud
tasks must write code which meets these safety properties.
We plan to build a toolchain to help developers write code
which meets these safety properties using our theorem prov-
ing process. This toolchain will try to infer, from the loca-
tions of proof failures in the machine code, the corresponding
source-code statements which are responsible for the proof
failures. Then, the toolchain will suggest locations in the
code where safety checks (e.g. array bounds checks, input
sanitization) can help meet the safety properties.

3. RELATED WORK

Our system builds on the formalization developed by Myreen
and Fox [2, 3], and the logic rules and proof style developed
by Zhao et al. [6]. Like ARMor [6], we prove that safety
properties hold in machine code programs. A key difference
is that ARMor is designed for embedded programs running
directly on hardware, while we aim to prove safety proper-
ties in user programs running in the presence of an OS. Also,
ARMor first uses binary rewriting to insert safety checks,
while we operate on unmodified user programs, and assist
developers in writing safe programs based on information
from failed safety property proof attempts.

4. INITIAL RESULTS

We have identified compiler and linker options necessary
for compiling C programs statically while minimizing the
number of system library (1ibc) functions linked. We used
a custom linker script to bypass the default 1ibc initial-
ization functions and pick a custom entry-point to the user
code. Currently, we also aim to minimize the number of
system calls invoked to simplify the proof process, and we
have limited our compiled programs to a single system call
(_exit). We have also successfully decompiled ARM ma-
chine code programs to Hoare triple theorems [3], and we
are currently in the process of strengthening these theorems
with safety assertion predicates, and introducing syntactic
tags [6] to indicate the presence of these safety assertions.

S. CHALLENGES AND FUTURE WORK

First, our current safety property proof process is unable
to handle system calls. We plan to build an initial formal-
ization of the effects of system calls as observed by user
programs to help us prove safety properties in the presence
of system calls. Second, we need to implement the proof
mechanization process to help us automatically prove safety
properties, as proof assistants typically require user interac-
tion. Third, we intend to develop our toolchain to help de-
velopers write code which provably meets the desired safety
properties of our mobile edge-clouds. Finally, we intend to
implement the proof process on mobile platforms such as
Android, so that mobile nodes can independently prove the
safety properties of client code.

6. REFERENCES

[1] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi,
R. Gandhi, and P. Narasimhan. The Case for Mobile
Edge Clouds. In IEEE Ubiquitous Intelligence and
Computing (UIC), Dec 2013.

[2] A. Fox. Formal specification and verification of ARMS6.
In International Conference in Theorem Proving in
Higher Order Logics (TPHOLs), 2003.

[3] M. Myreen, A. Fox, and M. Gordon. Hoare Logic for
ARM Machine Code. In Fundamentals of Software
Engineering (FSEN), 2007.

[4] K. Slind and M. Norrish. A Brief Overview of HOL4. In
International Conference in Theorem Proving in Higher
Order Logics (TPHOLs), 2008.

[5] J. Tan, R. Gandhi, and P. Narasimhan. Challenges in
Security and Privacy for Mobile Edge-Clouds. Technical
Report CMU-PDL-13-113, Oct 2013.

[6] L. Zhao, G. Li, B. D. Sutter, and J. Regehr. ARMor:
Fully Verified Software Fault Isolation. In International
Conference on Embedded Software (EMSOFT), 2011.



