
Fingerpointing Correlated Failures in Replicated Systems

Soila Pertet, Rajeev Gandhi and Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University, Pittsburgh, PA 15213-3890
spertet@ece.cmu.edu, rgandhi@ece.cmu.edu, priya@cs.cmu.edu

Abstract
Replicated systems are often hosted over underlying
group communication protocols that provide totally or-
dered, reliable delivery of messages. In the face of a
performance problem at a single node, these protocols
can cause correlated performance degradations at even
non-faulty nodes, leading to potential red herrings in fail-
ure diagnosis. We propose a fingerpointing approach that
combines node-level (local) anomaly detection, followed
by system-wide (global) fingerpointing. The local anom-
aly detection relies on threshold-based analyses of sys-
tem metrics, while global fingerpointing is based on the
hypothesis that the root-cause of the failure is the node
with an “odd-man-out” view of the anomalies. We com-
pare the results of applying three classifiers – a heuristic
algorithm, an unsupervised learner (k-means clustering),
and a supervised learner (k-nearest-neighbor) – to finger-
point the faulty node.

1 Introduction
Distributed systems are vulnerable to the propagation of
failures due to the inherent coupling between compo-
nents. Fingerpointing (i.e., root-cause analysis, prob-
lem determination or failure diagnosis) is especially
challenging in these environments because the resulting
correlated failure manifestations can obscure the root-
cause of the problem and can lead to potential red-
herrings in diagnosis. We investigate the effectiveness
of machine-learning techniques to fingerpoint correlated
performance problems in distributed replicated systems.

Replication is commonly used for providing fault-
tolerance to distributed client-server applications. Repli-
cated systems often exploit group communication pro-
tocols [5] for the totally ordered, reliable delivery of
all messages to and from the replicated server. Group
communication protocols use timeouts to detect failures,
and attempt to reduce all failures to group-membership
changes, i.e., a slow node, a lossy network all ultimately
trigger a membership change. However, some failures
can hide “under the radar” of the protocol’s timeouts and
cause performance problems to linger and even propa-
gate within the system.

Our approach to fingerpointing correlated perfor-
mance problems combines node-level (local) anomaly

detection with subsequent system-wide (global) finger-
pointing. Local anomaly detection relies on threshold-
based analyses of system metrics. Global fingerpointing
is based on the premise that the root-cause of the fail-
ure is likely the node with an “odd-man-out” view of the
anomalies. For instance, the manifestation of the fail-
ure might be most severe at the faulty node, or the faulty
node might have a different view of the anomalies, e.g.,
the faulty node displays a surge in one metric while the
other nodes display a dip in the same metric.

We perform our investigations in the context of state-
machine replicated servers [11] hosted on top of two
different group communication protocols, namely, the
Spread token-ring protocol [2] and Castro-Liskov BFT
[4]). We inject faults at a single (server replica) node,
and monitor various system metrics in a black/gray-box
manner at the faulty and non-faulty nodes in the sys-
tem. We compare the results of applying three classifiers
– a heuristic algorithm [9], an unsupervised learner (k-
means clustering), and a supervised learner (k-nearest-
neighbor) – on the gathered system metrics, to finger-
point the faulty node.

Our initial results show that the performance of the
classifier depends on the extent to which the local anom-
aly detectors capture the asymmetric behavior between
the faulty node and the non-faulty nodes. For ex-
ample, all classifiers performed well at fingerpointing
the process hang and the memory leak. However, be-
cause group communication protocols involve network-
intensive coordination, faults (such as packet losses) that
affect network traffic were difficult to diagnose using a
black/gray-box approach alone because they led to cor-
related failure manifestations across the entire system.

This paper is organized as follows: Section 2 and 3
motivate and present our fingerpointing approach; Sec-
tion 4 and 5 discuss our experimental configuration and
empirical observations; Section 6 discusses related work,
and Section 7 outlines our conclusions.

2 Motivating Example
Token-ring group communication protocols, e.g.,
Spread, impose a logical ring on the set of nodes
constituting the node-group membership. A special
message called the token circulates within the node-

1

USENIX Workshop on Tackling Computer Systems Problems with Machine Learning
Techniques (SysML), Cambridge, MA (April 2007).



200 400 600

10
2

Client
R

es
po

ns
e

T
im

e 
(m

s)

200 400 600
0

1000

2000

3000

P
ac

ke
ts

/s
ec

200 400 600
0

5000

C
on

te
xt

S
w

itc
h/

se
c

200 400 600
0

500

1000

A
va

ila
bl

e
M

em
 (

M
B

)

200 400 600

200 400 600

200 400 600

Server1

200 400 600

200 400 600

200 400 600

Server2

200 400 600

200 400 600

200 400 600

Server3

200 400 600

200 400 600

200 400 600

Faulty Server4

Time (seconds) 

Figure 1: A memory leak was injected in Spread-hosted
server4 at ∼400 seconds. This causes correlated per-
formance degradations on the non-faulty servers and re-
sults in increased response times at the client. The faulty
server eventually crashes at ∼600 seconds.

group, sequentially from one node to the next. A node
is allowed to broadcast messages to the other nodes
only when it holds the token. This circulation of the
token around the ring is critical to achieving consensus
on message ordering and group membership. Since
nodes can only broadcast messages when they hold the
token, a performance slowdown due to a faulty node can
manifest even at non-faulty nodes, leading to correlated
performance degradations.

Figure 1 shows the propagation of failure manifesta-
tions in a system with 4 server replicas and a single client
hosted on top of Spread. A memory leak is injected
at ∼400 seconds at server4, where available mem-
ory is first metric to exhibit an anomaly. The memory
leak eventually slows down server4 due to increased
paging activity as server4 runs out of memory. The
memory leak in server4 results in a slowdown in the
token’s circulation, with resulting drops in network traf-
fic and context-switch rates at even the non-faulty nodes.
The client observes increased response times, although
the client is simply selecting the first response that it re-
ceives from any of the server replicas. server4 finally
crashes at ∼600 seconds, and is subsequently restarted.
This example illustrates two challenges in fingerpoint-
ing, namely:
� Failure manifestation changes “shape”: Initially,
the memory leak manifests only as a drop in available
memory. However, as server4 runs out of memory,
the corresponding effect manifests on other metrics, such
as network traffic and context-switch rate.
� Failure manifestation propagates to non-faulty
nodes: Due to the inherent coupling in the system, a
performance slowdown on one node results in a corre-
lated slowdown on non-faulty nodes, thereby obscuring
the root-cause of the problem.

3 Fingerpointing Approach
Because correlated failure-manifestations can arise on
multiple nodes in the system, our approach combines lo-
cal (node-level) anomaly-detection with global (system-
wide) fingerpointing. We examine the differences in the
various nodes’ view of anomalies rather than comparing
the nodes’ raw metric values because each node might
have a different (raw-metric) view of what is normal.

3.1 Instrumentation Framework
We instrumented each server node in the system to
collect time-series data of the application-, OS- and
protocol-level metrics at runtime. Because our current
fingerpointing granularity is the node, we focus on node-
level metrics and do not consider process-level metrics.
We collected OS-level metrics by sampling the /proc
pseudo-filesystem every second. In addition, we moni-
tored network traffic using the libpcap packet-capture
facility. We used these network traces to generate logs of
aggregate network traffic in terms of packets/sec.

We instrumented Spread to keep track of the number
of tokens received per second, the number of message-
retransmissions per second, and membership changes.
For BFT, we monitored the checkpoint frequency, the
message-retransmission rate and membership changes.
The BFT checkpointing frequency was set to approx-
imately once every 2.5 seconds. We converted the
checkpoint event-series data to time-series data of check-
points/second by averaging checkpoints over 20-second
intervals. At the application level, we monitored the re-
sponse time at the client-side of the application.

3.2 Local Anomaly Detection
We used a simple statistical approach to detect anomalies
in the performance metrics collected on each node. We
used fault-free training data to compute initial estimates
of the mean (μ) and the standard deviation (σ) of each
performance metric. We then computed an adaptive-μ
and adaptive-σ for each metric as a weighted combina-
tion (λ=0.95) of the previous estimate of the mean and
the current observation. The adaptive algorithm helped
us deal with slow changes in operating conditions.

We flagged anomalies if the performance metric’s
value fell beyond ±6σ threshold from the adaptive-μ.

Table 1: Metrics collected.
OS-level Available memory (bytes)

Context switches/second
Packets/second

Protocol-level Tokens received/second
(Spread) Message retransmissions/second
Protocol-level Checkpoints/second
(BFT) Message retransmissions/second
App-level metrics Response time

2



For each sample period, we generated an anomaly vector
showing the anomalous state of the performance metric.
A “1” in the anomaly vector indicated an anomalous met-
ric, while “0” indicated no anomaly. We also generated
anomaly vectors using multiple thresholds based on the
representation proposed in [8]. Anomalies were charac-
terized as extremely low (−6σ), low (−3σ), normal, high
(+3σ) and extremely high (+6σ). These five states were
respectively represented as integers ranging from -2 to 2.

The only metric that was the exception to this rule was
available memory, where we opted for a μ-based thresh-
old. Memory usage was fairly constant and the σ-based
threshold resulted in a high false-positive rate. We used a
threshold of ± 0.5% and ± 0.25%of the mean, μ, instead
of ±6σ and ±3σ respectively, to detect anomalies.

As an example, if server4 had a memory leak, the
node-level anomaly vectors might resemble the follow-
ing, for the metrics:

[memory, packets/sec, context-switches]
server4: [-2, 0, 0]; server3: [0, 0, 0]; server2: [0, 0, 0]

These vectors indicate that server4 experienced an ex-
tremely high (thus, the -2) anomalous memory behavior,
while the other server nodes experienced no anomalies
(thus, the 0) in any of their metrics.

Noise filtering We used a two-phase process to filter
out any “noise” and to construct a perfect anomaly detec-
tor with a zero false-positive rate. In the first phase, we
required that an anomaly be detected in about 50% of the
metric’s observed values in the window of length anom-
alyWin before logging it. In the second phase, we trigger
fingerpointing only if anomalies are logged in more than
50% of the samples in a window of length fingerpointWin
of any metric. We tuned our anomaly detector to yield a
zero false-positive rate by setting fingerpointWin=15, and
logging anomalies only if we observed 3 or more anom-
alous points in a window of length anomalyWin=7.

We initially planned to trigger fingerpointing when the
client-side response time violated desired service-level
objectives (SLO). However, some faults, e.g., process
hangs, were masked by the server’s replication and did
not adversely impact client-side response times.

3.3 Global Fingerpointing

The anomaly-detection process in Section 3.2 served as a
preparatory phase for our fingerpointing algorithm. Due
to the inherent coupling in group communication proto-
cols, we fingerpoint the faulty node by comparing devi-
ations from normal behavior across the nodes that host
server replicas in the system, instead of focusing on the
behavior of only a single node. To perform fingerpoint-
ing across the server nodes, we synchronized the gener-
ated anomaly logs using timestamps.

We investigated three approaches to fingerpointing

namely, a heuristic approach, unsupervised clustering (k-
means), and supervised clustering (k-nearest neighbor).

3.3.1 Heuristic Approach

The heuristic fingerpointer [9] examined the anomaly-
vector logs of the performance metrics across all of the
nodes, in each fingerpointWin, using the following rules.
(i) If some node is markedly the only one to be problem-
atic in one or more of its metrics, then, we fingerpoint
that particular node. (ii) If more than one node is prob-
lematic in one or more of its metrics, then, we fingerpoint
the node that is problematic in the most number of its
metrics. (iii) If more than one node is problematic in the
most number of metrics, then, we fingerpoint the node
(if one exists) that has historically exhibited anomalies
in previous fingerpointWins. This fingerpointer examines
the anomaly-vector logs produced using the single ±6σ
threshold described in Section 3.2.

3.3.2 k-Means Clustering (Unsupervised)

We used MATLAB’s implementation of k-means cluster-
ing for our unsupervised learning algorithm. This finger-
pointer is based on the premise that, during the period of
performance degradation, the system exhibits two dom-
inant types of behavior: (i) the failure as perceived by
the faulty node, and (ii) the failure as perceived by the
non-faulty nodes. Therefore, we set k = 2.

As with the heuristic approach, the k-means finger-
pointer examined the anomaly-vector logs of the per-
formance metrics across all of the nodes, in each fin-
gerpointWin. We investigated the effectiveness of using
anomaly-vector logs with a single threshold (denoted by
kmeans) and with multiple thresholds or severity lev-
els (denoted by kmeans+sev). We used the sum of
absolute differences, (i.e., L1) distance-measure because
the anomaly vectors use normalized values, rather than
the raw values, of the metrics.

For fingerpointing, we assume that the majority of the
nodes are fault-free, that they have a similar view of the
failure and can, therefore, be grouped in the larger clus-
ter. We assume that the faulty node will be grouped into
the smaller cluster, and that the faulty node will be the
most frequently occurring node in this smaller cluster. If
we fingerpoint more than one node in a fingerpointWin,
we examine the nodes that we historically fingerpointed
in previous fingerpointWins. If only one node was fin-
gerpointed historically, we flag that node as faulty, other-
wise we flag all of the fingerpointed nodes in the current
window as faulty (i.e, we have an obscured diagnosis).

To reduce the possibility that kmeans converges to a
local minimum, we repeat the clustering process 10 times
in each fingerpointWin, starting with randomly selected
centroids for each repetition. We then choose the solu-

3



0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

70

80

90
k=2

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

16
k=3

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

9

10
k=4

Figure 2: Correlation similarity measures for increasing
values of k for memory leak in Spread. For k = 2, sim-
ilarities are concentrated about 1 (most solutions highly
similar). For k > 2, the wide spectrum of similarities
implies there is no longer one correct solution.

tion that minimizes the intra-cluster distance.

Cluster stability. One of the main challenges in unsu-
pervised clustering is selecting the optimal number of
clusters. We investigated our hypothesis that there are
only two dominant clusters in the data by using the corre-
lation similarity measure proposed in [3]. This similarity
measure ranges from 0 to 1, with values closer to 1 in-
dicating high similarity. The idea is that if the similarity
between clusterings obtained by taking multiple random
subsamples of the data is high, then, the partitions found
by clustering are meaningful. However, if the similarity
measures are more widely distributed, this implies that
there is no preferred solution and that the same data point
may be classified into different clusters depending on the
random selection of the initial centroids.

Figure 2 shows the distribution of similarity measures
for a 15-second fingerpointWin for the memory leak in
Spread. This window contains anomaly vectors with
multiple severity-levels for OS-level metrics generated
when the failure manifested on multiple nodes in the sys-
tem. We varied the cluster sizes from 2 to 4 and used
subsamples of 80% of the dataset. We computed similar-
ity measures for 100 random subsamples of the data for
each cluster size. For k = 2, the similarities are concen-
trated around 1 (i.e., most solutions are highly similar).
For k > 2, we observe a wide spectrum of similarities,
implying that there is no longer one correct solution. Our
hypothesis held for memory leaks and process hangs, but
was violated for packet-loss faults due to the symmetric
manifestation of the fault across all nodes in the system.

Changing failure manifestations. The clustering algo-
rithm also experiences instability when the failure man-
ifestation changes, thereby violating the assumption that
k = 2. For example, when the memory leak pro-
gresses from manifesting only on available memory at

the faulty node to manifesting as drops in network-traffic
and context-switches across all nodes. We mitigated
this instability by utilizing a temporal sliding window of
length (fingerpointWin) so that the changing failure man-
ifestation is typically limited to a single window.

3.3.3 k-Nearest Neighbor (Supervised)
We used MATLAB’s implementation of the k-nearest
neighbor (denoted by knn+sev) for our supervised
learner. knn+sev classifies objects based on the closest
training examples in the feature space. We set k = 1 as
this minimized misclassifications in our data. As with the
k-means clustering, we used the L1 distance-measure.
We provided training examples using anomaly vectors
with multiple severity levels for each type of fault in
Spread and BFT. Anomaly vectors were labelled as either
fault-free or faulty. With knn+sev, we could distin-
guish between different types of faults (e.g., we could di-
agnose that server4 has a memory leak, as opposed to
the “blanket” diagnosis that server4 is faulty). How-
ever, for the sake of comparison against the other two
fingerpointing techniques, we used the coarser labels.

The disadvantage of structuring the anomaly vectors
as described in Section 3.2 is that the correlated failure
manifestations cause some anomaly vectors for different
faults to appear the same. For example, both the mem-
ory leak at non-faulty Spread nodes and the packet-loss
fault at a faulty Spread node manifest as drops in network
traffic and context switches. These ambiguous anomaly
vectors can lead to misclassification.

A work-around for this might be to use a single ag-
gregate anomaly vector that represents anomalies across
all the nodes. For the sample anomaly vectors shown in
Section 3.2, we would now obtain an aggregate anomaly
vector for a memory leak in server4 to be:

[-2,0,0, 0,0,0, 0,0,0]
(interpret as [<server4>, <server3>, <server2>]).
Similarly, a memory leak in server3 would be:
[0,0,0, -2,0,0, 0,0,0]

However, this approach would need require more train-
ing examples, one for each kind of fault at every node in
the system.

We therefore opted to use the first approach, despite its
potential for misclassification, primarily to provide a fair
comparison against the other two fingerpointers. Once
we trained the knn+sev fingerpointer, we used it to
classify each anomaly vector in the fingerpointWin as ei-
ther faulty or fault-free. If a majority of the anomaly vec-
tors in fingerpointWin are classified as faulty, we finger-
point that node. As with the k-means fingerpointer, if we
fingerpointed more than one node in a fingerpointWin,
we looked at the nodes that we had historically finger-
pointed in the previous fingerpointWins. If only one node
was fingerpointed in the previous fingerpointWins, we

4



flagged this node as faulty, otherwise we flagged all of
the fingerpointed nodes in the current window as faulty.

4 Data Collection
We conducted our experiments in the Emulab distributed
testbed [13] using 5 nodes (850MHz processor, 256kB
cache, 512MB RAM, RedHat Linux kernel 2.4.18) con-
nected by a 100Mbps LAN. In both the Spread- and the
BFT-supported configurations, we used a simple state
machine-replicated client-server test application, with
one client and four server replicas, each on its own node.
The client sent a 1024-byte request to the server at 10ms
intervals. In addition, we used the default membership
timeouts (5 seconds) for both Spread and BFT.

Each experiment covered 30,000 round-trip client re-
quests and ran for ∼10 minutes. We collected traces
for the metrics listed in Section 3.1, and injected the 3
faults identified in Section 4.1. We ran each experiment
3 times, yielding a total of 27 runs (i.e., (Spread + BFT
Leader + BFT Follower) × (3 faulty ) runs × 3 times).

4.1 Fault Injection
Exploiting the dynamic linker’s library interpositioning
capability (through the LD PRELOAD environment vari-
able in Linux), we implemented an interceptor to inject
faults transparently into a process by overriding specific
system calls, in user space, as the process executes. Our
fault injection target was either the server replica or the
protocol running on a designated node in the system. We
injected the following performance-degrading faults:
� Memory leak: We injected a memory leak by by-
passing the replica’s free() system call. To accel-
erate the rate of the leak, we modified our server to allo-
cate/deallocate 96kB with each request, as a part of nor-
mal operation. This fault studied the effect of gradually
loading a node and starving the protocols of memory.
� Process hang: We intercepted the replica’s read()
system call and blocked the replica for several minutes.
This fault investigated the effect of a slow receiver on the
protocol’s flow control.
� Packet-loss fault: We intercepted the protocol’s
send() and recv() calls and randomly dropped in-
coming and outgoing packets at packet-loss rates of 20%
of the packets at the node. This fault investigated the
effect of message retransmissions and network partitions
in the protocol.

5 Results of Fingerpointing
At the end of each run, each fingerpointing technique di-
agnosed a set of nodes as faulty. We categorized each
node in this set as either: (i) a true positive (tp), i.e.,
we correctly fingerpointed the guilty node.; (ii) a false
positive (fp), i.e., we incorrectly fingerpointed an inno-

Memory leak Hang 20% Pkt loss

heuristic
kmeans
kmeans+sev
knn+sev

F
−

sc
or

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Performance of the three fingerpointing tech-
niques across various faults.

cent node.; (iii) a false negative (fn), i.e., we failed to
fingerpoint the guilty node.

We then calculated precision and recall.
Precision refers to the fraction of nodes finger-
pointed that were indeed faulty, i.e., tp/(tp+fp).
Whereas recall refers to the probability that a
node is fingerpointed given that it is faulty, i.e.,
tp/(tp+fn).The F-score is the harmonic mean of
precision and recall. The F-score ranges from 0 to 1;
an F-score equal to 1 implies perfect diagnosis.

5.1 Preliminary Analysis

Figure 3 shows the results of our fingerpointing tech-
niques. The F-score is reported for each type of fault
across all runs for the Spread- and BFT-supported con-
figurations. Each technique performed well at finger-
pointing the memory leak and process hang. Memory
leaks and process hangs manifested asymmetrically on
the faulty and non-faulty nodes, for example, memory
leaks manifested as severe drops in available memory on
the faulty node. These asymmetries were highlighted by
the local anomaly detectors, facillitating global finger-
pointing.

The heuristic fingerpointer and the unsupervised
single-threshold kmeans perfectly diagnosed the mem-
ory leak and process hang. The k-means algorithm
with multiple thresholds/severity levels (kmeans+sev)
and the supervised k-nearest neighbor performed slightly
worse. The performance of kmeans+sevwas degraded
when the fault changed its manifestation – at these tran-
sition points, the anomaly vectors did not group into
two clusters alone because the fingerpointing window
contained multiple faulty behaviors. The supervised
k-nearest neighbor clustering, knn+sev, on the other
hand, performed worse when the correlated manifesta-

5



tion caused some anomaly vectors for different types of
faults to look the same, resulting in misclassification.

All techniques performed poorly at diagnosing the
packet-loss faults because these tended to manifest sym-
metrically across all nodes as drops in traffic. How-
ever, the use of multiple thresholds/severity levels in
kmeans+sev and knn+sev improved diagnosis be-
cause the local anomaly detectors were better able to
highlight subtle differences between the nodes. For ex-
ample, highlighting drops in checkpointing frequency in
BFT, and in the case of knn+sev, capturing a slight in-
crease in message retransmission in Spread.

6 Related Work

Current research in application-level root-cause analysis
centers on identifying the faulty components along the
causal request path [1, 6]. However, components along
the causal request path whose behavior is identified as
anomalous may not always be the source of the prob-
lem. This may occur due to hidden dependencies be-
tween nodes that are not directly related to the request
call-graph. Our approach provides insight on how to di-
agnose such failures in distributed, replicated systems.

Pip [10] helps programmers find bugs in distributed
systems by comparing the actual system behavior against
the expected behavior. Pip can identify performance
problems in paths outside the user’s causal request path.
Pip requires programmers to annotate their systems with
expectations of normal behavior whereas we profile sys-
tem metrics to build templates of normal behavior.

Pinpoint [7] and PeerPressure [12] both use peer com-
parison to diagnose problems. Pinpoint diagnoses par-
tial failures in J2EE environments whereas PeerPres-
sure diagnoses configuration errors. Our approach also
uses peer comparison to diagnose performance problems
which can propagate through the system, thereby obscur-
ing the root-cause of the problem.

7 Conclusion

Combining node-level (local) anomaly detection with
subsequent system-wide (global) fingerpointing can aid
in fingerpointing correlated failures in replicated sys-
tems. The accuracy/performance of fingerpointing de-
pends on how good the local anomaly detectors are at
highlighting any asymmetric behavior between the faulty
node and the non-faulty nodes. For example, faults
which manifest asymmetrically such as memory leaks
and process hangs are easier to diagnose than packet-loss
faults, which tend to manifest symmetrically across all
nodes as drops in traffic. The use of multiple thresh-
olds/severity levels improved the diagnosis of packet-
loss faults because the local anomaly detectors were bet-
ter able to highlight subtle differences between the nodes.

Overall, it appears that machine-learning techniques
can assist in fingerpointing some types of correlated per-
formance problems in distributed systems. Propagating
and morphing failure manifestations are likely to war-
rant additional research into the combination of multiple
machine-learning techniques in order to fingerpoint the
faulty node with high accuracy and low false-positive
rates, in both replicated and heterogeneous distributed
systems.

References
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,

REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxes. In Symposium
on Operating Systems Principles (Boston Landing, NY, October
2003), pp. 74–89.

[2] AMIR, Y., DANILOV, C., AND STANTON, J. A low latency, loss
tolerant architecture and protocol for wide area group communi-
cation. In International Conference on Dependable Systems and
Networks (New York, NY, June 2000), pp. 327–336.

[3] BEN-HUR, A., ELISSEEFF, A., AND GUYON, I. A stability
based method for discovering structure in clustered data. In Pa-
cific Symposium on Biocomputing (Lihue, Hawaii, January 2002),
pp. 6–17.

[4] CASTRO, M., AND LISKOV, B. Practical Byzantine fault toler-
ance. In Symposium on Operating Systems Design and Imple-
mentation (New Orleans, USA, February 1999), pp. 173–186.

[5] CHOCKLER, G. V., KEIDAR, I., AND VITENBERG, R. Group
communication specifications: A comprehensive study. ACM
Computing Surveys 33, 4 (December 2001), 1–43.

[6] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,
KELLY, T., AND FOX, A. Capturing, indexing, clustering, and
retrieving system history. In Symposium on Operating Systems
Principles (New York, NY, USA, October 2005), pp. 105–118.

[7] KICIMAN, E., AND FOX, A. Detecting application-level fail-
ures in component-based internet services. IEEE Transactions on
Neural Networks: Special Issue on Adaptive Learning Systems in
Communication Networks 16, 5 (September 2005), 1027– 1041.

[8] MAXION, R., AND FEATHER, F. A case study of ethernet anom-
alies in a distributed computing environment. IEEE Transactions
on Reliability 39, 4 (October 1990).

[9] PERTET, S., GANDHI, R., AND NARASIMHAN, P. Group com-
munication: Helping or obscuring failure diagnosis? Tech. Rep.
CMU-PDL-06-107, Carnegie Mellon University Parallel Data
Lab Technical Report, June 2006.

[10] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. In Symposium on Networked Systems De-
sign and Implementation (San Jose, CA, May 2006), pp. 115–
128.

[11] SCHNEIDER, F. B. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing Surveys
(CSUR) 22, 4 (December 1990), 299–319.

[12] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND

WANG, Y.-M. Automatic misconfiguration troubleshooting with
PeerPressure. In USENIX Symposium on Operating Systems De-
sign and Implementation (San Francisco, CA, December 2004),
pp. 245–258.

[13] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND

JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In Symposium on Operating Sys-
tems Design and Implementation (Boston, MA, December 2002),
pp. 255–270.

6


