SAFARI Technical Report No. 2011-009, September 26, 2011

Improving Cache Performance using Victim Tag Stores
SAFARI Technical Report No. 2011-009

Vivek Seshaditi, Onur Mutlu;, Todd Mowryf, Michael A Kozuch
{vseshadr,tcm@s. cnu. edu, onur @nu. edu, m chael.a. kozuch@ntel.com
tCarnegie Mellon University;Intel Corporation

September 26, 2011

Abstract

With increasing pressure on memory bandwidth, there haga benumber of proposals that im-
prove the cache replacement policy. These mechanismsantmét cache blocks while they are in the
cache and evict blocks that are deemed to have low temparalitto However, a majority of these
mechanisms are agnostic to the temporal locality of a miskexk and follow a single insertion policy
for all incoming blocks. There is comparatively very lith®rk on mechanisms to distinguish between
missed blocks based on their temporal reuse behavior.

Prior work has shown that distinguishing missed blocks thasetheir temporal locality and choos-
ing the insertion policy on a per-block basis can signifigamhprove performance. To this end, we
propose a new, simple hardware mechanism that predictert@otral locality of a missed block before
inserting it into the cache. The key insight behind the ol scheme is that if a block with good
temporal locality gets prematurely evicted from the cadheijll be accessed soon after eviction. To
implement this prediction scheme, our mechanism augmbeatsdnventional cache with a structure,
victim tag store, that keeps track of addresses of blockgexvifrom the cache. We provide a practical,
low-complexity hardware implementation of our mechanisimg Bloom filters.

We qualitatively and quantitatively compare our mechanisrfive different cache management
mechanisms and show that it provides significant performamprovements.

1 Introduction

Off-chip memory latency has always been a major bottleneclsystem performance. With increasing
number of on-chip cores, the problem is only bound to get @assthe demand on the memory system will
increase with increasing number of concurrently runniriaptions. To address this concern, researchers
have proposed a number of techniquis?, 5, 8, 10, 11, 13, 16, 18, 21, 24, 25, 28, 33, 39 for efficient
cache management. However, an overwhelming majority cfetipeoposals only address the problem of
cache replacement, i.e., on a cache miss, which block sieuldplaced to create space for the incoming
block. There is comparatively very little work that studytlee cache insertion policies §, 21, 24, 29, 39),

i.e., with what priority should a missed block be inserted.

In general, cache management policies order the set of blodke cache based ormpaority scheme,
whereby the higher the priority of a block, the longer it staty the cache. Therefore, the priority with
which a missed cache block is inserted into the cache datestine period for which it stays in the cache.
For example, for a cache following the conventional LRU pglinserting a block at the most recently
used (MRU) position ensures that the block stays in the cerleelong time. On the other hand, inserting
a block at the least recently used (LRU) position will forbe ttache to evict the block immediately.
Therefore, inserting all the blocks with a single policywaut considering their temporal reuse behavior
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can adversely affect performance. For example, inserfing@ming blocks at the MRU position will
lead to blocks with poor temporal locality to stay in the aaébr a long time before getting evicted. On
the other hand, inserting all incoming blocks at the LRU posiwill lead to blocks with good temporal
locality to get evicted before they are accessed again. Asiwshow later, inserting all the blocks with
some intermediate priorityi[., 28, 8] does not solve the problem.

To improve performance, the cache insertion policy needssure that blocks with good temporal
locality are inserted with high priority and blocks with paemporal locality are inserted with low priority.
To this end, we propose a simple hardware mechanism thaictgete temporal locality of a missed
block and chooses the insertion priority for the block bagedhe prediction. The key insight behind
our prediction mechanism is that if a block with good templmeality gets prematurely evicted from the
cache, then it will be accessed soon after eviction. Basddisnnsight, our mechanism predicts blocks
that are accessed soon after eviction to have good tempasditl. All other blocks are predicted to have
bad temporal locality. Blocks predicted to have good ldgadre inserted with high priority whereas a
majority of the remaining blocks are inserted with the loiy@gority.

To accomplish this prediction scheme, our mechanism auggaetonventional cache with a structure,
victim tag store (VTS), that keep tracksaddressesf blocks evicted from the cache. The size of the VTS
determines the boundary between blocks that are considsnestently evicted and those that are not. We
provide a practical, low-complexity implementation of ¥&S using Bloom filters §]. Henceforth, we
call a cache augmented with the VTS as VTS-cache.

To emphasize the need for such block-level insertion pesdicive qualitatively and quantitatively com-
pare VTS-cache to two state-of-the-art cache managembatrss: adaptive insertion policy(, 25]
and re-reference interval prediction policy!] and show that it significantly improves performance. We
also compare VTS-cache with three prior proposals for sozanthe insertion policies, single-usage block
prediction P4], run-time cache bypassingf] and adaptive replacement cache][ and show that VTS-
cache provides better performance.

VTS-cache hatow storage overhead and hardware complexégd isscalableto large cache sizes.
Also, as VTS filters away blocks with poor temporal localitgrh polluting the cache, it allows the in-
cache monitoring mechanism to just work with blocks with dgéemporal locality. Therefore, VTS-cache
can be combined with any existing cache management streadggther improve performance.

We make the following majacontributions:

e We demonstrate that not considering the reuse behavior ddck lat the time of insertion and
employing a single policy for all cache blocks leads to lowteyn performance.

e We propose a new low-complexity mechanism, VTS-cache, ghedicts the reuse behavior of a
missed block before inserting it into the cache and deteemits insertion priority based on that
prediction.

e We qualitatively and quantitatively compare VTS-cachdwito state-of-the-art cache management
schemes that are agnostic to reuse behavior of blocks atrte®f insertion. Evaluations show that,
compared to the best previous mechanism, VTS-cache impystem throughput by 6% for 2-
core systems 8% for 4-core systems.

e We also compare VTS-cache to three prior proposals for blewdd cache insertion policies and
show that it provides better performance (4% compared tptagareplacement cach&f], a page
replacement mechanism, and 8% compared to the best praviecisanism proposed for on-chip
caches, for 4-core systems).
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2 Our Approach: VTS-cache

As we mentioned in the introduction, majority of the progedar high-performance cache management
have looked at techniques to improve cache replacement. eAsilvshow in the paper, significant per-
formance improvements can be achieved by using a cacheiamseplicy that considers the temporal
locality of a missed block before inserting it into the cacl&tarting first with what the ideal insertion
policy would do, we describe our approach to address thisl@no.

The ideal insertion policy which attempts to maximize theray hit rate of the system will work
as follows. On a cache miss, it will determine the degree wip@ral reuse of the missed bloblkefore
inserting it into the cache. If the block has little or no teargd reuse compared to the blocks present in the
cache, then it will insert the block with thewestpriority or bypass the cache if possible. This will force
the replacement policy to evict the block from the cache imhiately without affecting other useful blocks
in the cache. On the other hand, if the block does have goopdeahlocality, then the ideal mechanism
will insert the block with a higher priority that keeps thebtk in the cache long enough for it to receive
a hit. Therefore, the ideal mechanism will follaifferentinsertion policies for different blocks based on
their temporal locality behavior.

Our goal in this work is to approximate the performance of tdeal mechanism with low hardware
overhead. To achieve this, we propose a new cache managerokenigue, VTS-cache, that has compo-
nents as shown in Figude The first component is temporal locality predictothat takes the address of
a missed cache block and predicts whether the block has gomabtal locality. The second component
is aper-block insertion policyhat decides the insertion policy for a missed block basetsoiemporal
locality prediction.

FIFO List

Pe.r-block. Evicted block a.ddress Victim Tag Store

Cache Insertion Policy insert oSt removewhen full
Reuse
prediction Good Locality Yes ~Present~_ No  Bad Locality

Missed block address | Temporal locality ' remove “in VTS? ]

predictor Insert with Insert with bimodal

high priority Missed block addres insertion policy

a) Components b) VTS Cache Operation

Figure 1:Conceptual design of the VTS-cache

2.1 VTS-cache: Conceptual Design

VTS-cache predicts the reuse behavior of a missed blockdb@séow recently it was evicted from the
cache the last time it was accessed. The key insight behiagtheme is as follows: if a block with
good temporal locality gets prematurely evicted from thehea then it will likely be accessed soon after
eviction. On the other hand, a block with low temporal loalvill not be accessed again for a long time
after getting evicted.

Figurelbshows the schematic representation of the operation of tf®&ache, based on this insight.
The cache is augmented with a structure that keeps traattdvEssesf blocks that were recently evicted
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from the cache. We call this structure thietim tag storgVTS). Conceptually, VTS is a first-in-first-out
(FIFO) list. When a cache block gets evicted from the cacheddress is inserted at the head of the VTS.
Once the VTS gets full, addresses are removed from the tHieo¥ TS to accommodate more insertions.
On a cache miss, VTS-cache tests if the missed block addrgsesent in the VTS. If it is, VTS-cache
assumes that the block was prematurely evicted from theecant predicts that it has good temporal
locality. If the block address is not present in the VTS, tMai5-cache predicts the block to have bad
temporal locality.

Intuitively, the insertion policy should ensure two thind9 blocks predicted to have good temporal
locality (i.e., predicted-good-locality blocks) shouldtrget evicted from the cache before they are ac-
cessed again, 2) blocks predicted to have bad temporaitio@iad., predicted-bad-locality blocks) should
get evicted from the cache immediately, without affectinigeo useful blocks. Therefore, one insertion
policy could be to insert a predicted-good-locality blockhahigh priority and a predicted-bad-locality
block with thelowestpriority™.

However, for an application with a working set that does nbirfithe cache, always inserting a
predicted-bad-locality block with the lowest priority doaot provide good performance. Most blocks
of such an application will be predicted-bad-locality hesmthey have large reuse distances and, hence,
are unlikely to be accessed immediately after getting ediétom the cache. For such an application, we
would like to keep a fraction of the working set in the cacloegiisure cache hits at least for that fraction.
As previous work has showr?§], the bimodal insertion policy (BIP) achieves this by detaring the
insertion priority of a block probabilistically: high priby with very low probability (6%1 in our design),
lowest priority with very high probability. Therefore, tm&ure good performance for a wide variety of
applications, including those with large working sets, Yd&he inserts a predicted-bad-locality block
using the bimodal insertion policy.

In summary, VTS-cache keeps track of addresses of blocksathaecently evicted from the cache
in the victim tag store. On a cache miss, if the missed blockess is present in the VTS, VTS-cache
predicts the block to have good temporal locality and irsse block with high priority. Otherwise, VTS-
cache predicts the block to have bad temporal locality asdria the block using the bimodal insertion
policy (i.e., high priority with a low probability, lowestrjrity with a high probability).

3 Qualitative Comparison to Previous Approaches

Prior research5, 10, 11] has proposed mechanisms to vary the insertion policy basede application
behavior. The primary aim of these mechanisms is to ensurd gerformance for applications with
large working sets and applications with multiple accesdgepas. In this section, we emphasize the need
for a per-block insertion policy by qualitatively compagivTS-cache to two prior proposals: thread-
aware dynamic insertion policy {] and thread-aware dynamic re-reference interval premhgidlicy [11].
Before proceeding with our case study, we provide an overgighese two mechanisms.

3.1 Overview of Prior Approaches

Thread-aware dynamic insertion policy [L0] (TA-DIP) : The conventional LRU policy inserts all new blocks
at the most-recently-used position and evicts blocks frbenléast-recently-used position. Certain ap-

1Bypassing bad-locality blocks is an option. We find that gsigpassing improves the performance of VTS-Cache by 1%
but do not include these results due to space constraints.

4
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Figure 2:Blocks referenced by applications A and B in one iteratiothefr respective loops. Blocks in the scan
S are different for each iteration of the loop. BEtandC denote the same sequence of blocks for all iterations.
The interleaved sequence shows the access sequence ay faestmred cache when the applications are running
concurrently. The interleaved sequence is also assumeghéat:

plications benefit from this policy. On the other hand, thidiqy provides sub-optimal performance for
applications with working sets bigger than the cache sié)@cks of such an application will keep evict-
ing each other from the cache. These applications benefit &dimodal insertion policy]5] (BIP)
which inserts majority of the blocks at the least-recentgd position, thereby retaining a fraction of the
working set in the cache. The key idea behind TA-DIP is to mheitee the best insertion policy for each
application dynamically in the presence of other applaradi For this purpose, TA-DIP uses set dueling
[25] for each application to identify which policy provides femmisses (using a small sample of sets) and
uses that policy for all the blocks of that application.

Thread-aware dynamic re-reference interval prediction [L1] (TA-DRRIP) : The LRU policy inserts all new
blocks at the MRU position. Therefore, blocks that do notehamy temporal locality stay in the cache
for a long time before getting evicted, occupying precioashe space. To mitigate this problem, Jaleel
et al. propose the re-reference interval prediction (RRB¥Ly which prioritizes the cached blocks based
on a prediction of how far into the future they will be accekéthe farther the re-reference, the lower
the priority). All blocks are inserted at the next-to-lowpsority, preventing blocks with poor temporal
locality from occupying cache space for a long time. A blcglelevated to the highest priority on a hit.
On a request for replacement, the prioritiesatifthe blocks are decremented until some block reaches
the lowest possible priority. To benefit applications walgle working sets, the paper also uses a bimodal
insertion policy, bimodal RRIP (similar to BIR §]), which inserts most of the blocks at the lowest priority.
Similar to TA-DIP, TA-DRRIP dynamically determines the bpslicy between the static RRIP policy and
the bimodal RRIP policy for each application in the systeging set dueling45).

3.2 Case Study

Prior work (e.g., [1, 21, 25]) has identified three common memory access patterns eéatliby various
applications. The first access pattern consists of repeaterences to a small set of blocks, that fits into
the cache, referred to as thache fittingaccess pattern. The second access pattern consists dfeitpea
references to a large sequence of blocks, that does not fieinache, referred to as thgclic reference
pattern The last access pattern, calkxhn consists of references to a large set of blocks with no teaipo
locality. With respect to a fully-associative cache withlddis, the sequence(, >, f1, f2, f2, f1) would
be a cache fitting pattermn;( co, ..., cs, c1, o, ..., cg) Would be a cyclic reference pattern, and the sequence
(s1, S2, ..., $S10) Would be a scan.

We illustrate the performance benefits of using a per-blaskiition policy (compared to the mecha-
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nisms described before) using a case study with two apitsitA and B, whose references contain these
access patterns. Figuzeshows the sequence of blocks referenced by applicationsiBamone iteration

of their respective loops. As indicated in the figure, aggilan A's references consist ofcache fitting
access pattern, to a sequence of blagkollowed by ascanto a sequence of blocks (different for each
iteration of the loop). On the other hand, application Bferences consists of a cyclic reference pattern
to a large sequence of block& The figure also shows the interleaved access sequence vewd
applications are running concurrently in a system with aesghafully-associative cache. For ease of un-
derstanding, we assume that the loops of the two applicatomsynchronized and hence, the interleaved
access sequence also repeats in a loop.

Figures3athrough3e show the steady state cache performance of various meam&nis this inter-
leaved access sequence. The ideal policy to maximize kit(figiure3a) for this access sequence is to
cache A's working set, i.eF', and a subset of blocks from B’s working set, &.This is because, in every
iteration, the blocks of” are accessed the most number of times (3 times) and hengshihield be cached
completely. Although all the blocks @f are accessed twice in every iteration, only a portion of tieam
be cached in the remaining available cache space. All ther dibcks, especially those belonging to the
scan$, should be inserted with the lowest priority and evictedfrine cache immediately.

The commonly used application-unaware LRU policy inselittha blocks at the most recently used
(MRU) position. This has two negative effects. One, blockthe scanS (accessed betweep andig,
figure 3b), which have no reuse, evict useful blocks of both the apfibos. Two, blocks of’, due to
their large reuse interval, evict each other and also blotks from the cache (between andts). As a
result, the LRU policy results in cache hits only for one dedaresses to blocks @f in every iteration.

Application A, due to its cache fitting access pattern, isquore misses with the bimodal insertion
policy. This is because blocks &f might repeatedly get inserted at the LRU position and edictenedi-
ately, before they can be accessed again. Therefore, TAMDIBIlow the conventional LRU policy for
A. For the same reason, TA-DRRIP will follow the static RRi&ipy for A. On the other hand, application
B, because of its large working set, will benefit from the baalkdinsertion policy as the alternative policies
(LRU or static RRIP) will cause B’s blocks to evict each oth&herefore, both TA-DIP and TA-DRRIP
will follow the bimodal insertion policy for application B.

By following the bimodal insertion policy for application, Both TA-DIP and TA-DRRIP improve
the hit rate for application B compared to the LRU policy. Hmer, since they follow a single insertion
policy for application A, blocks ofS' are treated similarly to blocks af. In the case of TA-DIP, this
causes accessesdo evict the complete working set from the cache as all itslkdaare inserted at the
MRU position (figure3c). TA-DRRIP, on the other hand, mitigates this effect bydaling a more robust
policy. However, for every block of evicted from the cache, the priorities of all the other bleke
reduced. Therefore, blocks 6fwill start polluting the cache, evicting useful blocks. Asesult, even
though TA-DRRIP improves performance, it is still far fromwhgeving the ideal hit rate (figuréd).

Finally, figure3e shows the cache performance of our proposed mechanismc¥@l&. Unlike prior
approaches, VTS-cache chooses the insertion policy basibeé dlock behavior. In this example, there are
two situations where VTS-cache makes a better decision amedgo prior approaches. First, it chooses
the bimodal insertion policy for blocks &f as they will be accessed for the first time and hence, will
not be present in the VTS. By doing so, it prevents these Bléam polluting the cache by inserting a
majority of them with théowestpriority. Second, at the end of each iteration some blocks gét evicted
from the cache and are accessmthediatelyat the beginning of the next iteration, while they are in the
VTS. Therefore, VTS-cache predicts these blocks to have ¢gemporal locality and insertl of them
with a high priority. Blocks ofC, due to their large reuse interval, are unlikely to be presethe VTS.

6
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(c) Thread-aware DIP: TA-DIP chooses the conventional LRU policy for A, i.e. aflAs blocks (F' & S) are inserted at the
MRU position, and the bimodal insertion policy for B, i.e. Ipm@a small fraction of B's blocks) are inserted at the MRU
position and the rest at LRU position. Without loss of geligtave assume this fraction to t%in this example.
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(d) Thread-aware DRRIP: TA-DRRIP chooses the static RRIP policy for A, i.e. all o6Alocks ¢ & S) are inserted with the
next-to-lowest priority. For B, it chooses the bimodal RRI#icy, i.e. only a fraction%) of its blocks (C) are inserted with the
next-to-lowest priority. The remaining blocks of B are irted with the lowest priority.
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(e) VTS-cache VTS-cache chooses the insertion policy on a per-blocksb@ocks ofS are always inserted with the bimodal
policy (betweerts andte) as it will be their first access. Blocks 6f are also inserted with the bimodal policy due to their large
reuse distance. However, betweerandt,, blocks of I’ that were evicted towards the end of the previous iteratietweentg
andtr), will be inserted at the MRU position as they were recentigted from the cache.

Figure 3: Benefits of using VTS-cachéach sub-figure shows the steady state cache performanice odtre-
sponding cache management mechanism on the interleaveerseg(the first row of boxes). The dark gray portion
indicates the fraction of blocks that hit in the cache. Theheastate is indicated in the second row of boxes at the
corresponding time step. The labels represent the set cfdbthat are cached at that time. The subsdfipidicates
that only a fraction of those blocks are present in the cache.
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Therefore, VTS-cache will insert them with the bimodal mig® policy. As a result, it retains a portion
of C'in the cache.

Therefore, by following a per-block insertion policy baseddifferent access behavior of blocks even
within an application (in the example, fét andS of application A), VTS-cache is able to prevent blocks
with little or no temporal locality from polluting the cachés a result, it is able to perform better than
other approaches which are agnostic to the temporal lgalimissed cache blocks.

4 VTS-cache: Design Choices & Improvements

In section2.1, we described the conceptual design and operation of thedAtBe. In this section, we

discuss some design choices and improvements to VTS-c&geeifically, we discuss the impact of the
size of the VTS, effect of VTS-cache on LRU-friendly apptioas, and the possibility of incorporating

thread-awareness into the VTS design.

4.1 Size of the Victim Tag Store

The size of the VTS, i.e., the number of block addresses itkeap track of, determines the boundary
between blocks that are classified as recently evicted avgktthat are not. Intuitively, the VTS size
should be neither too small nor too large. Having too smallT&Will lead to mispredictions for a lot of
blocks with good temporal locality. As a result, many suabcks will get inserted at the lowest priority
and evicted from the cache, thereby increasing the missCataversely, having too large a VTS will lead
to a good-temporal-locality prediction even for a blockiwét large reuse distance. Hence, these blocks
will get inserted with high priority and pollute the cachedyicting more useful blocks.

In our evaluations, we find that VTS-cache provides the beisbpmance when the size of the VTS is
same as the number of blocks in the cache. The reason bemsrabthid be that, a VTS with size smaller
than the number of blocks in the cache will lead to poor pentorce for an application whose working set
just fits the cache as a majority of its useful blocks will ined with the bimodal insertion policy. On the
other hand, a VTS with size bigger than the cache size witl teapoor performance for an application
whose working set is just larger than the cache size as mdstldbcks will be inserted with high priority
causing them to evict each other from the cache. In all ouluatians (except the one that studies the
effect of the VTS size), we set the VTS size to be same as théeuai blocks in the cache.

4.2 Improving Robustness of VTS-cache

When a block with good temporal locality is accessed for tret fime, VTS-cache will falsely predict
that it has poor temporal locality. Hence, it likely insethie block with thelowestpriority, forcing the
replacement policy to evict the block immediately on a sefflact. Therefore, for an application which is
LRU-friendly, i.e., blocks that are just accessed have geatporal locality, VTS-cache incurs one addi-
tional miss for a majority of blocks, by not inserting thenthlwigh priority on their first access. In most
of the workloads with LRU-friendly applications, we find tttais misprediction does not impact perfor-
mance, as the cache is already filled with useful blocks. KHewevhenall applications in a workload are
LRU-friendly, we find that VTS-cache performs worse thampéapproaches.

To increase the robustness of VTS-cache, we propose a dyisaimeme which uses set dueling]
to determine ifall the applications in the system will benefit from a alwayshhjgiority insertion policy.
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If so, then the cache ignores the VTS and inserts all blocledl @fpplications with high priority. We call
this enhancemerd-VTSand evaluate it in Sectiod. Our results indicate that using this enhancement
mitigates the performance loss incurred by VTS-cache faklsads with all LRU-friendly applications
and does not affect performance for other workloads.

4.3 Incorporating Thread-awareness into VTS

When a shared cache is augmented with the victim tag stoeey$s is also shared by concurrently
running applications. Therefore, it is possible that aggilons interfere with each other in the VTS too,
i.e., evicted blocks of one application can remove addsssielocks of another application from the VTS.
This can cause suboptimal or incorrect temporal localigdpations for the applications sharing the VTS:
due to interference in the VTS, a block with good reuse beahaan actually get evicted early and thus be
predicted as having bad temporal locality. One way to sdii@groblem is to partition the VTS equally
among multiple hardware threads sharing it. We call suchréitipaed VTS as dahread-aware VTSWe
found in our evaluations that a thread-aware VTS only presihinor performance improvements (around
1% on an average) compared to a thread-unaware VTS desigmuyh this could be an artifact of the
applications and the system configuration used in our etrahsg we do not extensively evaluate this
design choice due to space limitations.

5 Practical Implementation & Storage Overhead

One of the most important strengths of VTS-cache is thatifiementation does not requaey modifi-
cations to the existing cache structure. This is becauseace simply augments a conventional cache
with the victim tag store. The victim tag store only decidas insertion policy for anissedcache block.
Therefore, any in-cache monitoring mechanism that is us@aprove performance, including the cache
replacement policy, is left unchanged. The main source aiviiare overhead in the VTS-cache comes
from the VTS itself. In this section, we describe a practicgdlementation of the VTS using Bloom filters
[3] and evaluate its storage overhead.

5.1 Practical Implementation

A naive implementation of the VTS would be to implement it ae&associative structure and keep track
of evicted blocks on a per-set basis. However, such an ingaéation will have a huge storage overhead
and also consume a lot of static and dynamic power. For aipactow-overhead implementation of
VTS-cache, we modify the design of the VTS to make it impletable using Bloom filters].

A Bloom filter is a probabilistic data structure used as a cachpepresentation of a large set. New
elements can be inserted into the filter and elements carstezltié they are present in the filter. However,
the test operation can have false positives, i.e., it caelaldeclare an element as being present in the
set. Also, once inserted, the only means of removing elesrfenin a Bloom filter is to clear the filter
completely. Since the VTS is only used as a prediction mdasharihe false positives do not lead to any
correctness issues. However, for implementing VTS usintparB filter, we need to eliminate themove
operations (as shown in Figui®) from the VTS design.

There are two cases when a block address is removed from tBe @iie, when a missed block is
present in the VTS, it is removed from the VTS. We get rid o$ tthelete operation by simply leaving the
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block address is the VTS. The second case is when the VTS lesctuth and block addresses have to
be removed from the tail to accommodate more insertions.vdaldhis remove operation, we propose
to clear the VTS completely when it becomes full. Since theS\bhly keeps track of block addresses,
neither modification leads to any consistency issues.

With these changes, the VTS can be implemented using a Bldmand a counter that keeps track
of the number of addresses currently present in the VTS. Vdhalock gets evicted from the cache, its
address is inserted into the filter and the counter is incnégde On a cache miss, the cache tests if the
missed block address is present in the filter. When the coussiehes a maximum (size of the VTS), the
filter and the counter are both cleared.

It is worth mentioning that Bloom filters are widely used irrdhaare [, 20], especially in low-power
devices to filter away costly operations. Therefore, im@ating and verifying VTS in hardware should
be straight forward. Also, since VTS-cache does not intcedany modifications to the cache itself, it
further reduces the design complexity.

For our VTS implementation, we use a Bloom filter which uses\arage of 8-bits per address. We
use the state-of-the-art multiply-shift hashing techeifjg which can be easily implemented in hardware
and is also less expensive in terms of latency and dynamiggn®ur implementation has considerably
low false positive rate< 0.5%).

5.2 Storage overhead

The main source of storage overhead in VTS Cache is the Bldmmthiat implements the VTS. The size
of the Bloom filter depends on the maximum number of elemdrasit has to hold §/) and the average
number of bits used per element stored in the filter For our evaluations, the value 61, i.e., the size

of the VTS, is same as the number of blocks in the cashelherefore, the percentage storage overhead
of the VTS compared to the cache size in termg,of/, N, the cache block siz€y), and the average tag
entry size per block@() is given by,

% Storage overhead of VTS compared to cache-siZgomiitersize) )07 — %100% = 725100%

Thus, the percentage storage overhead of VTS is indepeofttetcache size itself. Rather, it depends
only onc, the cache block sizeé5) and the average tag entry siZ€)( In our evaluations, we use = 8
bits, B = 64 bytes andl’ > 2 bytes. For this configuration, the percentage storage eaérf VTS
compared to the cache size is less thai¥o.

6 Prior Work on Block-level Insertion Policies

Prior research has identified and studied the significanobh@bsing the insertion policy on a per-block
basis. In this section, we describe three such proposalsichwve quantitatively compare VTS-cache.
One of them is a instruction-pointer based approach calfegflesusage block predictio?{]. The other
two work based on block addresses similar to VTS-cache:time-cache bypassind f] and adaptive
replacement cache ]. As we will show in our evaluations (Secti@), VTS-cache performs better than
these three approaches.

10
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6.1 Single-usage Block Prediction SUB-P

Piquet et al. 4] make the observation that a majority of blocks that aretedi¢rom the last-level cache
without being reused at all (called single-usage blocks)l@aded by a few instructions. Based on this
observation, they propose a mechanism, single-usage pleckction (SUB-P), that identifies such in-
structions and predicts that blocks loaded by them will ndae accessed again. SUBHArarks such
blocks at the time of insertion and forces the replacemehtypto evict such marked blocks first. To
account for phase changes, a small fraction of single usagkdare inserted without marking.

VTS-cache is more general than SUB-P because it can rededatinful performance effects of not
only single-usage blocks but also blocks that exhibit very temporal locality. In fact, VTS-cache will
predict all single-usage blocks to have low temporal lagals they will not be present in the VTS the
only time they are accessed.

6.2 Run-time Cache Bypassing (RTB)

Johnson et al.l[3] propose a mechanism to compare the temporal locality ofssexi block to that of
the block about to be replaced. Based on the result, the dhideek is either inserted normally into the
cache or bypassed. The key observation behind their messhasithat there is a spatial correlation in the
reuse behavior of blocks, i.e., blocks that are close to e#toér in memory tend to show similar reuse
behaviors. RTB keeps track of reuse counts of macro blodkB fEgions in memory) in a table called
memory address table (MAT) on chip. On a cache miss, the eowuatues for the regions corresponding
to the missed block and the to-be-evicted block are compéfrdte counter for the missed block is lower
than that of the to-be-evicted block, then the missed blgglabses the cache.

One main disadvantage of RTB over VTS-cache is that withinaarmblock, it cannot distinguish
between a single block accesgetimes and: blocks accessed once each. This can lead to mispredictions
which can cause blocks with bad locality getting inserted the cache with high priority. Also, RTB
requires a MAT access on every cache access (hit/miss). €uatliler hand, VTS-cache only accesses the
VTS on a cache miss. It does not modify the cache hit operatiaii.

6.3 Adaptive Replacement Cache (ARC)

Adaptive replacement cache is a self-tuning page replacepadicy proposed for DRAM memory man-
agement. ARC adapts to different phases within an appdicahat benefit from caching either recently
used pages or frequently used pages. ARC achieves this indj\the set of in-memory pages into
two lists, one for recency and another for frequency, andhtaaiing a precise history of recently evicted
pages. The sizes of the two lists are controlled by a selfituparameter based on how often missed
pages hit in the history.

Although ARC is proposed as a page replacement policy, ibeagasily evaluated in a on-chip setting.
However, since ARC considerably modifies the cache stra@nd also requires precise history for tuning
its parameters, its hardware implementation incurs higrage overhead and design complexity. For this
reason, most prior works have dismissed ARC as an on-chipeca@anagement mechanism. But we
compare VTS-cache to ARC for completeness. Talgeesents a comparison of the storage overhead and
design complexity of the different mechanisms for a 16-wssoaiative 1MB cache using 64 byte blocks.

11
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| Mechanism | Storage overhead

Changes to cache? \ Madifies hit behavior?

SUB-P [24] | 14KB for instruction tags to Requires additional informar Updates to the prediction table.
tag store + prediction table* (| tion in the tag store.
KB)
RTB[13] ~ 3KB for a 1024 entry MAT* | No changes to cache Updates to the memory access
table.
ARC [2]] ~ 32KB for per-set history Separates a cache set into tw&ossible movement from one
lists (one for frequency & one list to another.
for recency)
VTS-Cache | 8KB for Bloom filter No changes to cache No changes to cache hits.

Table 1: Overhead and Design Complexity of Different Medsiaus. *In our evaluations for SUB-P and
RTB, we use an infinite sized table.

Core x86 in-order, 4 Ghz processor
L1-D Cache 32KB, 2-way associative, LRU replacement policy, singleleyatency
Private L2 Cache | 256KB, 8-way associative, LRU replacement policy, laten@/cycles
L3 Cache (single-core) 1 MB, 16-way associative, latency = 21 cycles
L3 Cache (dual-core)| Shared, 1 MB, 16-way associative, latency = 21 cycles
L3 Cache (quad-core) Shared, 2 MB, 16-way associative, latency = 28 cycles
Main memory 4 Banks, 8 KB row buffers, row hits = 168 cycles, row conflict§38 cycles

Table 2:Main configuration parameters used for simulation

7 Evaluation Methodology

We use an event-driven 32-bit x86 simulator that modelsrdencores. All systems use a three level
cache hierarchy. The L1 and L2 caches are private to indiiclures and the L3 cache is shared across all
the cores. We don't enforce inclusion in any level of the &iely. All caches uniformly use a 64B cache
block size. Writebacks do not update the replacement petitg. Other major simulation parameters are
provided in Table.

For evaluations, we use benchmarks from SPEC CPU2000 an@@mlsuites, three TPC-H queries,
a TPC-C server and an Apache web server. All results arectetidoy running a representative portion
of the benchmarks for 500 million instructions. We classignchmarks into nine categories based on
their cache sensitivity (low, medium or high) and intenglow, medium or high). For measuring cache
sensitivity, we run the benchmarks with a 1MB last-levelrmand a 256KB last-level cache, and use the
performance degradation as a metric that determines sésiVe define a benchmark’s intensity as the
number of L2 cache misses per 1000 instructions (L2-MPK&n&marks with L2-MPKI less than one
are not evaluated in our studies as they do not exert anyyeess the last-level cache. Taleshows
the intensity (under the L2-MPKI column) and cache sengjtijunder the Sens. column) of different
benchmarks used in our evaluation.

We evaluate single-core systems and multi-programmed leadk running on 2-core and 4-core
CMPs. We generate our multi-programmed workloads with wiifferent levels of aggregate intensity
(low, medium or high) and aggregate sensitivity (low, medior high). For 2-core simulations, we gen-
erate approximately 20 workloads in each category. Forré-sonulations, we generate between 10 to
15 workloads in each category. The server benchmarks ahea¢ed separately with ten 2-core and five

12
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[ Name [ L2-MPKI | Sens. [ Name [ L2-MPKI [ Sens. [[ Name [ L2-MPKI [ Sens. |
ammp 576 | L 36% | H GemsFDTD| 16.57 | H 1% | L soplex 2531 | H | 18% | H
applu 192 | L 2% | L gobmk 192 | L 2% | L sphinx3 1486 | H 9% | M

art 4056 | H [ 52% | H h264ref 152 | L 5% | M swim 177 | H | 46% | H
astar 2549 | H 6% | M hmmer 263 | L 2% | L twolf 1021 | M | 56% | H
bwaves 15.03 | H 0% | L Ibm 2464 | H 1% | L vpr 6.13| M | 46% | H
bzip2 701 | M | 32% | H leslie3d 1402 | H 7% | M wupwise 133 | L 1% | L
cactusADM 44 | L 8% | M libquantum | 14.31 | H 1% | L xalancomk | 10.89 | H | 16% | M
dealll 151 | L 9% | M lucas 311 | L 0% | L zeusmp 577 | L 1% | L
equake 922 | M 6% | M mcf 4958 | H | 26% | H apache20 58| L 9% | M
facerec 461 | L | 18% | H mgrid 314 | L 5% [ M tpcc64 1148 | H | 31% | H
fma3d 114 | L 5% | M milc 1233 | H 0% | L tpch17 1397 | H | 26% | H
galgel 794 | M | 17% | M omnetpp 1273 | H | 10% | M tpch2 1702 | H | 31% | H
gce 408 | L 3% | M parser 20| L | 18% | H tpch6 393 | L 23% | H

Table 3: Classification of benchmarks based in intensity and cachsitséty (L - Low, M - Medium, H - High).
L2- MPKI is the number of L2 misses per kilo instructions &@ehs. (sensitivity) is the % degradation in perfor-
mance going froma 1 MB L3 to a 256 KB L3.

\ Mechanism | Label | Implementation \

Thread-aware DIP1[]] TA-DIP Feedback based set-duelid@, dueling sets
Thread-aware DRRIPL]] | TA-DRRIP | RRPVinax = 7, Hit priority, feedback based set dueling
Single usage block predictio 4] SUB-P Infinite size predictor table, RRIP replacement policy
Run-time cache bypassingd] RTB Infinite size memory address table, RRIP replacement policy
Adaptive Replacement Cachel] ARC Per-set history of evicted blocks, RRIP replacement policy
VTS Cache VTS Bloom filter (8 bits per element), RRIP replacement policy
VTS Cache with set dueling D-VTS VTS Cache + set dueling to determine all-LRU workload

Table 4:List of evaluated mechanisms along with their implemeatati

4-core workload combinations. In all, we present result2fi8 2-core workloads and 135 4-core work-
loads.

Metrics: We compare performance using two metrics: weighted spefetijipnd instruction throughput.
For evaluating fairness, we use the maximum slowdown mef&imwer maximum slowdown indicates

better fairness.
Instruction Throughput = Z IPC;

|pCshared
7

|Pcalone
(2

|Pcalone
Maximum Slowdown = maxilh
; |PC§‘ ared

Weighted Speedup= >

i

(2

Mechanisms: Table 4 provides the references to the five different mechanismshiclwwe compare
VTS-cache to. We also mention the specific implementatioarpaters for each of those mechanisms.

8 Results & Observations

In this section, we present and discuss the results of oluaans comparing VTS-cache with the other
prior mechanisms. We initially present the case for thellegel insertion policy approach by comparing
VTS-cache with TA-DIP 10, 25] and TA-DRRIP [L1] across a variety of system configurations. To show
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the effectiveness of our proposed approach, we presettsesmparing VTS-cache to single-usage block
prediction P4], run-time cache bypassingjf] and adaptive replacement cache]|
2-Core Results:

Figure4 compares the system performance of VTS-cache with TA-DIPBDRRIP on a 2-core
system. The results are classified based on workload cgte@eeraged over all 208 2-core workloads,
VTS-cache improves system throughput by 15% compared &libasand 6% compared to TA-DRRIP.
It also reduces unfairness by 16% compared to baseline armbB¥pared to TA-DRRIP.

One major trend is that, for a given aggregate intensity,pdormance improvements of all the
mechanisms increase with increasing aggregate sensittiilS-cache outperforms other mechanisms for
all categories except the low-intensity low-sensitivigtegory. Workloads in this category rarely access
the L3 cache and also benefit less from more cache space.t)mdéae of the prior approaches improve
performance significantly compared to the baseline, irisigahat there is little scope for improvement.

For the server workloads, VTS-cache and TA-DRRIP dradyiaalprove performance over the base-
line (16% and 10% respectively). This is because these wads have a lot afcansthat can evict useful
blocks from the cache. Both VTS-cache and TA-DRRIP are desigo mitigate the effect of such scans.
However, TA-DRRIP does this by monitoring blockfter inserting them into the cache. On the other
hand, VTS-cache identifies that these blocks have low teahparality beforeinsertion and inserts most
of them with the lowest priority, thereby providing bettarformance than TA-DRRIP.
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4-Core Results:

Figure5 shows the corresponding results for 4-core systems. Thengdgons are similar to those
made for 2-core systems. VTS-cache significantly improysgesn throughput (21% over baseline and
8% over TA-DRRIP) and reduces unfairness (31% over basatidel 2% over TA-DRRIP). Again for the
server workloads, VTS-cache and TA-DRRIP improve perfaoroeasignificantly over the baseline (17%
and 11% respectively).

Figure 6 plots the weighted speedup improvements compared to LR@lfahe 2-core and 4-core
workloads, sorted based on improvements due to VTS. Twaredisens can be made from the plots. One,
the average improvements of VTS-cache are not due to a somaber workloads. Rather, VTS-cache
consistently outperforms prior approaches for most wai#tto Two, as we described in sectibf, VTS-
cache can significantly affect performance for an LRU-fdigrworkload. This can be seen towards the
left end of the curves where LRU outperforms all prior mecbiaas. D-VTS mitigates the performance
loss due to VTS-cache for these workloads by ignoring the MA@ all other workloads, there is no
significant difference between VTS and D-VTS making theeladt more robust mechanism.

Varying the Size of VTS:

Figure7 shows the effect of varying the VTS size as a fraction of thalper of blocks in the cache. As
the figure indicates (and as discussed in sectidh VTS-cache provides maximum performance when
the size of the VTS is same as the number of blocks in the cache.
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Interaction with Replacement Policy:

VTS-cache can be used with any cache replacement policyrégshows the performance improve-
ment of adding VTS to a cache following the LRU replacemeticgand one following the RRIPI[1]
replacement policy for 2-core workloads. As the figure showBS-cache consistently improves per-
formance in both cases for all workload categories (11% oavanage for LRU and 12% for the RRIP
policy). In fact, VTS-cache has the potential to be combwét any mechanism that works with blocks
that are already present in the cache. This is because Vadt& ddters away blocks with low temporal
locality and allows such mechanisms to work with potentiaieful blocks.

Varying the Cache Size:

Figure 9 shows the effect varying the cache size on system throughgubvement using different
mechanisms. As expected, the improvements due to diffenechanisms decreases as the cache size
increases. However, VTS-cache consistently outperfortneranechanisms. We conclude that VTS-
cache is effective even with large cache sizes.

Sensitivity to Memory Latency:

Figure10 shows the effect of varying the memory latency. For theseexpents, we use a fixed la-
tency for all memory requests. As expected, system thrautglgrreases as the memory latency increases.
However, the performance benefit of VTS-cache over othehar@sms increases with increasing mem-
ory latency. In future multi-core systems, bandwidth coaiats will lead to increase in average memory
latency, a trend that is favorable for VTS-cache.
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Comparison to RTB, SUB-P and ARC:

Figuresll and12 compares VTS-cache to single usage block prediction, ima-tache bypassing
and adaptive replacement cache on 2-core and 4-core systgpectively. The figure also shows the
results for TA-DRRIP for reference. The results indicaiat thverall VTS-cache performs better than all
the other approaches. The plots also show that mechanistrextiploy a per-block insertion policy based
on their reuse behavior perform comparably or better thatDRRIP which chooses the insertion policy
on an application granularity.

Among the prior approaches, ARC outperforms other mechani®r most workloads. However,
VTS-cache, which is simpler and easier-to-implement meisina performs better than ARC for most
multi-core workloads (3.5% on an average) except the seveekloads.This is because, for the server
workloads scansare the major source of performance degradation. ARC cdeipldiscards these scans
whereas VTS-cache will insert a small fraction of such b#owlth high priority due to the underlying
bimodal insertion policy it uses for blocks with predictesvitemporal locality.

Single-core Results:

Figure 13 compares the performance (nhormalized to LRU) of D-VTS wiRFDP, SUB-P, RTB and

ARC. D-VTS improves performance by 5% compared to the baselit also provides better overall
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performance than other approaches. Although the perfarenamprovements due to VTS-cache for single
core are not as significant compared to that for multi-costesyis, we present the results to show that
VTS-cache does not significantly degrade single core padace. The plot indicates that VTS-cache

loses performance mainly for LRU-friendly applicationsarBng ARC, VTS-cache performs comparably

or better than the other approaches for most of the appitsiti

9 Related Work

The main contribution of this paper is a low-complexity cachanagement mechanism, VTS-cache, that
dynamically estimates the temporal locality of a cache lbloefore insertion (using a structure called
victim tag store) and decides the insertion priority on algeck basis. We have already provided ex-
tensive qualitative and quantitative comparisons to thetmtmsely related work in cache management
[10, 11, 13, 24, 21], showing that VTS-cache outperforms all these approadhdhis section, we present
other related work.

Block-level Insertion Policies: Tyson et al. €] propose a mechanism to tag load instructions as cacheable
or non-allocatable based on which blocks loaded by theseigt®ns are either cached or bypassed. The
mechanism itself was proposed for L1 caches and is veryainmlapproach to single usage block pre-
diction [24]. Rivers et al. P9 propose a block-based approach similar to run-time cagpadsing { 3]

to improve the performance of direct mapped caché&s] jompares some of the above mentioned ap-
proaches and shows that block address based approachebettakthan instruction pointer based ap-
proaches for secondary caches. We show in this paper thatce@l¥e performs better than the run-time
cache bypassing mechanism.

Cache Replacement Policies:Much prior research’, 8, 11, 16, 19, 28, 33, 34] has focused on improving
hardware cache replacement policies. Researchers haveaits attention to improving cache utiliza-
tion [27, 31, 32, 4(] by addressing the set imbalance problem. The insertioieypaking VTS, proposed

in this paper, can be easily coupled with any of these meshanio further improve cache performance.
Virtual Memory Page Replacement Policies: A number of page replacement policiés [ 2, 14, 18, 21, 27
have been proposed to improve the performance of the vinteahory subsystem. As these mechanisms
were designed for software-based DRAM buffer managemkeay, tisually employ sophisticated algo-
rithms and can use large amounts of storage. As a resulpdirgethem to hardware caches incurs high
storage overhead and implementation complexity in contoasur low-cost VTS-cache design.

Victim Cache: Jouppi proposed victim caches] to improve the performance of direct mapped caches by
reducing conflict misses. The key idea is to cache some o&ttently evicted blocks in a fully-associative
buffer. Even though the ideas might sound similar, the gb&fTcs-cache is completely different. VTS-
cache aims at preventing blocks with poor temporal locdtiyn polluting the cache. Also, VTS-cache
stores only the tags and not the data blocks themselves.

Shared Cache Management Mechanisms: With the advent of multi-cores, a number of mechanisms to
improve the performance and fairness of on-chip sharedesabhve been proposed. Cache partition-
ing [26, 36, 37, 39] is one technique that has been effectively used to impreveopmance. VTS-cache
can be coupled with many of these strategies by allowing ttwework with blocks with potentially good
temporal locality. The same applies to mechanisms for imipgpfairness and QoS in multi-core systems
with shared caches![9, 17, 27]. These approaches use soft partitioning to ensure thdicappns are
guaranteed some amount of cache space. Since blocks wittefoporal locality contribute neither to
system performance nor to fairness, these QoS mechanisnisecamployed in conjunction with VTS-

18



SAFARI Technical Report No. 2011-009, September 26, 2011

cache. While VTS-cache can improve performance by retgiomy the most useful blocks in the cache,
these mechanisms can ensure fairness among differentafpqhs.

10 Conclusion

We presented VTS-cache, a cache management mechanisretigranities the cache insertion policy on
a per-block basis. The key idea is to predict a missed bldekigoral locality before inserting it into
the cache and choose the appropriate insertion policy ébliick based on that temporal locality predic-
tion. We present a new technique for estimating the tempaocality of a block before it is inserted into
the cache by monitoring the addresses of recently evicteckbl We provide a practical, low-overhead
implementation of VTS-cache using Bloom filters.

Based on our evaluations, we conclude that VTS-cache pssdgnificantly better system perfor-
mance compared to other similar approaches on a wide varietyrkloads and system configurations.
It also improves fairness for the multi-core systems wewatald. Our future work will include develop-

ing and analyzing other temporal locality prediction scbherand also investigating the interaction of our
mechanism with prefetching.
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