
SAFARI Technical Report No. 2011-009, September 26, 2011

Improving Cache Performance using Victim Tag Stores
SAFARI Technical Report No. 2011-009

Vivek Seshadri†, Onur Mutlu†, Todd Mowry†, Michael A Kozuch‡
{vseshadr,tcm}@cs.cmu.edu, onur@cmu.edu, michael.a.kozuch@intel.com

†Carnegie Mellon University,‡Intel Corporation

September 26, 2011

Abstract

With increasing pressure on memory bandwidth, there have been a number of proposals that im-
prove the cache replacement policy. These mechanisms monitor the cache blocks while they are in the
cache and evict blocks that are deemed to have low temporal locality. However, a majority of these
mechanisms are agnostic to the temporal locality of a missedblock and follow a single insertion policy
for all incoming blocks. There is comparatively very littlework on mechanisms to distinguish between
missed blocks based on their temporal reuse behavior.

Prior work has shown that distinguishing missed blocks based on their temporal locality and choos-
ing the insertion policy on a per-block basis can significantly improve performance. To this end, we
propose a new, simple hardware mechanism that predicts the temporal locality of a missed block before
inserting it into the cache. The key insight behind the prediction scheme is that if a block with good
temporal locality gets prematurely evicted from the cache,it will be accessed soon after eviction. To
implement this prediction scheme, our mechanism augments the conventional cache with a structure,
victim tag store, that keeps track of addresses of blocks evicted from the cache. We provide a practical,
low-complexity hardware implementation of our mechanism using Bloom filters.

We qualitatively and quantitatively compare our mechanismto five different cache management
mechanisms and show that it provides significant performance improvements.

1 Introduction

Off-chip memory latency has always been a major bottleneck for system performance. With increasing
number of on-chip cores, the problem is only bound to get worse as the demand on the memory system will
increase with increasing number of concurrently running applications. To address this concern, researchers
have proposed a number of techniques [1, 2, 5, 8, 10, 11, 13, 16, 18, 21, 24, 25, 28, 33, 39] for efficient
cache management. However, an overwhelming majority of these proposals only address the problem of
cache replacement, i.e., on a cache miss, which block shouldbe replaced to create space for the incoming
block. There is comparatively very little work that study better cache insertion policies [13, 21, 24, 29, 38],
i.e., with what priority should a missed block be inserted.

In general, cache management policies order the set of blocks in the cache based on apriority scheme,
whereby the higher the priority of a block, the longer it stays in the cache. Therefore, the priority with
which a missed cache block is inserted into the cache determines the period for which it stays in the cache.
For example, for a cache following the conventional LRU policy, inserting a block at the most recently
used (MRU) position ensures that the block stays in the cachefor a long time. On the other hand, inserting
a block at the least recently used (LRU) position will force the cache to evict the block immediately.
Therefore, inserting all the blocks with a single policy without considering their temporal reuse behavior

1



SAFARI Technical Report No. 2011-009, September 26, 2011

can adversely affect performance. For example, inserting all incoming blocks at the MRU position will
lead to blocks with poor temporal locality to stay in the cache for a long time before getting evicted. On
the other hand, inserting all incoming blocks at the LRU position will lead to blocks with good temporal
locality to get evicted before they are accessed again. As wewill show later, inserting all the blocks with
some intermediate priority [11, 28, 8] does not solve the problem.

To improve performance, the cache insertion policy needs toensure that blocks with good temporal
locality are inserted with high priority and blocks with poor temporal locality are inserted with low priority.
To this end, we propose a simple hardware mechanism that predicts the temporal locality of a missed
block and chooses the insertion priority for the block basedon the prediction. The key insight behind
our prediction mechanism is that if a block with good temporal locality gets prematurely evicted from the
cache, then it will be accessed soon after eviction. Based onthis insight, our mechanism predicts blocks
that are accessed soon after eviction to have good temporal locality. All other blocks are predicted to have
bad temporal locality. Blocks predicted to have good locality are inserted with high priority whereas a
majority of the remaining blocks are inserted with the lowest priority.

To accomplish this prediction scheme, our mechanism augments a conventional cache with a structure,
victim tag store (VTS), that keep tracks ofaddressesof blocks evicted from the cache. The size of the VTS
determines the boundary between blocks that are consideredas recently evicted and those that are not. We
provide a practical, low-complexity implementation of theVTS using Bloom filters [3]. Henceforth, we
call a cache augmented with the VTS as VTS-cache.

To emphasize the need for such block-level insertion policies, we qualitatively and quantitatively com-
pare VTS-cache to two state-of-the-art cache management schemes: adaptive insertion policy [10, 25]
and re-reference interval prediction policy [11] and show that it significantly improves performance. We
also compare VTS-cache with three prior proposals for smartcache insertion policies, single-usage block
prediction [24], run-time cache bypassing [13] and adaptive replacement cache [21], and show that VTS-
cache provides better performance.

VTS-cache haslow storage overhead and hardware complexity, and isscalableto large cache sizes.
Also, as VTS filters away blocks with poor temporal locality from polluting the cache, it allows the in-
cache monitoring mechanism to just work with blocks with good temporal locality. Therefore, VTS-cache
can be combined with any existing cache management strategyto further improve performance.

We make the following majorcontributions:

• We demonstrate that not considering the reuse behavior of a block at the time of insertion and
employing a single policy for all cache blocks leads to low system performance.

• We propose a new low-complexity mechanism, VTS-cache, thatpredicts the reuse behavior of a
missed block before inserting it into the cache and determines its insertion priority based on that
prediction.

• We qualitatively and quantitatively compare VTS-cache with two state-of-the-art cache management
schemes that are agnostic to reuse behavior of blocks at the time of insertion. Evaluations show that,
compared to the best previous mechanism, VTS-cache improves system throughput by 6% for 2-
core systems 8% for 4-core systems.

• We also compare VTS-cache to three prior proposals for block-level cache insertion policies and
show that it provides better performance (4% compared to adaptive replacement cache [21], a page
replacement mechanism, and 8% compared to the best previousmechanism proposed for on-chip
caches, for 4-core systems).

2



SAFARI Technical Report No. 2011-009, September 26, 2011

2 Our Approach: VTS-cache

As we mentioned in the introduction, majority of the proposals for high-performance cache management
have looked at techniques to improve cache replacement. As we will show in the paper, significant per-
formance improvements can be achieved by using a cache insertion policy that considers the temporal
locality of a missed block before inserting it into the cache. Starting first with what the ideal insertion
policy would do, we describe our approach to address this problem.

The ideal insertion policy which attempts to maximize the overall hit rate of the system will work
as follows. On a cache miss, it will determine the degree of temporal reuse of the missed blockbefore
inserting it into the cache. If the block has little or no temporal reuse compared to the blocks present in the
cache, then it will insert the block with thelowestpriority or bypass the cache if possible. This will force
the replacement policy to evict the block from the cache immediately without affecting other useful blocks
in the cache. On the other hand, if the block does have good temporal locality, then the ideal mechanism
will insert the block with a higher priority that keeps the block in the cache long enough for it to receive
a hit. Therefore, the ideal mechanism will followdifferentinsertion policies for different blocks based on
their temporal locality behavior.

Our goal in this work is to approximate the performance of this ideal mechanism with low hardware
overhead. To achieve this, we propose a new cache managementtechnique, VTS-cache, that has compo-
nents as shown in Figure1a. The first component is atemporal locality predictorthat takes the address of
a missed cache block and predicts whether the block has good temporal locality. The second component
is aper-block insertion policythat decides the insertion policy for a missed block based onits temporal
locality prediction.

Cache

Temporal locality
predictor

Per-block
Insertion Policy

Reuse
prediction

Missed block address

Victim Tag Store

Present
in VTS?

Evicted block address

Missed block address
Insert with

high priority
Insert with bimodal

insertion policy

NoYesGood Locality Bad Locality

FIFO List

test
insert removewhen full

remove

a) Components
b) VTS Cache Operation

Figure 1:Conceptual design of the VTS-cache

2.1 VTS-cache: Conceptual Design

VTS-cache predicts the reuse behavior of a missed block based on how recently it was evicted from the
cache the last time it was accessed. The key insight behind this scheme is as follows: if a block with
good temporal locality gets prematurely evicted from the cache, then it will likely be accessed soon after
eviction. On the other hand, a block with low temporal locality will not be accessed again for a long time
after getting evicted.

Figure1bshows the schematic representation of the operation of the VTS-cache, based on this insight.
The cache is augmented with a structure that keeps track ofaddressesof blocks that were recently evicted

3



SAFARI Technical Report No. 2011-009, September 26, 2011

from the cache. We call this structure thevictim tag store(VTS). Conceptually, VTS is a first-in-first-out
(FIFO) list. When a cache block gets evicted from the cache, its address is inserted at the head of the VTS.
Once the VTS gets full, addresses are removed from the tail ofthe VTS to accommodate more insertions.
On a cache miss, VTS-cache tests if the missed block address is present in the VTS. If it is, VTS-cache
assumes that the block was prematurely evicted from the cache and predicts that it has good temporal
locality. If the block address is not present in the VTS, thenVTS-cache predicts the block to have bad
temporal locality.

Intuitively, the insertion policy should ensure two things: 1) blocks predicted to have good temporal
locality (i.e., predicted-good-locality blocks) should not get evicted from the cache before they are ac-
cessed again, 2) blocks predicted to have bad temporal locality (i.e., predicted-bad-locality blocks) should
get evicted from the cache immediately, without affecting other useful blocks. Therefore, one insertion
policy could be to insert a predicted-good-locality block with high priority and a predicted-bad-locality
block with thelowestpriority1.

However, for an application with a working set that does not fit in the cache, always inserting a
predicted-bad-locality block with the lowest priority does not provide good performance. Most blocks
of such an application will be predicted-bad-locality because they have large reuse distances and, hence,
are unlikely to be accessed immediately after getting evicted from the cache. For such an application, we
would like to keep a fraction of the working set in the cache, to ensure cache hits at least for that fraction.
As previous work has shown [25], the bimodal insertion policy (BIP) achieves this by determining the
insertion priority of a block probabilistically: high priority with very low probability (1

64
in our design),

lowest priority with very high probability. Therefore, to ensure good performance for a wide variety of
applications, including those with large working sets, VTS-cache inserts a predicted-bad-locality block
using the bimodal insertion policy.

In summary, VTS-cache keeps track of addresses of blocks that are recently evicted from the cache
in the victim tag store. On a cache miss, if the missed block address is present in the VTS, VTS-cache
predicts the block to have good temporal locality and inserts the block with high priority. Otherwise, VTS-
cache predicts the block to have bad temporal locality and inserts the block using the bimodal insertion
policy (i.e., high priority with a low probability, lowest priority with a high probability).

3 Qualitative Comparison to Previous Approaches

Prior research [25, 10, 11] has proposed mechanisms to vary the insertion policy basedon the application
behavior. The primary aim of these mechanisms is to ensure good performance for applications with
large working sets and applications with multiple access patterns. In this section, we emphasize the need
for a per-block insertion policy by qualitatively comparing VTS-cache to two prior proposals: thread-
aware dynamic insertion policy [10] and thread-aware dynamic re-reference interval prediction policy [11].
Before proceeding with our case study, we provide an overview of these two mechanisms.

3.1 Overview of Prior Approaches

Thread-aware dynamic insertion policy [10] (TA-DIP) : The conventional LRU policy inserts all new blocks
at the most-recently-used position and evicts blocks from the least-recently-used position. Certain ap-

1Bypassing bad-locality blocks is an option. We find that using bypassing improves the performance of VTS-Cache by 1%
but do not include these results due to space constraints.

4



SAFARI Technical Report No. 2011-009, September 26, 2011

F F F SApp A

CacheFitting Scan

C CApp B

Cyclic reference pattern

F C F F S C

Interleaved Sequence

t1 t2 t3 t4 t5 t6 t7

Figure 2:Blocks referenced by applications A and B in one iteration oftheir respective loops. Blocks in the scan
S are different for each iteration of the loop. ButF andC denote the same sequence of blocks for all iterations.
The interleaved sequence shows the access sequence as seen by the shared cache when the applications are running
concurrently. The interleaved sequence is also assumed to repeat.

plications benefit from this policy. On the other hand, this policy provides sub-optimal performance for
applications with working sets bigger than the cache size, as blocks of such an application will keep evict-
ing each other from the cache. These applications benefit from a bimodal insertion policy [25] (BIP)
which inserts majority of the blocks at the least-recently-used position, thereby retaining a fraction of the
working set in the cache. The key idea behind TA-DIP is to determine the best insertion policy for each
application dynamically in the presence of other applications. For this purpose, TA-DIP uses set dueling
[25] for each application to identify which policy provides fewer misses (using a small sample of sets) and
uses that policy for all the blocks of that application.
Thread-aware dynamic re-reference interval prediction [11] (TA-DRRIP) : The LRU policy inserts all new
blocks at the MRU position. Therefore, blocks that do not have any temporal locality stay in the cache
for a long time before getting evicted, occupying precious cache space. To mitigate this problem, Jaleel
et al. propose the re-reference interval prediction (RRIP)policy which prioritizes the cached blocks based
on a prediction of how far into the future they will be accessed (the farther the re-reference, the lower
the priority). All blocks are inserted at the next-to-lowest priority, preventing blocks with poor temporal
locality from occupying cache space for a long time. A block is elevated to the highest priority on a hit.
On a request for replacement, the priorities ofall the blocks are decremented until some block reaches
the lowest possible priority. To benefit applications with large working sets, the paper also uses a bimodal
insertion policy, bimodal RRIP (similar to BIP [25]), which inserts most of the blocks at the lowest priority.
Similar to TA-DIP, TA-DRRIP dynamically determines the best policy between the static RRIP policy and
the bimodal RRIP policy for each application in the system, using set dueling [25].

3.2 Case Study

Prior work (e.g., [11, 21, 25]) has identified three common memory access patterns exhibited by various
applications. The first access pattern consists of repeatedreferences to a small set of blocks, that fits into
the cache, referred to as thecache fittingaccess pattern. The second access pattern consists of repeated
references to a large sequence of blocks, that does not fit in the cache, referred to as thecyclic reference
pattern. The last access pattern, calledscan, consists of references to a large set of blocks with no temporal
locality. With respect to a fully-associative cache with 4 blocks, the sequence (f1, f2, f1, f2, f2, f1) would
be a cache fitting pattern, (c1, c2, ..., c6, c1, c2, ..., c6) would be a cyclic reference pattern, and the sequence
(s1, s2, ..., s10) would be a scan.

We illustrate the performance benefits of using a per-block insertion policy (compared to the mecha-

5



SAFARI Technical Report No. 2011-009, September 26, 2011

nisms described before) using a case study with two applications, A and B, whose references contain these
access patterns. Figure2 shows the sequence of blocks referenced by applications A and B in one iteration
of their respective loops. As indicated in the figure, application A’s references consist of acache fitting
access pattern, to a sequence of blocksF , followed by ascanto a sequence of blocksS (different for each
iteration of the loop). On the other hand, application B’s references consists of a cyclic reference pattern
to a large sequence of blocksC. The figure also shows the interleaved access sequence when the two
applications are running concurrently in a system with a shared, fully-associative cache. For ease of un-
derstanding, we assume that the loops of the two applications are synchronized and hence, the interleaved
access sequence also repeats in a loop.

Figures3athrough3eshow the steady state cache performance of various mechanisms on this inter-
leaved access sequence. The ideal policy to maximize hit rate (figure3a) for this access sequence is to
cache A’s working set, i.e.F , and a subset of blocks from B’s working set, i.e.C. This is because, in every
iteration, the blocks ofF are accessed the most number of times (3 times) and hence, they should be cached
completely. Although all the blocks ofC are accessed twice in every iteration, only a portion of themcan
be cached in the remaining available cache space. All the other blocks, especially those belonging to the
scanS, should be inserted with the lowest priority and evicted from the cache immediately.

The commonly used application-unaware LRU policy inserts all the blocks at the most recently used
(MRU) position. This has two negative effects. One, blocks of the scanS (accessed betweent5 andt6,
figure 3b), which have no reuse, evict useful blocks of both the applications. Two, blocks ofC, due to
their large reuse interval, evict each other and also blocksof F from the cache (betweent2 andt3). As a
result, the LRU policy results in cache hits only for one set of accesses to blocks ofF in every iteration.

Application A, due to its cache fitting access pattern, incurs more misses with the bimodal insertion
policy. This is because blocks ofF might repeatedly get inserted at the LRU position and evicted immedi-
ately, before they can be accessed again. Therefore, TA-DIPwill follow the conventional LRU policy for
A. For the same reason, TA-DRRIP will follow the static RRIP policy for A. On the other hand, application
B, because of its large working set, will benefit from the bimodal insertion policy as the alternative policies
(LRU or static RRIP) will cause B’s blocks to evict each other. Therefore, both TA-DIP and TA-DRRIP
will follow the bimodal insertion policy for application B.

By following the bimodal insertion policy for application B, both TA-DIP and TA-DRRIP improve
the hit rate for application B compared to the LRU policy. However, since they follow a single insertion
policy for application A, blocks ofS are treated similarly to blocks ofF . In the case of TA-DIP, this
causes accesses toS to evict the complete working set from the cache as all its blocks are inserted at the
MRU position (figure3c). TA-DRRIP, on the other hand, mitigates this effect by following a more robust
policy. However, for every block ofS evicted from the cache, the priorities of all the other blocks are
reduced. Therefore, blocks ofS will start polluting the cache, evicting useful blocks. As aresult, even
though TA-DRRIP improves performance, it is still far from achieving the ideal hit rate (figure3d).

Finally, figure3eshows the cache performance of our proposed mechanism, VTS-cache. Unlike prior
approaches, VTS-cache chooses the insertion policy based on the block behavior. In this example, there are
two situations where VTS-cache makes a better decision compared to prior approaches. First, it chooses
the bimodal insertion policy for blocks ofS as they will be accessed for the first time and hence, will
not be present in the VTS. By doing so, it prevents these blocks from polluting the cache by inserting a
majority of them with thelowestpriority. Second, at the end of each iteration some blocks ofF get evicted
from the cache and are accessedimmediatelyat the beginning of the next iteration, while they are in the
VTS. Therefore, VTS-cache predicts these blocks to have good temporal locality and insertsall of them
with a high priority. Blocks ofC, due to their large reuse interval, are unlikely to be present in the VTS.

6



SAFARI Technical Report No. 2011-009, September 26, 2011

Cache Hit Cache Miss Application A:F , S Application B:C

F C F F S C
t1 t2 t3 t4 t5 t6 t7

Cache

Accesses

CfFF Cf F Cf F Cf F Cf F Cf F Cf

F C F F S C

(a) IDEAL policy: Always keepsF and a fraction ofC in the cache. All other blocks are filtered at the time of insertion.

F C F F S C
t1 t2 t3 t4 t5 t6 t7

Cache

Accesses

CfCf F Cf Cf F Cf F Cf Sf

F C F F S C

(b) Application-unawareLRU policy: All blocks of both A and B are inserted at the MRU position (left end of the cache).

F C F F S C
t1 t2 t3 t4 t5 t6 t7

Cache

Accesses

Cf SfCf Sf F Cf Sf Cf F Sf CfF Sf CfF Sf Sf

F C F F S C

(c) Thread-aware DIP: TA-DIP chooses the conventional LRU policy for A, i.e. all of A’s blocks (F & S) are inserted at the
MRU position, and the bimodal insertion policy for B, i.e. only a small fraction of B’s blocks (C) are inserted at the MRU
position and the rest at LRU position. Without loss of generality, we assume this fraction to be1

8
in this example.

F C F F S C
t1 t2 t3 t4 t5 t6 t7

Cache

Accesses

Cf SfCf Sf F Cf Sf FCf F Cf F Cf FCfSf

F C F F S C

(d) Thread-aware DRRIP: TA-DRRIP chooses the static RRIP policy for A, i.e. all of A’s blocks (F & S) are inserted with the
next-to-lowest priority. For B, it chooses the bimodal RRIPpolicy, i.e. only a fraction (1

8
) of its blocks (C) are inserted with the

next-to-lowest priority. The remaining blocks of B are inserted with the lowest priority.

F C F F S C
t1 t2 t3 t4 t5 t6 t7

Cache

Accesses

FSfCfFSfCf F Cf FCf F Cf F Cf Sf F Cf

F C F F S C

(e)VTS-cache: VTS-cache chooses the insertion policy on a per-block basis. Blocks ofS are always inserted with the bimodal
policy (betweent5 andt6) as it will be their first access. Blocks ofC are also inserted with the bimodal policy due to their large
reuse distance. However, betweent1 andt2, blocks ofF that were evicted towards the end of the previous iteration (betweent6
andt7), will be inserted at the MRU position as they were recently evicted from the cache.

Figure 3: Benefits of using VTS-cache:Each sub-figure shows the steady state cache performance of the corre-
sponding cache management mechanism on the interleaved sequence (the first row of boxes). The dark gray portion
indicates the fraction of blocks that hit in the cache. The cache state is indicated in the second row of boxes at the
corresponding time step. The labels represent the set of blocks that are cached at that time. The subscriptf indicates
that only a fraction of those blocks are present in the cache.

7



SAFARI Technical Report No. 2011-009, September 26, 2011

Therefore, VTS-cache will insert them with the bimodal insertion policy. As a result, it retains a portion
of C in the cache.

Therefore, by following a per-block insertion policy basedon different access behavior of blocks even
within an application (in the example, forF andS of application A), VTS-cache is able to prevent blocks
with little or no temporal locality from polluting the cache. As a result, it is able to perform better than
other approaches which are agnostic to the temporal locality of missed cache blocks.

4 VTS-cache: Design Choices & Improvements

In section2.1, we described the conceptual design and operation of the VTS-cache. In this section, we
discuss some design choices and improvements to VTS-cache.Specifically, we discuss the impact of the
size of the VTS, effect of VTS-cache on LRU-friendly applications, and the possibility of incorporating
thread-awareness into the VTS design.

4.1 Size of the Victim Tag Store

The size of the VTS, i.e., the number of block addresses it cankeep track of, determines the boundary
between blocks that are classified as recently evicted and those that are not. Intuitively, the VTS size
should be neither too small nor too large. Having too small a VTS will lead to mispredictions for a lot of
blocks with good temporal locality. As a result, many such blocks will get inserted at the lowest priority
and evicted from the cache, thereby increasing the miss rate. Conversely, having too large a VTS will lead
to a good-temporal-locality prediction even for a block with a large reuse distance. Hence, these blocks
will get inserted with high priority and pollute the cache byevicting more useful blocks.

In our evaluations, we find that VTS-cache provides the best performance when the size of the VTS is
same as the number of blocks in the cache. The reason behind this could be that, a VTS with size smaller
than the number of blocks in the cache will lead to poor performance for an application whose working set
just fits the cache as a majority of its useful blocks will inserted with the bimodal insertion policy. On the
other hand, a VTS with size bigger than the cache size will lead to poor performance for an application
whose working set is just larger than the cache size as most ofits blocks will be inserted with high priority
causing them to evict each other from the cache. In all our evaluations (except the one that studies the
effect of the VTS size), we set the VTS size to be same as the number of blocks in the cache.

4.2 Improving Robustness of VTS-cache

When a block with good temporal locality is accessed for the first time, VTS-cache will falsely predict
that it has poor temporal locality. Hence, it likely insertsthe block with thelowestpriority, forcing the
replacement policy to evict the block immediately on a set conflict. Therefore, for an application which is
LRU-friendly, i.e., blocks that are just accessed have goodtemporal locality, VTS-cache incurs one addi-
tional miss for a majority of blocks, by not inserting them with high priority on their first access. In most
of the workloads with LRU-friendly applications, we find that this misprediction does not impact perfor-
mance, as the cache is already filled with useful blocks. However, whenall applications in a workload are
LRU-friendly, we find that VTS-cache performs worse than prior approaches.

To increase the robustness of VTS-cache, we propose a dynamic scheme which uses set dueling [25]
to determine ifall the applications in the system will benefit from a always-high-priority insertion policy.

8



SAFARI Technical Report No. 2011-009, September 26, 2011

If so, then the cache ignores the VTS and inserts all blocks ofall applications with high priority. We call
this enhancementD-VTSand evaluate it in Section8. Our results indicate that using this enhancement
mitigates the performance loss incurred by VTS-cache for workloads with all LRU-friendly applications
and does not affect performance for other workloads.

4.3 Incorporating Thread-awareness into VTS

When a shared cache is augmented with the victim tag store, the VTS is also shared by concurrently
running applications. Therefore, it is possible that applications interfere with each other in the VTS too,
i.e., evicted blocks of one application can remove addresses of blocks of another application from the VTS.
This can cause suboptimal or incorrect temporal locality predictions for the applications sharing the VTS:
due to interference in the VTS, a block with good reuse behavior can actually get evicted early and thus be
predicted as having bad temporal locality. One way to solve this problem is to partition the VTS equally
among multiple hardware threads sharing it. We call such a partitioned VTS as athread-aware VTS. We
found in our evaluations that a thread-aware VTS only provides minor performance improvements (around
1% on an average) compared to a thread-unaware VTS design. Although this could be an artifact of the
applications and the system configuration used in our evaluations, we do not extensively evaluate this
design choice due to space limitations.

5 Practical Implementation & Storage Overhead

One of the most important strengths of VTS-cache is that its implementation does not requireanymodifi-
cations to the existing cache structure. This is because VTS-cache simply augments a conventional cache
with the victim tag store. The victim tag store only decides the insertion policy for amissedcache block.
Therefore, any in-cache monitoring mechanism that is used to improve performance, including the cache
replacement policy, is left unchanged. The main source of hardware overhead in the VTS-cache comes
from the VTS itself. In this section, we describe a practicalimplementation of the VTS using Bloom filters
[3] and evaluate its storage overhead.

5.1 Practical Implementation

A naive implementation of the VTS would be to implement it as aset-associative structure and keep track
of evicted blocks on a per-set basis. However, such an implementation will have a huge storage overhead
and also consume a lot of static and dynamic power. For a practical, low-overhead implementation of
VTS-cache, we modify the design of the VTS to make it implementable using Bloom filters [3].

A Bloom filter is a probabilistic data structure used as a compact representation of a large set. New
elements can be inserted into the filter and elements can be tested if they are present in the filter. However,
the test operation can have false positives, i.e., it can falsely declare an element as being present in the
set. Also, once inserted, the only means of removing elements from a Bloom filter is to clear the filter
completely. Since the VTS is only used as a prediction mechanism, the false positives do not lead to any
correctness issues. However, for implementing VTS using a Bloom filter, we need to eliminate theremove
operations (as shown in Figure1b) from the VTS design.

There are two cases when a block address is removed from the VTS. One, when a missed block is
present in the VTS, it is removed from the VTS. We get rid of this delete operation by simply leaving the

9



SAFARI Technical Report No. 2011-009, September 26, 2011

block address is the VTS. The second case is when the VTS becomes full and block addresses have to
be removed from the tail to accommodate more insertions. To avoid this remove operation, we propose
to clear the VTS completely when it becomes full. Since the VTS only keeps track of block addresses,
neither modification leads to any consistency issues.

With these changes, the VTS can be implemented using a Bloom filter and a counter that keeps track
of the number of addresses currently present in the VTS. Whena block gets evicted from the cache, its
address is inserted into the filter and the counter is incremented. On a cache miss, the cache tests if the
missed block address is present in the filter. When the counter reaches a maximum (size of the VTS), the
filter and the counter are both cleared.

It is worth mentioning that Bloom filters are widely used in hardware [6, 20], especially in low-power
devices to filter away costly operations. Therefore, implementing and verifying VTS in hardware should
be straight forward. Also, since VTS-cache does not introduce any modifications to the cache itself, it
further reduces the design complexity.

For our VTS implementation, we use a Bloom filter which uses anaverage of 8-bits per address. We
use the state-of-the-art multiply-shift hashing technique [7] which can be easily implemented in hardware
and is also less expensive in terms of latency and dynamic energy. Our implementation has considerably
low false positive rate (< 0.5%).

5.2 Storage overhead

The main source of storage overhead in VTS Cache is the Bloom filter that implements the VTS. The size
of the Bloom filter depends on the maximum number of elements that it has to hold (M) and the average
number of bits used per element stored in the filter (α). For our evaluations, the value ofM , i.e., the size
of the VTS, is same as the number of blocks in the cache,N . Therefore, the percentage storage overhead
of the VTS compared to the cache size in terms ofα, M , N , the cache block size (B), and the average tag
entry size per block (T ) is given by,

% Storage overhead of VTS compared to cache size= Bloom filter size
Cache Size 100% = αM

(T+B)N
100% = α

T+B
100%

Thus, the percentage storage overhead of VTS is independentof the cache size itself. Rather, it depends
only onα, the cache block size (B) and the average tag entry size (T ). In our evaluations, we useα = 8

bits, B = 64 bytes andT > 2 bytes. For this configuration, the percentage storage overhead of VTS
compared to the cache size is less than1.5%.

6 Prior Work on Block-level Insertion Policies

Prior research has identified and studied the significance ofchoosing the insertion policy on a per-block
basis. In this section, we describe three such proposals to which we quantitatively compare VTS-cache.
One of them is a instruction-pointer based approach called single-usage block prediction [24]. The other
two work based on block addresses similar to VTS-cache: run-time cache bypassing [13] and adaptive
replacement cache [21]. As we will show in our evaluations (Section8), VTS-cache performs better than
these three approaches.

10



SAFARI Technical Report No. 2011-009, September 26, 2011

6.1 Single-usage Block Prediction SUB-P

Piquet et al. [24] make the observation that a majority of blocks that are evicted from the last-level cache
without being reused at all (called single-usage blocks) are loaded by a few instructions. Based on this
observation, they propose a mechanism, single-usage blockprediction (SUB-P), that identifies such in-
structions and predicts that blocks loaded by them will never be accessed again. SUB-Pmarkssuch
blocks at the time of insertion and forces the replacement policy to evict such marked blocks first. To
account for phase changes, a small fraction of single usage blocks are inserted without marking.

VTS-cache is more general than SUB-P because it can reduce the harmful performance effects of not
only single-usage blocks but also blocks that exhibit very low temporal locality. In fact, VTS-cache will
predict all single-usage blocks to have low temporal locality as they will not be present in the VTS the
only time they are accessed.

6.2 Run-time Cache Bypassing (RTB)

Johnson et al. [13] propose a mechanism to compare the temporal locality of a missed block to that of
the block about to be replaced. Based on the result, the missed block is either inserted normally into the
cache or bypassed. The key observation behind their mechanism is that there is a spatial correlation in the
reuse behavior of blocks, i.e., blocks that are close to eachother in memory tend to show similar reuse
behaviors. RTB keeps track of reuse counts of macro blocks (1KB regions in memory) in a table called
memory address table (MAT) on chip. On a cache miss, the counter values for the regions corresponding
to the missed block and the to-be-evicted block are compared. If the counter for the missed block is lower
than that of the to-be-evicted block, then the missed block bypasses the cache.

One main disadvantage of RTB over VTS-cache is that within a macro block, it cannot distinguish
between a single block accessedk times andk blocks accessed once each. This can lead to mispredictions
which can cause blocks with bad locality getting inserted into the cache with high priority. Also, RTB
requires a MAT access on every cache access (hit/miss). On the other hand, VTS-cache only accesses the
VTS on a cache miss. It does not modify the cache hit operationat all.

6.3 Adaptive Replacement Cache (ARC)

Adaptive replacement cache is a self-tuning page replacement policy proposed for DRAM memory man-
agement. ARC adapts to different phases within an application that benefit from caching either recently
used pages or frequently used pages. ARC achieves this by dividing the set of in-memory pages into
two lists, one for recency and another for frequency, and maintaining a precise history of recently evicted
pages. The sizes of the two lists are controlled by a self-tuning parameter based on how often missed
pages hit in the history.

Although ARC is proposed as a page replacement policy, it canbe easily evaluated in a on-chip setting.
However, since ARC considerably modifies the cache structure and also requires precise history for tuning
its parameters, its hardware implementation incurs high storage overhead and design complexity. For this
reason, most prior works have dismissed ARC as an on-chip cache management mechanism. But we
compare VTS-cache to ARC for completeness. Table1 presents a comparison of the storage overhead and
design complexity of the different mechanisms for a 16-way associative 1MB cache using 64 byte blocks.

11



SAFARI Technical Report No. 2011-009, September 26, 2011

Mechanism Storage overhead Changes to cache? Modifies hit behavior?

SUB-P [24] 14KB for instruction tags to
tag store + prediction table* (1
KB)

Requires additional informa-
tion in the tag store.

Updates to the prediction table.

RTB [13] ≈ 3KB for a 1024 entry MAT* No changes to cache Updates to the memory access
table.

ARC [21] ≈ 32KB for per-set history Separates a cache set into two
lists (one for frequency & one
for recency)

Possible movement from one
list to another.

VTS-Cache 8KB for Bloom filter No changes to cache No changes to cache hits.

Table 1: Overhead and Design Complexity of Different Mechanisms. *In our evaluations for SUB-P and
RTB, we use an infinite sized table.

Core x86 in-order, 4 Ghz processor
L1-D Cache 32KB, 2-way associative, LRU replacement policy, single cycle latency

Private L2 Cache 256KB, 8-way associative, LRU replacement policy, latency= 8 cycles
L3 Cache (single-core) 1 MB, 16-way associative, latency = 21 cycles
L3 Cache (dual-core) Shared, 1 MB, 16-way associative, latency = 21 cycles
L3 Cache (quad-core) Shared, 2 MB, 16-way associative, latency = 28 cycles

Main memory 4 Banks, 8 KB row buffers, row hits = 168 cycles, row conflicts =408 cycles

Table 2:Main configuration parameters used for simulation

7 Evaluation Methodology

We use an event-driven 32-bit x86 simulator that models in-order cores. All systems use a three level
cache hierarchy. The L1 and L2 caches are private to individual cores and the L3 cache is shared across all
the cores. We don’t enforce inclusion in any level of the hierarchy. All caches uniformly use a 64B cache
block size. Writebacks do not update the replacement policystate. Other major simulation parameters are
provided in Table2.

For evaluations, we use benchmarks from SPEC CPU2000 and CPU2006 suites, three TPC-H queries,
a TPC-C server and an Apache web server. All results are collected by running a representative portion
of the benchmarks for 500 million instructions. We classifybenchmarks into nine categories based on
their cache sensitivity (low, medium or high) and intensity(low, medium or high). For measuring cache
sensitivity, we run the benchmarks with a 1MB last-level cache and a 256KB last-level cache, and use the
performance degradation as a metric that determines sensitivity. We define a benchmark’s intensity as the
number of L2 cache misses per 1000 instructions (L2-MPKI). Benchmarks with L2-MPKI less than one
are not evaluated in our studies as they do not exert any pressure on the last-level cache. Table3 shows
the intensity (under the L2-MPKI column) and cache sensitivity (under the Sens. column) of different
benchmarks used in our evaluation.

We evaluate single-core systems and multi-programmed workloads running on 2-core and 4-core
CMPs. We generate our multi-programmed workloads with ninedifferent levels of aggregate intensity
(low, medium or high) and aggregate sensitivity (low, medium or high). For 2-core simulations, we gen-
erate approximately 20 workloads in each category. For 4-core simulations, we generate between 10 to
15 workloads in each category. The server benchmarks are evaluated separately with ten 2-core and five

12



SAFARI Technical Report No. 2011-009, September 26, 2011

Name L2-MPKI Sens. Name L2-MPKI Sens. Name L2-MPKI Sens.

ammp 5.76 L 36% H GemsFDTD 16.57 H 1% L soplex 25.31 H 18% H
applu 1.92 L 2% L gobmk 1.92 L 2% L sphinx3 14.86 H 9% M

art 40.56 H 52% H h264ref 1.52 L 5% M swim 17.7 H 46% H
astar 25.49 H 6% M hmmer 2.63 L 2% L twolf 10.21 M 56% H

bwaves 15.03 H 0% L lbm 24.64 H 1% L vpr 6.13 M 46% H
bzip2 7.01 M 32% H leslie3d 14.02 H 7% M wupwise 1.33 L 1% L

cactusADM 4.4 L 8% M libquantum 14.31 H 1% L xalancbmk 10.89 H 16% M
dealII 1.51 L 9% M lucas 3.11 L 0% L zeusmp 5.77 L 1% L
equake 9.22 M 6% M mcf 49.58 H 26% H apache20 5.8 L 9% M
facerec 4.61 L 18% H mgrid 3.14 L 5% M tpcc64 11.48 H 31% H
fma3d 1.14 L 5% M milc 12.33 H 0% L tpch17 13.97 H 26% H
galgel 7.94 M 17% M omnetpp 12.73 H 10% M tpch2 17.02 H 31% H
gcc 4.08 L 3% M parser 2.0 L 18% H tpch6 3.93 L 23% H

Table 3:Classification of benchmarks based in intensity and cache sensitivity (L - Low, M - Medium, H - High).
L2-MPKI is the number of L2 misses per kilo instructions andSens. (sensitivity) is the % degradation in perfor-
mance going from a 1 MB L3 to a 256 KB L3.

Mechanism Label Implementation

Thread-aware DIP [10] TA-DIP Feedback based set-dueling,32 dueling sets
Thread-aware DRRIP [11] TA-DRRIP RRPVmax = 7, Hit priority, feedback based set dueling

Single usage block prediction [24] SUB-P Infinite size predictor table, RRIP replacement policy
Run-time cache bypassing [13] RTB Infinite size memory address table, RRIP replacement policy

Adaptive Replacement Cache [21] ARC Per-set history of evicted blocks, RRIP replacement policy
VTS Cache VTS Bloom filter (8 bits per element), RRIP replacement policy

VTS Cache with set dueling D-VTS VTS Cache + set dueling to determine all-LRU workload

Table 4:List of evaluated mechanisms along with their implementation.

4-core workload combinations. In all, we present results for 208 2-core workloads and 135 4-core work-
loads.
Metrics: We compare performance using two metrics: weighted speedup[35] and instruction throughput.
For evaluating fairness, we use the maximum slowdown metric. A lower maximum slowdown indicates
better fairness.

Instruction Throughput =
∑

i

IPCi

Weighted Speedup=
∑

i

IPCshared
i

IPCalone
i

Maximum Slowdown = max
i

IPCalone
i

IPCshared
i

Mechanisms: Table 4 provides the references to the five different mechanisms to which we compare
VTS-cache to. We also mention the specific implementation parameters for each of those mechanisms.

8 Results & Observations

In this section, we present and discuss the results of our evaluations comparing VTS-cache with the other
prior mechanisms. We initially present the case for the block-level insertion policy approach by comparing
VTS-cache with TA-DIP [10, 25] and TA-DRRIP [11] across a variety of system configurations. To show

13



SAFARI Technical Report No. 2011-009, September 26, 2011

N
or

m
al

iz
ed

In
st

ru
ct

io
n

T
hr

ou
gh

pu
t

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

TA-DIP TA-DRRIP VTS D-VTS

N
or

m
al

iz
ed

M
ax

im
um

S
lo

w
do

w
n

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

TA-DIP TA-DRRIP VTS D-VTS

Figure 4:VTS-cache vs other mechanisms for 2-core systems. Left: Performance. Right: Unfairness

N
or

m
al

iz
ed

In
st

ru
ct

io
n

T
hr

ou
gh

pu
t

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

TA-DIP TA-DRRIP VTS D-VTS

N
or

m
al

iz
ed

M
ax

im
um

S
lo

w
do

w
n

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

TA-DIP TA-DRRIP VTS D-VTS

Figure 5:VTS-cache vs other mechanisms for 4-core systems. Left: Performance. Right: Unfairness

the effectiveness of our proposed approach, we present results comparing VTS-cache to single-usage block
prediction [24], run-time cache bypassing [13] and adaptive replacement cache [21].
2-Core Results:

Figure4 compares the system performance of VTS-cache with TA-DIP and TA-DRRIP on a 2-core
system. The results are classified based on workload category. Averaged over all 208 2-core workloads,
VTS-cache improves system throughput by 15% compared to baseline and 6% compared to TA-DRRIP.
It also reduces unfairness by 16% compared to baseline and 5%compared to TA-DRRIP.

One major trend is that, for a given aggregate intensity, theperformance improvements of all the
mechanisms increase with increasing aggregate sensitivity. VTS-cache outperforms other mechanisms for
all categories except the low-intensity low-sensitivity category. Workloads in this category rarely access
the L3 cache and also benefit less from more cache space. In fact, none of the prior approaches improve
performance significantly compared to the baseline, indicating that there is little scope for improvement.

For the server workloads, VTS-cache and TA-DRRIP drastically improve performance over the base-
line (16% and 10% respectively). This is because these workloads have a lot ofscansthat can evict useful
blocks from the cache. Both VTS-cache and TA-DRRIP are designed to mitigate the effect of such scans.
However, TA-DRRIP does this by monitoring blocksafter inserting them into the cache. On the other
hand, VTS-cache identifies that these blocks have low temporal locality beforeinsertion and inserts most
of them with the lowest priority, thereby providing better performance than TA-DRRIP.

14



SAFARI Technical Report No. 2011-009, September 26, 2011

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0 20 40 60 80 100 120 140 160 180 200

D-VTS

VTS

TA-DRRIP

TA-DIP

N
or

m
al

iz
ed

W
ei

gh
te

d
S

pe
ed

up

Workload number

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130

D-VTS

VTS

TA-DRRIP

TA-DIP

N
or

m
al

iz
ed

W
ei

gh
te

d
S

pe
ed

up

Workload number

Figure 6:Normalized weighted speedup improvements over LRU for all workloads. Left: 2-core. Right: 4-core

Size of Victim Tag Store
Number of Blocks in Cache

N
or

m
al

iz
ed

W
ei

gh
te

d
S

pe
ed

up

1.1

1.12

1.14

1.16

1.18

1.2

1.22

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

4-core

2-core

Figure 7:System Throughput vs Size of VTS

W
ei

gh
te

d
S

pe
ed

up

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

LRU RRIP VTS-LRU VTS-RRIP

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

Figure 8:VTS-cache with other replacement policies

4-Core Results:
Figure5 shows the corresponding results for 4-core systems. The observations are similar to those

made for 2-core systems. VTS-cache significantly improves system throughput (21% over baseline and
8% over TA-DRRIP) and reduces unfairness (31% over baselineand 12% over TA-DRRIP). Again for the
server workloads, VTS-cache and TA-DRRIP improve performance significantly over the baseline (17%
and 11% respectively).

Figure6 plots the weighted speedup improvements compared to LRU forall the 2-core and 4-core
workloads, sorted based on improvements due to VTS. Two observations can be made from the plots. One,
the average improvements of VTS-cache are not due to a small number workloads. Rather, VTS-cache
consistently outperforms prior approaches for most workloads. Two, as we described in section4.2, VTS-
cache can significantly affect performance for an LRU-friendly workload. This can be seen towards the
left end of the curves where LRU outperforms all prior mechanisms. D-VTS mitigates the performance
loss due to VTS-cache for these workloads by ignoring the VTS. For all other workloads, there is no
significant difference between VTS and D-VTS making the latter a more robust mechanism.
Varying the Size of VTS:

Figure7 shows the effect of varying the VTS size as a fraction of the number of blocks in the cache. As
the figure indicates (and as discussed in section4.1), VTS-cache provides maximum performance when
the size of the VTS is same as the number of blocks in the cache.

15



SAFARI Technical Report No. 2011-009, September 26, 2011

TA-DIP TA-DRRIP VTS D-VTS

N
or

m
al

iz
ed

W
ei

gh
te

d
S

pe
ed

up

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

1m 2m 4m 8m 2m 4m 8m 16m

2-core 4-core

Figure 9:VTS-cache with different cache sizes

LRU TA-DIP TA-DRRIP VTS D-VTS

W
ei

gh
te

d
S

pe
ed

up

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

200 300 400 200 300 400

2-core 4-core

Figure 10:VTS-cache with different memory latencies

N
or

m
al

iz
ed

W
ei

gh
te

d
S

pe
ed

up

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

TA-DRRIP SUB-P RTB ARC D-VTS

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

N
or

m
al

iz
ed

M
ax

im
um

S
lo

w
do

w
n

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TA-DRRIP SUB-P RTB ARC D-VTS

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

Figure 11:VTS-cache vs SUB-P, RTB & ARC for 2-core systems. Left: System throughput. Right: Unfairness

Interaction with Replacement Policy:
VTS-cache can be used with any cache replacement policy. Figure8 shows the performance improve-

ment of adding VTS to a cache following the LRU replacement policy and one following the RRIP [11]
replacement policy for 2-core workloads. As the figure shows, VTS-cache consistently improves per-
formance in both cases for all workload categories (11% on anaverage for LRU and 12% for the RRIP
policy). In fact, VTS-cache has the potential to be combinedwith any mechanism that works with blocks
that are already present in the cache. This is because VTS-cache filters away blocks with low temporal
locality and allows such mechanisms to work with potentially useful blocks.
Varying the Cache Size:

Figure9 shows the effect varying the cache size on system throughputimprovement using different
mechanisms. As expected, the improvements due to differentmechanisms decreases as the cache size
increases. However, VTS-cache consistently outperforms other mechanisms. We conclude that VTS-
cache is effective even with large cache sizes.
Sensitivity to Memory Latency:

Figure10 shows the effect of varying the memory latency. For these experiments, we use a fixed la-
tency for all memory requests. As expected, system throughput decreases as the memory latency increases.
However, the performance benefit of VTS-cache over other mechanisms increases with increasing mem-
ory latency. In future multi-core systems, bandwidth constraints will lead to increase in average memory
latency, a trend that is favorable for VTS-cache.

16



SAFARI Technical Report No. 2011-009, September 26, 2011

N
or

m
al

iz
ed

W
ei

gh
te

d
S

pe
ed

up

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

TA-DRRIP SUB-P RTB ARC D-VTS

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

N
or

m
al

iz
ed

M
ax

im
um

S
lo

w
do

w
n

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TA-DRRIP SUB-P RTB ARC D-VTS

Workload Groups

low intensity

sensitivity
low med high

med intensity

sensitivity
low med high

high intensity

senstivity
low med high

se
rv

er

al
l

Figure 12:VTS-cache vs SUB-P, RTB & ARC for 4-core systems. Left: System throughput. Right: Unfairness

Benchmarks

In
st

ru
ct

io
n

s
p

er
C

yc
le

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

sw
im

m
gr

id

tp
ch

6

fm
a3

d

fa
ce

re
c

le
sl

ie
3d

tp
ch

2

pa
rs

er

tp
ch

17

ap
pl

u

vp
r

h2
64

re
f

ap
ac

he
20

bz
ip

2

tw
ol

f

tp
cc

64

am
m

p

as
ta

r

eq
ua

ke

so
pl

ex

ca
ct

us
A

D
M

sp
hi

nx
3

xa
la

nc
bm

k

m
cf

ga
lg

el ar
t

gm
ea

n

D-VTS

ARC

RTB

SUB-P

DRRIP

Figure 13: VTS-cache vs other mechanisms for the single core configuration. Benchmarks are sorted based on
performance improvements due to VTS

Comparison to RTB, SUB-P and ARC:
Figures11 and12 compares VTS-cache to single usage block prediction, run-time cache bypassing

and adaptive replacement cache on 2-core and 4-core systemsrespectively. The figure also shows the
results for TA-DRRIP for reference. The results indicate that overall VTS-cache performs better than all
the other approaches. The plots also show that mechanisms that employ a per-block insertion policy based
on their reuse behavior perform comparably or better than TA-DRRIP which chooses the insertion policy
on an application granularity.

Among the prior approaches, ARC outperforms other mechanisms for most workloads. However,
VTS-cache, which is simpler and easier-to-implement mechanism performs better than ARC for most
multi-core workloads (3.5% on an average) except the serverworkloads.This is because, for the server
workloads,scansare the major source of performance degradation. ARC completely discards these scans
whereas VTS-cache will insert a small fraction of such blocks with high priority due to the underlying
bimodal insertion policy it uses for blocks with predicted low temporal locality.
Single-core Results:

Figure13 compares the performance (normalized to LRU) of D-VTS with DRRIP, SUB-P, RTB and
ARC. D-VTS improves performance by 5% compared to the baseline. It also provides better overall

17



SAFARI Technical Report No. 2011-009, September 26, 2011

performance than other approaches. Although the performance improvements due to VTS-cache for single
core are not as significant compared to that for multi-core systems, we present the results to show that
VTS-cache does not significantly degrade single core performance. The plot indicates that VTS-cache
loses performance mainly for LRU-friendly applications. Barring ARC, VTS-cache performs comparably
or better than the other approaches for most of the applications.

9 Related Work

The main contribution of this paper is a low-complexity cache management mechanism, VTS-cache, that
dynamically estimates the temporal locality of a cache block before insertion (using a structure called
victim tag store) and decides the insertion priority on a per-block basis. We have already provided ex-
tensive qualitative and quantitative comparisons to the most closely related work in cache management
[10, 11, 13, 24, 21], showing that VTS-cache outperforms all these approaches. In this section, we present
other related work.
Block-level Insertion Policies: Tyson et al. [38] propose a mechanism to tag load instructions as cacheable
or non-allocatable based on which blocks loaded by these instructions are either cached or bypassed. The
mechanism itself was proposed for L1 caches and is very similar in approach to single usage block pre-
diction [24]. Rivers et al. [29] propose a block-based approach similar to run-time cache bypassing [13]
to improve the performance of direct mapped caches. [30] compares some of the above mentioned ap-
proaches and shows that block address based approaches workbetter than instruction pointer based ap-
proaches for secondary caches. We show in this paper that VTS-cache performs better than the run-time
cache bypassing mechanism.
Cache Replacement Policies:Much prior research [2, 8, 11, 16, 19, 28, 33, 34] has focused on improving
hardware cache replacement policies. Researchers have also paid attention to improving cache utiliza-
tion [27, 31, 32, 40] by addressing the set imbalance problem. The insertion policy using VTS, proposed
in this paper, can be easily coupled with any of these mechanisms to further improve cache performance.
Virtual Memory Page Replacement Policies: A number of page replacement policies [1, 12, 14, 18, 21, 23]
have been proposed to improve the performance of the virtualmemory subsystem. As these mechanisms
were designed for software-based DRAM buffer management, they usually employ sophisticated algo-
rithms and can use large amounts of storage. As a result, extending them to hardware caches incurs high
storage overhead and implementation complexity in contrast to our low-cost VTS-cache design.
Victim Cache: Jouppi proposed victim caches [15] to improve the performance of direct mapped caches by
reducing conflict misses. The key idea is to cache some of the recently evicted blocks in a fully-associative
buffer. Even though the ideas might sound similar, the goal of VTS-cache is completely different. VTS-
cache aims at preventing blocks with poor temporal localityfrom polluting the cache. Also, VTS-cache
stores only the tags and not the data blocks themselves.
Shared Cache Management Mechanisms: With the advent of multi-cores, a number of mechanisms to
improve the performance and fairness of on-chip shared caches have been proposed. Cache partition-
ing [26, 36, 37, 39] is one technique that has been effectively used to improve performance. VTS-cache
can be coupled with many of these strategies by allowing themto work with blocks with potentially good
temporal locality. The same applies to mechanisms for improving fairness and QoS in multi-core systems
with shared caches [4, 9, 17, 22]. These approaches use soft partitioning to ensure that applications are
guaranteed some amount of cache space. Since blocks with lowtemporal locality contribute neither to
system performance nor to fairness, these QoS mechanisms can be employed in conjunction with VTS-

18



SAFARI Technical Report No. 2011-009, September 26, 2011

cache. While VTS-cache can improve performance by retaining only the most useful blocks in the cache,
these mechanisms can ensure fairness among different applications.

10 Conclusion

We presented VTS-cache, a cache management mechanism that determines the cache insertion policy on
a per-block basis. The key idea is to predict a missed block’stemporal locality before inserting it into
the cache and choose the appropriate insertion policy for the block based on that temporal locality predic-
tion. We present a new technique for estimating the temporallocality of a block before it is inserted into
the cache by monitoring the addresses of recently evicted blocks. We provide a practical, low-overhead
implementation of VTS-cache using Bloom filters.

Based on our evaluations, we conclude that VTS-cache provides significantly better system perfor-
mance compared to other similar approaches on a wide varietyof workloads and system configurations.
It also improves fairness for the multi-core systems we evaluated. Our future work will include develop-
ing and analyzing other temporal locality prediction schemes and also investigating the interaction of our
mechanism with prefetching.

References

[1] S. Bansal and D. S. Modha. CAR: Clock with adaptive replacement. InFAST-3, 2004.1, 18
[2] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Scavenger: A new last level cache architecture

with global block priority. InMICRO-40, 2007.1, 18
[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.ACM Communications, 13:422–426,

July 1970.2, 9
[4] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors. InICS-21, 2007.18
[5] M. Chaudhuri. Pseudo-LIFO: the foundation of a new family of replacement policies for last-level caches. In

MICRO-42, 2009.1
[6] Y. Chen, A. Kumar, and J. Xu. A new design of bloom filter forpacket inspection speedup. InGLOBECOM,

2007.10
[7] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm for the

closest-pair problem.Journal of Algorithms, 25:19–51, 1997.10
[8] E. G. Hallnor and S. K. Reinhardt. A fully associative software managed cache design. InISCA, 2000.1, 2, 18
[9] R. Iyer. CQoS: a framework for enabling qos in shared caches of cmp platforms. InICS-18, 2004.18

[10] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer. Adaptive insertion policies for
managing shared caches. InPACT-17, 2008.1, 2, 4, 13, 18

[11] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer.High performance cache replacement using re-reference
interval prediction. InISCA-37, 2010.1, 2, 4, 5, 13, 16, 18

[12] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference recency set replacement policy to improve buffer
cache performance. InSIGMETRICS, 2002.18

[13] T. Johnson, D. Connors, M. Merten, and W.-M. Hwu. Run-time cache bypassing.IEEE Transactions on
Computers, 48(12), dec 1999.1, 2, 10, 11, 12, 13, 14, 18

[14] T. Johnson and D. Shasha. 2Q: A low overhead high performance buffer management replacement algorithm.
In VLDB-20, 1994.18

[15] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative cache
and prefetch buffers. InISCA-17, 1990.18

19



SAFARI Technical Report No. 2011-009, September 26, 2011

[16] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement based on reuse-distance prediction. In
ICCD-25, 2007.1, 18

[17] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip multiprocessor architecture.
In PACT-13, 2004.18

[18] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. LRFU: A spectrum of policies
that subsumes the least recently used and least frequently used policies.IEEE Transanctions on Computers,
50:1352–1361, December 2001.1, 18

[19] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: Anew approach for eliminating dead blocks and
increasing cache efficiency. InMICRO-41, 2008.18

[20] M. J. Lyons and D. Brooks. The design of a bloom filter hardware accelerator for ultra low power systems. In
ISLPED, 2009.10

[21] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead replacement cache. InFAST-2, 2003. 1, 2,
5, 10, 12, 13, 14, 18

[22] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual privatecaches. InISCA-34, 2007.18
[23] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replacement algorithm for database disk buffering.

In SIGMOD, 1993.18
[24] T. Piquet, O. Rochecouste, and A. Seznec. Exploiting single-usage for effective memory management. In

ACSAC-12, 2007.1, 2, 10, 11, 12, 13, 14, 18
[25] M. K. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer.Adaptive insertion policies for high performance

caching. InISCA-34, 2007.1, 2, 4, 5, 8, 13
[26] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead, high-performance, runtime

mechanism to partition shared caches. InMICRO-39, 2006.18
[27] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-way cache: Demand based associativity via global

replacement. InISCA-32, 2005.18
[28] K. Rajan and G. Ramaswamy. Emulating optimal replacement with a shepherd cache. InMICRO, ’07. 1, 2, 18
[29] J. Rivers and E. S. Davidson. Reducing conflicts in direct-mapped caches with a temporality-based design. In

ICPP, 1996.1, 18
[30] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and M.Farrens. Utilizing reuse information in data cache

management. InICS, 1998.18
[31] D. Rolan, B. Fraguela, and R. Doallo. Reducing capacityand conflict misses using set saturation levels. In

HiPC, 2010.18
[32] D. Rolán, B. B. Fraguela, and R. Doallo. Adaptive line placement with the set balancing cache. InMICRO,

2009.18
[33] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling ways and associativity. InMICRO-43, 2010.1, 18
[34] A. Seznec. A case for two-way skewed-associative caches. In ISCA-20, 1993.18
[35] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous multithreaded processor.SIGOPS

Oper. Syst. Rev., 34:234–244, November 2000.13
[36] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory.IEEE Transactions on Computers,

41:1054–1068, September 1992.18
[37] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for memory-aware scheduling and

partitioning. InHPCA-8, 2002.18
[38] G. S. Tyson, M. K. Farrens, J. Matthews, and A. R. Pleszkun. A modified approach to data cache management.

In MICRO, 1995.1, 18
[39] Y. Xie and G. H. Loh. PIPP: Promotion/insertion pseudo-partitioning of multi-core shared caches. InISCA-36,

2009.1, 18
[40] D. Zhan, H. Jiang, and S. C. Seth. STEM: Spatiotemporal management of capacity for intra-core last level

caches. InMICRO, 2010.18

20


