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Abstract
This paper analyzes the usage data from a live deploy-

ment of an enterprise client management system based

on virtual machine (VM) technology. Over a period of

seven months, twenty-three volunteers used VM-based

computing environments hosted by the system and cre-

ated over 800 checkpoints of VM state, where each

checkpoint included the virtual memory and disk states.

Using this data, we study the design tradeoffs in apply-

ing content addressable storage (CAS) to such VM-based

systems. In particular, we explore the impact on storage

requirements and network load of different privacy prop-

erties and data granularities in the design of the under-

lying CAS system. The study clearly demonstrates that

relaxing privacy can reduce the resource requirements of

the system, and identifies designs that provide reasonable

compromises between privacy and resource demands.

1 Introduction
The systems literature of recent years bears witness to a

significantly increased interest in virtual machine (VM)

technology. Two aspects of this technology, namely plat-

form independence and natural state encapsulation, have

enabled the application of this technology in systems de-

signed to improve scalability [6, 14, 16, 32, 40, 49], se-

curity [15, 21, 47], reliability [1, 4, 8, 25, 44], and client

management [7, 5, 20].

The benefits derived from platform independence and

state encapsulation, however, often come with an asso-

ciated cost, namely the management of significant data

volume. For example, enterprise client management sys-

tems [7, 20] may require the storage of tens of gigabytes

of data per user. For each user, these systems store an
image of the user’s entire VM state, which includes not

only the state of the virtual processor and platform de-

vices, but the memory and disk states as well.

While this cost is initially daunting, we would expect

a collection of VM state images to have significant data

redundancy because many of the users will employ the

same operating systems and applications. Content ad-

dressable storage (CAS) [3, 27, 30, 36, 44, 48] is an

emergingmechanism that can reduce the costs associated

with this volume of data by eliminating such redundancy.

Essentially, CAS uses cryptographic hashing techniques

to identify data by its content rather than by name. Con-
sequently, a CAS-based system will identify sets of iden-

tical objects and only store or transmit a single copy even

if higher-level logic maintains multiple copies with dif-

ferent names.

To date, however, the benefit of CAS in the context

of enterprise-scale systems based on VMs has not been

quantified. In this paper, we analyze data obtained from

a seven-month, multi-user pilot deployment of a VM-

based enterprise client management system called Inter-

net Suspend/Resume (ISR) [19, 37]. Our analysis aims

to answer two basic questions:

Q1: By how much can the application of CAS reduce

the system’s storage requirements?

Q2: By how much can the application of CAS reduce

the system’s network traffic?

The performance of CAS depends upon several system

parameters. The answers to Q1 and Q2, therefore, are an-

alyzed in the context of the two most important of these

design criteria:

C1: The privacy policy, and

C2: the object granularity.

The storage efficiency of a CAS system, or the extent

to which redundant data is eliminated, depends upon the

degree to which that system is able to identify redundant
data. Hence, the highest storage efficiency requires users

to expose cryptographic digests to the system and po-

tentially to other users. As we shall see, the effects of
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this exposure can be reduced but not eliminated. Conse-

quently, criterion C1 represents a trade-off between stor-

age efficiency and privacy.

Object granularity, in contrast, is a parameter that dic-

tates how finely the managed data is subdivided. Because

CAS systems exploit redundancy at the object level, large

objects (like disk images) are often represented as a se-

quence of smaller objects. For example, a multi-gigabyte

disk image may be represented as a sequence of 128 KB

objects (or chunks). A finer granularity (smaller chunk-
size) will often expose more redundancy than a coarser

granularity. However, finer granularities will also require

more meta-data to track the correspondingly larger num-

ber of objects. Hence, criterion C2 represents the trade-

off between efficiency and meta-data overhead.

The results obtained from the ISR pilot deployment

indicate that the application of CAS to VM-based man-

agement systems is more effective in reducing storage

and network resource demands than applying traditional

compression technology such as the Lempel-Ziv com-

pression [50] used in gzip. This result is especially sig-
nificant given the non-zero runtime costs of compressing

and uncompressing data. In addition, combining CAS

and traditional compression reduces the storage and net-

work resource demands by a factor of two beyond the re-

ductions obtained by using traditional compression tech-

nology alone.

Further, using this real-world data, we are able to de-

termine that enforcing a strict privacy policy requires ap-

proximately 1.5 times the storage resources required by

a system with a less strict privacy policy. Finally, we

have determined that the efficiency improvements de-

rived from finer object granularity typically outweighs

the meta-data overhead. Consequently, the disk image

chunksize should be between 4 and 16 KB.

Sections 4 and 5 will elaborate on these results from

the pilot deployment. But first, we provide some back-

ground on ISR, content addressable storage, and the

methodology used in the study.

2 Background

2.1 Internet Suspend/Resume
Internet Suspend/Resume (ISR) is an enterprise client

management system that allows users to access their per-

sonal computing environments from different physical

machines. The system is based on a combination of

VM technology and distributed storage. User comput-

ing environments are encapsulated by VM instances, and

the state of such a VM instance, when idle, is captured

by system software and stored on a carefully-managed

server. There are a couple of motivations for this idea.

First, decoupling the computing environment from the

hardware allows clients to migrate across different hosts.

Second, storing VM state on a remote storage reposi-

tory simplifies the management of large client installa-

tions. The physical laptops and desktops in the instal-

lation no longer contain any hard user-specific state, and

thus client host backups are no longer necessary; the only

system that needs to be backed up is the storage reposi-

tory.

Figure 1 shows the setup of a typical ISR system. The

captured states of user environments are known as known

as parcels and are stored on a collection of (possibly)
distributed content servers. For example, in the figure,
Bob owns two parcels. One environment includes Linux

as the operating system, and the other includes Windows

XP.

Content servers

Clients (work) Clients (home)

winxp winxp
Checkin
(upload)

alice bob chuck

linux winxp

v1, …, vn-1, vn

Checkout
(download)

S D

Figure 1: An ISR system.

Each parcel captures the complete state of some VM

instance. The two most significant pieces of state are

the memory image and the disk image. In the current
ISR deployment, memory images are 256 MB and disk

images are 8 GB. Each memory image is represented as

a single file. Each disk image is partitioned into a set of

128 KB chunks and stored on disk, one file per chunk.
For each parcel, the system maintains a sequence of

checkpointed diff-based versions, v1, . . . ,vn−1,vn. Ver-
sion vn is a complete copy of the memory and disk im-
age. Each version vk, 1≤ vk ≤ vn−1, has a complete copy
of the memory image, along with the chunks from the vk
version of the disk image that changed between version

vk and vk+1.
Each client host in the ISR system runs a VM moni-
tor that can load and execute any parcel. ISR provides
a mechanism for suspending and transferring the execu-

tion of these parcels from one client host to another. For

example, Figure 1 shows a scenario where a user trans-

fers the execution of a VM instance from a source host S
at the office to a destination host D at home.
The transfer occurs in two phases: a checkin step fol-
lowed by a checkout step. After the user suspends exe-
cution of the VM monitor on S, the checkin step uploads
the memory image and any dirty disk chunks from S to
one of the content servers, creating a new parcel version

on the server. The checkout step downloads the memory

image of the most recent parcel version from the content



server to D. The user is then able to resume execution
of the parcel on D (even before the entire disk image is
present). During execution, ISR fetches any missing disk

chunks from the content server on demand and caches
those chunks at the client for possible later use.

2.2 Content Addressable Storage
Content addressable storage (CAS) is a data manage-

ment approach that shows promise for impoving the effi-

ciency of ISR systems. CAS uses cryptographic hashing

to reduce storage requirements by exploiting commonal-

ity across multiple data objects [13, 23, 29, 42, 43, 48].

For example, to apply CAS to an ISR system, we would

represent each memory and disk image as a sequence of

fixed-sized chunk files, where the filename of each chunk

is computed using a collision-resistant cryptographic

hash function. Since chunks with identical names are as-

sumed to have identical contents, a single chunk on disk

can be included in the representations of multiple mem-

ory and disk images. The simplest example of this phe-

nomenon is that many memory and disk images contain

long strings of zeros, most of which can be represented

by a single disk chunk consisting of all zeros. A major

goal of this paper is to determine to what extent such re-

dundancy exists in realistic VM instances.

3 Methodology

Sections 4 and 5 present our analysis of CAS technology

in the context of ISR based on data collected during the

first 7 months of a pilot ISR deployment at CarnegieMel-

lon University. This section describes the deployment,

and how the data was collected and analyzed.

3.1 Pilot Deployment
The pilot deployment (pilot) began in January, 2005,

starting with about 5 users and eventually growing to

23 active users. Figure 2 gives the highlights. Users

Number of users 23

Number of parcels 36

User environment Windows XP or Linux

Memory image size 256 MB

Disk image size 8 GB

Client software ISR+Linux+VMware

Content server IBM BladeCenter

Checkins captured 817

Uncompressed size 6.5 TB

Compressed size 0.5 TB

Figure 2: Summary of ISR pilot deployment.

were recruited from the ranks of Carnegie Mellon stu-

dents and staff and given a choice of a Windows XP par-

cel, a Linux parcel, or both. Each parcel was configured

with an 8 GB virtual disk and 256 MB of memory. The

gold images used to create new parcels for users were
updated at various times over the course of the pilot with

security patches.

The content server is an IBM BladeCenter with 9

servers and a 1.5 TB disk array for storing user parcels.

Users downloaded and ran their parcels on Linux-based

clients running VMware Workstation 4.5.

3.2 Data Collection
During the course of the pilot, users performed numer-

ous checkin operations, eventually creating 817 distinct

parcel versions on the content server. In August, 2005,

after 7 months of continuous deployment, a snapshot of

the memory and disk images of these parcel versions

was taken on the content server. In uncompressed form,

the snapshot state would have consumed about 6.5 TB.

However, due to ISR’s diff-based representation and gzip

compression, it only required about 0.5 TB of disk space.

This snapshot state was copied to another server, where

it was post-processed and stored in a database for later

analysis.
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Figure 3: Observed parcel checkin frequency

Figure 3 summarizes parcel usage statistics for the de-

ployment data. Each point in the figure represents a sin-

gle parcel and indicates the number of days that parcel

was active as well as its checkin frequency (average num-

ber of checkins per day). Parcels could be active for less

than the entire duration of the deployment either because

the parcel was created after the initial deployment launch

or because a user left the study early (e.g. due to stu-

dent graduation or end-of-semester constraints). Since

new users were added throughout the course of the pilot,

during post-processing we normalized the start time of

each user to day zero. No extrapolation of data was per-



formed, thus the usage data for a user who has used the

system for n days appears in the first n days worth of data
in the corresponding analysis. We also removed several

parcels that were used by developers for testing, and thus

were not representative of typical use.

3.3 Analysis
The August 2005 snapshot provided a complete history

of the memory and disk images produced by users over

time. This history allowed us to ask a number of inter-

esting “what if” questions about the impact of different

design choices, or policies, on the performance of the

ISR system. In particular, we explored three different

storage policies: a baseline non-CAS Delta policy and
two different CAS policies called IP and ALL. These are
summarized in Figure 4. In each approach, a parcel’s

Policy Encryption Meta-data

Delta private per-parcel key none

IP private per-parcel key (tag) array

ALL convergent encryption (tag, key) array

Figure 4: Storage policy encryption technique summary.

memory and disk images are partitioned into fixed-sized

chunks, which are then encrypted, and optionally com-

pressed using conventional tools like gzip.

As will be shown in sections 4 and 5, differences in the

storage and encryption of data chunks affect not only the

privacy afforded to users but also dramatically alter the

resources required for storage and network transmission.

For our evaluations, we chose chunksizes of 4KB (a typ-

ical disk-allocation unit for most operating systems) and

larger.

Delta policy. In this non-CAS approach, the most re-
cent disk image vn contains a complete set of chunks.
For each version k< n, disk image vk contains only those
chunks that differ in disk image vk+1. Thus, we say that
Delta exploits temporal redundancy across the versions.
Chunks in all of the versions in a parcel are en-

crypted using the same per-parcel private key. Individ-

ual chunks are addressed by their position in the image

(logical block addressing), hence no additional meta-data

is needed. Memory images are represented in the same

way. Delta is similar to the approach used by the cur-

rent ISR prototype (the current prototype only chunks

the disk image and not the memory image). We chose

it as the baseline because it is an effective state-of-the-

art non-CAS approach for representing versions of VM

images.

IP (intra-parcel) policy. In this CAS approach, each
parcel is represented by a separate pool of unique chunks

shared by all versions, v1, . . . ,vn, of that parcel. Similar

to Delta, IP identifies temporal redundancy between con-

tiguous parcel versions. However, IP can also identify

temporal redundancy in non-contiguous versions (e.g.,

disk chunk i is identical in versions 4 and 6, but different
in version 5), and it can also identify any spatial redun-
dancy within each version.
As with Delta, each chunk is encrypted using a single

per-parcel private key. However, each version of each

disk image (and each memory image) requires additional

meta-data to record the sequence of chunks that comprise

the image. In particular, the meta-data for each image is

an array of tags, where tag i is the SHA-1 hash of chunk
i. This array of tags is called a keyring.
ALL policy. In this CAS approach, all parcels for
all users are represented by a single pool of unique

chunks. Each chunk is encrypted using convergent en-
cryption [11], where the encryption key is simply the
SHA-1 hash of the chunk’s original plaintext contents.

This allows chunks to be shared across different parcels

and users, since if the original plaintext chunks are iden-

tical, then the encrypted chunks will also be identical.

As with IP, each version of each disk image (and each

memory image) requires additional keyring meta-data to

record the sequence of chunks that compose the image,

in this case an array of (tag,key) tuples, where key i is the
encryption key for chunk i, and tag i is the SHA-1 hash
of the encrypted chunk. Each keyring is then encrypted

with a per-parcel private key.

The IP and ALL policies provide an interesting trade-

off between privacy and space efficiency. Intuitively,

we would expect the ALL policy to be the most space-

efficient because it identifies redundancy across the max-

imum number of chunks. However, this benefit comes

at the cost of decreased privacy, both for individual

users and the owners/operators of the storage repository.

The reason is that ALL requires a consistent encryp-

tion scheme such as convergent encryption for all blocks.

Thus, individual users are vulnerable to dictionary-based

traffic analysis of their requests, either by outside attack-

ers or the administrators of the systems. Owner/operators

are vulnerable to similar analysis, if, say, the contents of

their repository are subpoenaed by some outside agency.

Choosing appropriate chunk sizes is another interest-

ing policy decision. For a fixed amount of data, there is

a tension between chunk size and the amount of storage

required. Intuitively, we would expect that smaller chunk

sizes would result in more redundancy across chunks,

and thus use less space. However, as the chunk size de-

creases, there are more chunks, and thus there is more

keyring meta-data. Other chunking techniques such as

Rabin Fingerprinting [26, 31, 38] generate chunks of

varying sizes in an attempt to discover redundant data

that does not conform to a fixed chunk size. The evalua-

tion of non-fixed-size chunk schemes is beyond the scope



of this paper but is on our agenda for future work.

The remainder of the paper uses the data from the ISR

deployment to quantify the impact of CAS privacy and

chunksize policies on the amount of storage required for

the content servers, and the volume of data that must be

transferred between clients and content servers.

4 Results: CAS & Storage

Because server storage represents a significant cost in

VM-based client management systems, we begin our dis-

cussion by investigating the extent to which a CAS-based

storage system could reduce the volume of data managed

by the server.

4.1 Effect of Privacy Policy on Storage
As expected, storage policy plays a significant role in

the efficiency of the data management system. Figure 5

presents the growth in storage requirements over the life-

time of the study for the three different policies using a

fixed chunksize (128 KB). As mentioned in Section 3.2,

the graph normalizes the starting date of all users to day

zero. The growth in the storage from thereon is due to

normal usage of disks and storage of memory check-

points belonging to the users. The storage requirement

shown includes both the disk and memory images.
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Figure 5: Growth of storage needs for Delta, IP, and ALL.

CAS provides significant savings. As shown in Fig-
ure 5, adopting CAS with the IP policy reduces the re-

quired server resources at day 201 under the Delta policy

by 306 GB, from 717 GB to 411 GB. This reduction rep-

resents a savings of 42%.

Recall that adopting CAS is a lossless operation; CAS

simply stores the same data more efficiently than the

Delta policy. The improved efficiency is due to the fact

that the Delta policy only exploits temporal redundancy

between versions. That is, the Delta policy only identi-

fies identical objects when they occur in the same loca-

tion in subsequent versions of a VM image. The IP pol-

icy, in contrast, identifies redundancy anywhere within

the parcel – within a version as well as between versions

(including between non-subsequent versions).

Note that the 42% space savings was realized with-

out compromising privacy. Users in a CAS-IP-backed

system do not expose the contents of their data to any

greater degree than users of a Delta-backed system.

Relaxing privacy introduces additional gains. In
systems where a small relaxation of privacy guarantees

is acceptable, additional savings are possible. When the

privacy policy is relaxed from IP to ALL, the system is

able to identify additional redundancy that may exist be-

tween different users’ data. From Figure 5, we see that

such a relaxation will reduce the storage resources re-

quired by another 133 GB, to 278 GB. The total space

savings realized by altering the policy fromDelta to ALL

is 61%.

On comparingALLwith IP in Figure 5, we see that the

curves are approximately parallel to each other. How-

ever, under certain situations, a system employing the

ALL policy could dramatically outperform a similar sys-

tem that employs the IP policy. Imagine for example a

scenario where a security patch is applied by each of

a large number, N, of users in an enterprise. Assum-
ing that the patch affected each user’s environment in the

same way, by introducingX MB of new data, an IP server
would register a total addition of NX MB. In contrast, an
ALL server would identify the N copies of the patched
data as identical and would consequently register a total

addition of X MB.
The starting points of the curves in Figure 5 are also

of interest. Because the X-axis has been normalized, this

point corresponds to the creation date of all parcels. To

create a new parcel account, the system administrator

copies a gold image as version 1 of the parcel. Hence,

we would assume that the system would exhibit very pre-

dictable behavior at time zero.

For example, under the Delta policy which only re-

duces redundancy between versions, the system data
should occupy storage equal to the number of users times

the space allocated to each user. In the deployment, users

were allocated 8 GB for disk space and 256 MB for

memory images. Thirty-six parcels should then require

approximately 300 GB of storage space which is exactly

the figure reported in the figure.

For the IP policy, one would also expect the server to

support a separate image for each user. However, CAS

had eliminated the redundant data within each of these

images yielding an average image size of approximately

4 GB. The observed 171 GB storage space is consistent

with this expectation.
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Figure 6: Storage space growth for various chunksizes without meta-data overhead (y-axis scale varies).
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(a) Without meta-data overhead
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Figure 7: Server space required, after 201 deployment days.

Under the ALL policy in contrast, one would expect

the system to store a single copy of the gold image

shared by all users, yielding a total storage requirement

of 8 GB plus 256 MB (closer to 4 GB, actually, due to

the intra-image redundancy elimination). We were quite

surprised, consequently, to observe the 72 GB value re-

ported in the figure. After reviewing the deployment

logs, we determined that this value is due to the introduc-

tion of multiple gold images into the system. To satisfy

different users, the system administrators supported im-

ages of several different Linux releases as well as several

instances of Windows images. In all, the administrators

had introduced 13 different gold images, a number that

is consistent with the observed 72 GB of occupied space.

Another point of interest is a disturbance in the curve

that occurs at the period around 100 days. We note that

the disturbance is significant in the Delta curve, smaller

in the IP curve, and almost negligible in the ALL curve.

We’ve isolated the disturbance to a single user and ob-

serve that this anomaly is due to the user reorganizing his

disk image without creating new data that did not already

exist somewhere in the system. Hence, we conclude that

this must have been an activity similar to defragmenta-

tion or re-installation of an operating system.

4.2 Effect of Chunksize on Storage
In addition to privacy considerations, the administrator

of a VM-based client management system may choose to

optimize the system efficiency by tuning the chunksize.

The impact of this parameter on storage space require-

ments is depicted in Figure 6; in this figure, we present

what the growth curves of Figure 5 would have been had

we chosen different chunksizes.

Note that the effect of this parameter is not straightfor-

ward. Varying the chunksize has three different effects

on efficiency.

First, smaller chunksizes tend to expose more redun-

dancy in the system. As a trivial exercise, consider two

objects each of which, in turn, comprises two blocks

(Ob ject1 = AB and Ob ject2 = CA). If the chunksize
is chosen to be a whole object, the content addresses of
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Figure 8: Meta-data overhead expressed as a percentage of user data.

Ob ject1 and Ob ject2 will differ and no redundancy will
be exposed. If the chunksize is chosen to be a block, in

contrast, the identical A blocks will be identified and a
space savings of 25% will result.

Second, smaller chunksizes require the maintenance

of more meta-data. With the whole-object chunksize

from the example above, the system would maintain

two content addresses, for Ob ject1 and Ob ject2. With
the block chunksize, however, the system must main-

tain two sets of two content addresses so that Ob ject1
and Ob ject2 may each be properly reconstructed. Note
further that this additional meta-data maintenance is re-

quired whether or not any redundancy was actually iden-

tified in the system.

Third, smaller chunksizes tend to provide a reduced

opportunity for post-chunking compression. In addition

to chunk-level redundancy elimination through CAS,

intra-chunk redundancy may be reduced through tradi-

tional compression techniques (such as gzip). However,
as the chunksize is reduced, these techniques have access

to a smaller intra-chunk data pool on which to operate,

limiting their efficiency.

To better understand the effect of chunksize, we an-

alyzed the deployment data for all three storage poli-

cies with and without compression under several differ-

ent chunksizes. The results are shown in Figure 7.

All three effects of chunksize can be observed in

this figure. For example, Figure 7(a), which ignores

the increased meta-data required for smaller chunksizes,

clearly indicates that smaller chunksizes expose more re-

dundancy. These gains for small chunk sizes, however,

are erased when the meta-data cost is introduced to the

storage requirements in Figure 7(b). Finally, the reduced

opportunities for compression due to smaller chunksize

can be observed in Figure 7(b) by comparing the IP and

IP(gzip) or ALL and ALL(gzip) curves.

CAS is more important than compression. In Fig-

ure 7(a), the Delta curve with compression intersects the
IP and ALL curves without compression. The same
is true in Figure 7(b) with respect to the ALL curve.

This indicates, that given appropriate chunksizes, a CAS-

based policy can outperform compression applied to a

non-CAS-based policy.

Considering meta-data overheads, the ALL policy out-

performs Delta with compression for all the chunksizes

less than 64KB. This is a very remarkable result. Com-

pression in the storage layer may be a high latency opera-

tion, and it may considerably affect virtual disk operation

latencies. By use of CAS, one can achieve savings that

exceed traditional compression techniques! If additional

space savings are required, compression can be applied

after the application of content addressing.

Figure 7(a) shows that compression provides an addi-

tional savings of a factor of two to three. For example,

the space demands for the ALL policy, drops from 87GB

to 36GB when using 4KB chunks, and from 342GB to

137GB when using 512KB chunks.

Exposing redundancy outweighs meta-data over-
head. Figure 8 shows the ratio of meta-data (keyring
size) to the size of the data. We observe that this ratio is

as high as 80% for ALL, and 35% for IP at 4KB chunk-

size without compression and even higher after compres-

sion is applied to the basic data. Yet, from Figure 7(b),

we observe from the IP and ALL curves that reducing

chunksize always yields a reduction in storage require-

ments. This indicates that the gains through CAS-based

redundancy elimination far exceed the additional meta-

data overhead incurred from smaller chunksize.

The picture changes slightly with the introduction of

traditional compression. The IP(gzip) and ALL(gzip)

curves of Figure 7(b) indicate that the smallest chunk-

size is not optimal. In fact, we see from Figure 8 that

the meta-data volume becomes comparable to the data

volume at small chunksizes.



Small chunk sizes improve efficiency. With Fig-
ure 7(b), we are in a position to recommend opti-

mal chunk sizes. Without compression, the optimal

chunksize is 4 KB for the Delta, IP and ALL policies.

With compression, the optimal chunksize is 8 KB for

the Delta(gzip) policy and 16 KB for the IP(gzip) and

ALL(gzip) policies.

5 Results: CAS & Networking

In a VM-based client management system, the required

storage resources, as discussed in the previous section,

represent a cost to the system administrator in terms

of physical devices, space, cooling, and management.

However, certain user operations, such as check-in and

checkout, require the transmission of data over the net-

work. While the system administratormust provision the

networking infrastructure to handle these transmissions,

perhaps the more significant cost is the user time spent

waiting for the transmissions to complete.

For example, a common telecommuting scenario may

be that a user works at the office for some time, checks-

in their new VM state, travels home, and attempts to

checkout their VM state to continue working. In the

absence of CAS or traditional compression, download-

ing just the 256 MB memory, which is required before

work can resume, over a 1 Mbps DSL line requires more

than 30 minutes of wait time. After working at home

for some time, the user will also want to checkin their

new changes. Because the checkin image is typically

larger than the checkout image, and because the upload

speed of ADSL is often much slower than the download

speed, the checkin operation can often require two hours

or more.

Consequently, we devote this section to characterizing

the benefits that CAS provides in terms of reducing the

volume of data to be transmitted during typical upload

(checkin) or download (checkout) operations.

5.1 Effect of Privacy Policy on Networking
As with storage, we begin the discussion by considering

the effect of privacy policy on networking. We note that

our definition of privacy policy affects the representation

of data chunks in storage, not the mechanics of chunk

transmission. However, the chosen storage policy can

affect the capability of the system to identify redundant

data blocks that need not be sent because they already

exist at the destination.

As an example, suppose that a user copies a file within

their virtual environment. This operation may result in

a virtual disk that contains duplicate chunks. Under the

IP and ALL policies, at the time of upload, the client

will send a digest of modified chunks to the server, and

the server may respond that the duplicate chunks need

not be sent because the chunks (identified by the chunks’

tags) already exist on the server. Such redundant data

can occur for a variety of reasons (particularly under the

ALL policy) including the push of software patches, user

download of popular Internet content, and the installation

and compilation of common software packages.

During download (checkout) operations, the client

code will search through the existing version(s) of the

user’s data on that client to identify chunks that need not

be retrieved from the server. As the system is only com-

paring the latest version on the server with the existing

version on the client, the volume of data to be transmit-

ted does not depend on the privacy policy. In contrast,

the volume of data transmitted during upload (checkout)

operations does depend on the privacy policy employed

because, at the server, redundant chunks are only identi-

fied within that user’s version history under the IP policy,

but can be identified acrosss all users’ version histories
under the ALL policy. These differences based on stor-

age policy are summarized in Figure 9 and affect our dis-

cussion in two ways: (1) this section (Section 5.1), which

investigates the effects of privacy policy, only considers

the upload operation, and (2) Figures 12 and 13 in Sec-

tion 5.2 contain curves simply labeled CAS that repre-

sent the identical download behaviors of the IP and ALL

policies.

Redundancy Comparison

Upload Download

(between client copy (between server version N
and...) and ...)

Delta server version N-1 current client version

IP server versions [1, N-1] current client version

ALL all versions/all parcels current client version

Figure 9: Search space for identifying redundant blocks dur-
ing data synchronization operations. Note that for download,
the system inspects the most recent version available at the
client (which may be older than N−1).

CAS is essential. The upload volume for each of the
storage policies with and without compression is pre-

sented in Figure 10. Because the upload size for any

user session includes the 256MBmemory image and any

hard disk chunks modified during that session, the up-

load data volumes vary significantly due to user activ-

ity across the 800+ checkin operations collected. Conse-

quently, we present the data as a cumulative distribution

function (CDF) plots. In the ideal case, most upload sizes

would be small; therefore, curves that tend to occupy the

upper left corner are better. Note that the ALL policy

strictly outperforms the IP policy, which in turn, strictly

outperforms the Delta policy.

The median (50th percentile) and 95th percentile sizes
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(b) 128K, without compression
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(c) 512K, without compression
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(d) 4K, with compression

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.3 0.5 1.0 2.0 3.5

Size (GB)

all
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.3 0.5 1.0 2.0 3.5

Size (GB)

all
ip

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.3 0.5 1.0 2.0 3.5

Size (GB)

all
ip

delta

(e) 128K, with compression
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Figure 10: CDF of upload sizes for different policies, without and with the use of compression.

from Figure 10 are presented along with average upload

sizes in Figure 11. Note that the median upload sizes tend

to be substantially better than the mean sizes, indicating

that the tail of the distribution is somewhat skewed in

that the user will see a smaller than average upload sizes

for 50% of the upload attempts. Even so, we see from

Figure 11(c) that the tail is not so unwieldy as to present

sizes more than a factor of 2 to 4 over the average upload

size 95% of the time.

Figure 11(a) shows that, for the 128 KB chunksize

used in the deployment, the use of CAS reduces the aver-

age upload size from 880 MB (Delta policy) to 340 MB

(ALL policy). The use of compression reduces the up-

load size to 293 MB for Delta and 132 MB for ALL.

Further, CAS policies provide the most significant ben-

efits where they are needed most, for large upload sizes.

From Figure 11(b) we see that CAS improves small up-

load operations by a modest 20 to 25 percent, while from

Figure 11(c), we see that CAS improves the performance

of large uploads by a factor of 2 to 5 without compres-

sion, and by a factor of 1.5 to 3 with compression. Thus,

we observe that CAS significantly reduces the volume of

data transmitted during upload operations, and hence the

wait time experienced at the end of a user session.

CAS outperforms compression. Figure 11(a) indi-
cates that the ALL policy without compression outper-
forms the Delta policy with compression for chunk sizes
less than 64 KB (as does the IP policy at a 4 KB chunk

size). This shows that for our application, inter-chunk

CAS techniques may identify and eliminate more re-

dundancy than traditional intra-chunk compression tech-

niques. The difference may be substantial, particularly

when the upload size is large. As Figure 11(c) shows,

the ALL policy without compression (chunksize=4 KB)
outperforms the Delta policy with compression (chunk-
size=512 KB) by a factor of 4.

IP identifies both temporal and spatial redundancy.
For each of the components of Figure 10, we see that the

IP policy consistently outperforms the Delta policy. Both

of these policies restrict the search space for redundancy

identification to a single parcel. However, the Delta pol-

icy only detects temporal redundancy between the cur-

rent and last versions of the parcel, while the IP policy

detects temporal and spatial redundancy across all ver-

sions of the parcel. The savings of IP over Delta indicate

that users often create modified chunks in their environ-

ment that either existed at some point in the past, or in

another location within the parcel.

ALL identifies inter-parcel savings. In all of Fig-
ure 10, the common observation between an IP and ALL

comparison is that the ALL policy consistently outper-

forms the IP policy. This observation is consistent with

our intuition that for upload operations, the ALL policy

must perform at least as well as the IP policy because
the ALL policy identifies redundancy within the set of

blocks visible to the IP policy as well as blocks in other

parcels. In fact, Figure 11(a) indicates that the ALL pol-

icy performs about twice as well as the IP policy for

small chunk sizes and approximately 25 percent better

at larger chunk sizes.
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Figure 11: Upload sizes for different chunksizes.

This difference shows the benefit of having a larger

pool of candidate chunks when searching for redundant

data. As mentioned, one source of this gain can be the

“broadcast” of objects to many users (e.g. from software

installation, patches, popular documents, big email at-

tachments, etc.). In systems leveraging the ALL policy,

therefore, operations that might be expected to impose

a significant burden such as the distribution of security

patches may result in very little realized cost because the

new data need only be stored once and transmitted once

(across all users in the system).

5.2 Effect of Chunksize on Networking
The choice of chunksize will affect both the download

size and upload size to a server. We continue our dis-

cussion of upload operations first, and then discuss the

appropriate chunksize for download operations.

5.2.1 Effect on Upload Size

Smaller chunksize is better for CAS. Figure 11(a)
shows very clearly that smaller chunksizes result in more

efficient upload transmission for CAS policies. In fact,

under the ALL policy, users with 4 KB chunk sizes will

experience average upload sizes that are approximately

one-half the average size experienced by users with a

128 KB chunk size (whether compression is employed

or not).

Chunk sizes of 4 KB turned out to be optimal for all

policies when considering the average upload size. How-

ever, chunksize plays a very limited role for the non-CAS

(Delta) policy, and Figure 11(c) indicates that smaller

chunk sizes may even be a liability for transfer size out-

liers under the Delta policy with compression.

5.2.2 Effect on Download Size

Employing CAS techniques also potentially affects the

volume of data transmitted during download operations

in two ways. First, CAS can identify intra-version redun-

dancy and reduce the total volume of data transmission.

Second, when a user requests a download of their envi-

ronment to a particular client, CAS has the potential to

expose any chunks selected for download that are iden-

tical to chunks that happen to have been cached on that

client from previous sessions.

To simplify our discussion we assume that the client

has cached at most one previous version of the parcel

in question, and if a cached version is present, it is the

version prior to the one requested for download. This

assumption corresponds to an expected common user

telecommuting behavior. Namely, the user creates ver-

sion N−1 of a parcel at home and uploads it to the server.
The user then retrieves versionN−1 at work, creates ver-
sion N, and uploads that to the server. Our operation of
interest is the user’s next download operation at home;

upon returning home, the user desires to download ver-

sion N and modify it. Fortunately, the user may still have
version N−1 cached locally, and thus, only the modified
data that does not exist in the cache need be retrieved.

Note that this CAS technique can be likened to a sub-set

of the IP policy which inspects chunks of a single user,

but only for a single previous version.

Our client management system, ISR, supports two ba-

sic modes for download: demand-fetch and complete-
fetch. Demand-fetch mode instantiates the user’s envi-
ronment after downloading the minimum data needed

to reconstruct the user’s environment, essentially the

physical memory image corresponding to the user’s VM

(256 MB in our test deployment). In particular, the

largest portion of the VM image, the virtual disk drive, is

not retrieved before instantiating the user’s environment.
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Figure 12: Download size when fetching memory image of latest version.

During operation, missing data blocks (chunks) must be

fetched on demand in a manner analogous to demand-

paging in a virtual memory system. The complete-fetch

mode, in contrast, requires that the entire VM image in-

cluding the virtual disk image (8.25 GB in our test de-

ployment) be present at the client before the environment

is instantiated.

Caching improves demand-fetch. To evaluate the ef-
fect of client-side caching on demand-fetch download

volume, we calculated how much data would need to

be transferred from the server to a client under various

conditions and collected those results in Figure 12. The

curve labeled “No-cache” depicts the volume of data that

would be transmitted if no data from the previous ver-

sion of the parcel were present in the client cache. Un-

der the “Delta” policy, the chunks in the memory image

are compared with the same chunks (those at the same

offset within the image) in the previous version of the

memory image to determine whether they match. The

“CAS+CacheM” policy compares the keyring for the new
memory image with the keyring for the previousmemory

image to determine which chunks need to be transferred.

The “CAS+CacheM+D” policy is similar except that it
searches all the data cached on the client (memory and
disk) to identify chunks that are already present on the

client. Each basic curve in Figure 12 also has a com-

panion curve depicting the download volumes observed

when compression is employed during the transfer.

As shown in Figure 12(a), introducing a differencing

mechanism (either Delta or CAS) yields a reduction of

approximately 20% (for the 128 KB chunk size) in the

download size relative to the size when no cached copy

is present. Using compression alone, however, is very

effective– reducing the transfer size from 256 MB to ap-

proximately 75 MB in the absence of caching. Lever-

aging cached data in addition to compression yields a

further 20% reduction.

Chunk size dramatically affects demand-fetch.
Moving to a smaller chunk size can have a significant

effect on the volume of data transmitted during a down-

load operation, particularly if compression is not used, as

shown in Figure 12. The average download size, in par-

ticular, is reduced by a factor of two (for Delta) to four

(for “CAS+CacheM+D”) when the chunk size is reduced
from 128 KB to 4 KB when comparing the policies ei-

ther with or without compression. Further, we see again

that, with a 4 KB chunk size, the CAS policies without
compression outperform the no-cache policy with com-
pression.

The difference between the “CAS+CacheM” and
“CAS+CacheM+D” policies is also most apparent with
a 4 KB chunk size. At this size, in the absence of com-

pression, leveraging the cached disk image in addition

to the memory image reduces the average transfer size to

56MB from the 65MB requiredwhen leveraging just the

memory image. A similar gain is observed when com-

pression is employed; the transfer size is reduced from

23 MB (for “M+D”) to 18 MB (for “M”)– a savings of

more than 20%.

However, the added benefit of inspecting additional

cached data diminishes quickly as the chunk size in-

creases beyond 4 KB. We believe this phenomenon is

due, at least in part, to the fact that the 4 KB size cor-

responds to the size of both memory pages disk blocks

in these VMs. Consequently, potentially redundant data

is most likely to be exposed when chunks are aligned to

4 KB boundaries.

Caching significantly improves complete-fetch. The
need for efficient download mechanisms is perhaps

greatest in the complete-fetch mode due to the volume

of data in question. In this mode, the user is requesting

the download of the entire VM image, the most signifi-
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Figure 13: Download size when fetching memory and disk of latest version.

cant component of which is the virtual disk drive image.

In our test deployment, the virtual disk drive was a very

modest 8 GB in size. One can readily imagine that users

might desire virtual disk drive spaces an order of mag-

nitude larger. However, even with a modest size (8 GB)

and a fast network (100 Mbps), a complete-fetch down-

load will require at least 10 minutes. Consequently, re-

ducing the volume of data to be transferred by at least an

order of magnitude is essential to the operation of these

client management systems.

The basic tools are the same as those mentioned for

demand-fetch mode. That is, a cache of at least one pre-

vious version of the parcel is maintained at the client, if

possible. Redundancy between the cached version and

the current version on the server is identified and only

non-redundant chunks are transferred during the down-

load. Further, the transferred chunks are (optionally)

compressed prior to transmission. One difference be-

tween our treatment of demand-fetch and complete-fetch

is that the CAS policy for complete-fetch mode always

compares the entire current server version with the entire

cached client version. Consequently, Figure 13 includes

a single “CAS” curve rather than the separate “M” and

“M+D” curves of Figure 12.

Figure 13(a) indicates that intelligent transfer mecha-

nisms can, in fact, significantly reduce the volume of data

transmitted during a complete-fetch operation. Compres-

sion reduces the average data volume from 8394 MB to

3310 MB, a factor of 2.7. In contrast, the Delta policy

without compression yields a factor of 9.5 and a factor of
28.6 with compression, assuming a 128 KB chunk size.
At the same chunk size, CAS provides even more im-

pressive savings: factors of 12.6 and 29.5, without and

with compression, respectively.

Small chunk sizes yield additional savings. While
the slopes of the “CAS” and “CAS,gzip” curves are not

as dramatic as in previous figures, reducing the chunk

size from 128 KB to 4 KB still yields significant savings.

At this chunk size, the average download size shrinks

from the nominal 8+ GB size by a factor of 31.4 without

compression and a factor of 55 (fifty-five!) by employing
both CAS and compression.

CAS has a big impact where it’s needed most. Fig-
ure 13(c) indicates that the 4 KB “CAS,gzip” combi-

nation may be particularly effective for download op-

erations that may otherwise have resulted in large data

transfers. The performance gap between “CAS,gzip” and

“Delta,gzip” is particularly large in this graph. In fact,

for small chunk sizes “CAS”without compression signif-
icantly outperforms the Delta policy with compression.
Note in particular that when employing the “CAS,gzip”

policy with the 4 KB chunk size, the 95th percentile up-
load sizes are not significantly larger than the average

size, thus providing the user with better expected bounds

on the time required for a complete-fetch download.

6 Related Work

Our results are most directly applicable to VM-based

client management systems such as the Collective [7,

35], Soulpad [5], and ISR [19, 37], as well as systems

that use VMs for Grid applications [9, 14, 22, 24, 39].

Further, our results also provides guidelines for the stor-

age design of applications that need to version VM his-

tory. Examples include intrusion detection [12], oper-

ating systems development [18], and debugging system

configurations [46]. Related applications include storage

cluster and web services where VMs are being used for

balancing load, increasing availability, and simplifying

administration [28, 45].

The study could also help a large number of systems

that use use CAS to improve storage and network utiliza-

tion. Examples of CAS-based storage systems include

EMC’s Centera [13], Deep Store [48], the Venti [30], the



Pastiche [10] backup system, the TAPER [17] scheme for

replica synchronization and Farsite [2]. Other systems

use similar CAS-based techniques to eliminate duplicate

data at various levels in the network stack. Systems such

as the CASPER [42] and LBFS [27] file systems, Rhea

et al.’s CAS-enabled WWW [33], etc. apply these opti-

mizations at the application layer. Other solutions such

as the DOT transfer service [41] and Riverbed’sWAN ac-

celerator [34] use techniques such as Rabin Fingerprint-

ing [26, 31, 38] to detect data duplication at the transfer

layer. However, most of these systems have only concen-

trated on the mechanism behind using CAS. Apart from

Bolosky et al. [3] and Policroniades and Pratt [29], there

have been few studies that measure data commonality in

real workloads. The study in this paper helps by pro-

viding a point of reference for commonality seen in VM

migration workloads.

7 Conclusions
Managing large volumes of data is one of the major chal-

lenges inherent in developing and maintaining enterprise

client management systems based on virtual machines.

Using empirical data collected during seven-months of a

live-deployment of one such system, we conclude that

leveraging content addressable storage (CAS) technol-

ogy can significantly reduce the storage and networking

resources required by such a system (questions Q1 and

Q2 from Section 1).

Our analysis indicates that CAS-based management

policies typically benefit from dividing the data into very

small chunk sizes despite the associated meta-data over-

head. In the absence of compression, 4 KB chunks

yielded the most efficient use of both storage and net-

work resources. At this chunk size, a privacy-preserving

CAS policy can reduce the system storage requirements

by approximately 60% when compared to a block-based

differencing policy (Delta), and a savings of approxi-
mately 80% is possible by relaxing privacy.

Similarly, CAS policies that leverage data cached on

client machines reduce the average quantity of data that

must be transmitted during both upload and download

operations. For upload, this technique again results in a

savings (compared to Delta) of approximately 70%when

preserving privacy and 80% when not. This technique

also reduces the cost of complete-fetch download opera-
tions by more than 50% relative to the Delta policy (ir-

respective of CAS privacy policy) and by more than an

order of magnitude relative to the cost when caching is

not employed.

Leveraging compression in addition to CAS tech-

niques provides additional resource savings, and the

combination yields the highest efficiency in all cases.

However, a surprising finding from this work is that CAS

alone yields higher efficiency for this data set than com-

pression alone, which is significant because the use of

compression incurs a non-zero runtime cost for these sys-

tems.
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