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ABSTRACT
Search advertising depends on accurate predictions of user behav-
ior and interest, accomplished today using complex and computa-
tionally expensive machine learning algorithms that estimate the
potential revenue gain of thousands of candidate advertisements
per search query. The accuracy of this estimation is important for
revenue, but the cost of these computations represents a substantial
expense, e.g., 10% to 30% of the total gross revenue. Caching the
results of previous computations is a potential path to reducing
this expense, but traditional domain-agnostic and revenue-agnostic
approaches to do so result in substantial revenue loss. This paper
presents three domain-specific caching mechanisms that success-
fully optimize for both factors. Simulations on a trace from the Bing
advertising system show that a traditional cache can reduce cost
by up to 27.7% but has negative revenue impact as bad as −14.1%.
On the other hand, the proposed mechanisms can reduce cost by
up to 20.6% while capping revenue impact between −1.3% and 0%.
Based on Microsoft’s earnings release for FY16 Q4, the traditional
cache would reduce the net profit of Bing Ads by $84.9 to $166.1
million in the quarter, while our proposed cache could increase the
net profit by $11.1 to $71.5 million.
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1 INTRODUCTION
Sponsored search advertising is an indispensable part of the busi-
ness model of modern web search engines. For a given search query
from a user, the search advertising system presents several related
sponsored search results (advertisements) together with the gen-
eral search results from the web search engine. These advertising
systems usually adopt a pay-per-click model that advertisers are
charged only if their advertisements are clicked by a user. To better
estimate the potential revenue gain of millions of available ads for
a given search query, search advertising systems leverage different
machine learning algorithms to predict user behavior, select the
ads to show, and maximize the ad click revenue [13, 14, 16].

The accuracy of learning-based estimations is important for
revenue. However, as the volume of candidate ads and the com-
putational complexity increase, large-scale learning algorithms
contribute to a great portion of the cost of search advertising sys-
tems [13]. We study this cost from one-week production traces
including billions of query requests from Bing Ads, a large-scale
commercial advertising system. The workload analysis shows that
selecting the ads for a single user query is complex as it involves
computations across hundreds of machines within a tight latency
budget within tens of milliseconds. On the other hand, only about
3% of search queries end up with an ad click, which means that
about 97% of learning computation result in no revenue gain.

Caching the results (list of chosen ads) of the learning algorithms
is a potential solution to reduce this expense and improve the net
profit. However, designing a caching system for search advertising
systems faces new challenges that traditional domain-agnostic and
revenue-agnostic approaches cannot solve:
• Caching reduces freshness of the computation results, which

leads to potential revenue loss in the search advertising context.
In addition, this potential revenue loss varies significantly among
queries: many queries end up with no ad clicked thus no revenue,
while other queries have ads clicked by users thus serving these
queries by cache may incur various potential revenue loss.
• Queries include not only query phrases but also personaliza-

tion information such as location and gender of users. Ignoring
personalization information may increase the cache hit rate but in
many cases it reduces revenue. On the other hand, personalizing
cache entries based on user information reduces cache hits and the
potential cost savings.
• Learning computation results have intrinsic variance due to the

continuously changing candidate ads set and other various reasons.
This may lead to additional revenue loss for caching.

https://doi.org/10.1145/3127479.3129255
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Motivated by the challenges, we develop an effective ad-serving
cache employing three domain-specific caching mechanisms to
reduce revenue impact and achieve a net profit improvement:
• The revenue-aware adaptive refresh policy provides varied re-

fresh decisions based on the potential revenue gain of different
query phrases combining historical and instantaneous query in-
formation. This enables the cache to incorporate varied refresh
strategies for queries with different potential revenue impacts, re-
sulting in both cost savings and low revenue loss.
• The selective personalization policy exploits three personaliza-

tion features (location, gender, age) on only those revenue-sensitive
cache entries. This policy makes better use of the personalization
features to optimize the cache for both cache hit rate (i.e., cost
saving) and revenue impact.
• The ads list merging technique combines the ads list from multi-

ple previous computation results of the same query phrase, reducing
the likelihood of missing revenue-critical ads.

We evaluate the proposed ad-serving cache by simulations on
production traces from Bing Ads. Evaluation shows that caching
is a promising technique to save the cost of learning-based ads
selection and improve the net profit, and it’s important to incor-
porate domain-specific caching mechanisms to minimize revenue
impact. A traditional cache can reduce cost by up to 27.7% while
having negative revenue impact as bad as −14.1%. On the other
hand, the proposed mechanisms can reduce cost by up to 20.6%
while capping revenue impact between −1.3% and 0%. Based on
Microsoft’s earnings release for fiscal year 2016 4th quarter [2], our
estimation suggests that the traditional cache would reduce the net
profit of Bing Ads by $84.9 to $166.1 million in the quarter, while
our proposed cache could increase the net profit by $11.1 to $71.5
million.

The contributions of this work are threefold: (i) A comprehensive
workload analysis of production advertising system logs (§3); (ii)
Domain-specific caching mechanisms for the high-level ad-serving
cache (§4); and (iii) An evaluation of the traditional domain-agnostic
cache and the proposed domain-specific ad-serving cache via simu-
lations over production system logs (§5).

2 BACKGROUND AND RELATEDWORK
2.1 Search advertising systems
Search advertising, or sponsored search, is an ecosystem including
three participants: users, advertisers, and publishers. Users search
for keywords trying to get relevant and qualitative search results;
advertisers set bidding budget on their interested keywords to get
the chance for showing their own ads to find customers and boost
sales. Publishers, such as Bing Ads and Google AdWords, bridge
the two by renting out space on search result page to show ads.
Nowadays publishers usually adopt a pay-per-click model that
advertisers only pay when their ads get clicked by users. Since the
space to show ads is limited, publishers need to select a few ads
from the ads pool that contains all advertisers’ ads. To create values
for all participants of the ecosystem, search advertising systems
need to select ads that are semantically relevant to the search query,
qualitative, and most profitable.

To show how a search advertising system selects the ads based
on the search query and how the proposed ad-serving cache works,
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Figure 1: Simplified workflow of how Bing advertising sys-
tem serves ads to users.

we use Bing advertising system as an example and Figure 1 plots its
simplified workflow of serving ads to users. There are mainly three
components in Bing Ads system: the initial candidate selection, the
scoring-based selection, and the final auction. When advertisers
send ads to Bing Ads, they also provide the bidding budgets, the
associated keywords they want to bid on, as well as which group of
users (by location, gender, etc.) theywant to target. These thousands
of million ads are partitioned and stored in hundreds of servers as
the ads pool.

After receiving the search query, the initial candidate selection
stage selects ads from the pool whose associated keywords match
the search keywords. This matching process is parallelized to satisfy
the throughput and latency requirements. In addition to exact key-
word matching, Bing Ads also leverages various machine learning
models to match different but similar keywords so that advertisers
can show their ads to a wider range of users. After this candidate
selection process, there are usually thousands of candidate ads sent
to the next step.

Next, Bing Ads scores each candidate ad and selects tens of
best candidates with the highest score. This score depends on both
the bidding budget and quality of the ad. Bing Ads estimates the
quality of ads based on three factors: the expected click-through rate,
the ad relevance, and the landing page experience. The expected
click-through rate reflects how likely the ad will be clicked; the ad
relevance indicates how relevant the ad and landing page (where
the ad points to) are to the user’s search query; the landing page
experience score describes whether the land page is likely to provide
a good experience to users who click the ad. As different users
may have different behaviors, personalization information such
as the gender, age, and location of the user is also helpful. Due
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to the numerous and diverse factors, search advertising systems
leverage different complex learning algorithms to optimize this
scoring-based selection [13, 14, 16].

After the scoring-based selection, generally a list of tens of ads
will be pass to the final auction process. This process finalizes which
ads to show at which positions, and how much will be charged
when an ad is clicked by the user. As advertisers’ ads and bidding
budgets may change dynamically, this auction process is always
required for each search query.

Both the candidate selection and scoring-based selection con-
sume enormous computation cost due to the huge input size and the
complex machine learning models. To reduce this cost, we propose
a high-level ad-serving cache located between the scoring-based
selection and the final auction. Each cached object is a key-value
pair, where the key is the query phrase (optionally combined with
the personalization features) and the value is the pre-auction ads
list (output of the scoring-based selection). On cache hit, the refresh
strategy needs to determinewhether or not refresh the cached result
before serving the query request. If we don’t refresh, we can skip
candidate selection and scoring-based selection, and simply take
the cached ads list to the final auction. On cache miss or refresh, all
the ads selection stages are required and the result of scoring-based
selection will be inserted to the cache.

2.2 Related work
The closest relatedwork to ours are prior studies on caching systems
for web search engines. Since caching for advertising systems can
directly affect revenue, simply applying web search engine caching
designs would result in huge revenue loss. However, these caching
techniques for web search engines inspire the design of our domain-
specific caching mechanisms for advertising systems. To the best
of our knowledge, this paper is the first to propose domain-specific
cache design for search advertising systems.

Cost-aware and feature-aware caching. Gan et al. focus onweighted
caching and feature-based caching for web search engines [12].
Their study shows that the processing costs of queries can vary
significantly and query traces have application-specific features
that is not exploited by previous cache eviction policies. Ozcan et al.
incorporate the query processing cost into the caching policies and
results show that cost-aware policies improve the average query
execution time [18]. Cambazoglu et al. show that regionalization
improve the relevance of the web search results but decreases the
hit rates of web search result cache [8]. Sazoglu et al. propose to
take the hourly electricity prices into account when computing the
processing cost of queries [19].

Search advertising systems require consideration of cost and
features as well, but the definitions are different. Search advertising
caching system has to consider both the processing cost saving and
the potential revenue loss when serving the sub-optimal results
from cache. In addition to regional features, search advertising
systems incorporate diverse features such as revenue history and
user’s gender and age. These differences require different cost-
aware and feature-aware caching strategies.

Refresh policy. Cambazoglu et al. argue that caching for large-
scale search engines should be able to cope with freshness of the

index [9]. They propose to use a time-to-live (TTL) value to inval-
idate cache entries, and leverage idle back-end cycles to refresh
cache entries. Bortnikov et al. propose to use an adaptive TTL per
cache entry based on the access frequency and a ranking score [7].
Alici et al. propose to use generation and update timestamps to
estimate the staleness of search query results [3]. Bai et al. rely
on a subindex of recent changes to the search index to invalidate
the stale cache entries [6]. Instead of a fixed TTL value, Alici et
al. propose to use an adaptive TTL value on a per-query basis to
improve the result freshness and reduce the refresh cost [4]. Since
minimizing revenue loss is one of the primary goals of search ad-
vertising caching, it’s more preferable to incorporate an adaptive
refresh policy based on potential revenue loss of each cache entry.

Hybrid caching strategy. Fagni et al. propose a hybrid result
caching design where the statistically high-frequency queries are
stored in a static cache and other queries are stored in a dynamic
cache [11]. Baeza-Yates et al. study the tradeoff of different caching
designs for web search engines, such as static vs. dynamic caching,
and caching query results vs. caching posting lists [5]. Ozcan et
al. propose a hybrid result caching strategy to exploit the tradeoff
between the hit rate and the average query response latency [17].
On the other hand, our workload analysis motivates us to use a
different hybrid caching strategy based on the revenue history of
each cache entry for the search advertising system.

3 WORKLOAD ANALYSIS
This section describes the workload analysis of the Bing advertising
system. We analyze the Bing advertising system logs corresponding
to a slice of the whole traffic fromMon Dec 5th 2016 to Sun Dec 11th
2016, which contains billions of query requests. We consider three
key personalization features in our workload analysis: location,
gender, and age of the user. Although some sensitive numbers are
normalized, the workload analysis indicates many opportunities
and challenges of caching for search advertising systems.

3.1 Performance metrics
To quantify the workload of the Bing advertising system, we use
the following performance metrics:

Ad click revenue. As described in Section 2, a search advertising
system takes each search query request, selects the list of ads to
show on the web page, and charges the corresponding advertiser
when the user clicks one of the shown ads. We call these charges
on clicks as ad click revenue of the advertising system.

Ad-serving cost indicator. To illustrate the cost of the candidate
selection and scoring-based selection in Figure 1, we use the in-
put size of scoring-based selection as the cost indicator. Higher
cost indicator means more advertisements to be considered by the
learning algorithms, thus the computation cost will increase as
well.

3.2 The workload in a week
To illustrate the general daily statistics in a week, Figure 2 plots
four daily statistics normalized proportionally: total number of
search query requests, total number of distinct query phrases, total
number of ad clicks, and total cost indicator (divided by 1000). All
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Figure 2: Daily normalized statistics of Bing advertising sys-
tem in a week in US area.
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Figure 3: Percentage of query requests contributed by the
top query phrases.

the numbers in the figure are normalized by multiplying the same
constant coefficient.

Among the logs we analyze, the Bing advertising system receives
hundreds of millions of query requests on each day. This total
number of query requests stays stable among the weekdays and
slightly decreases in the weekends. All the other three statistics
have similar trends in the week. The total number of distinct query
phrases shows that everyday each distinct query phrase has about
5 query requests on average. As we will show in the following
analysis, the frequency distribution of the query phrases is highly
skewed, and the frequencies of top phrases are much higher than 5.

As shown in Figure 2, the total number of ad clicks is much
smaller compared to the total number of query requests. Only about
3% of queries end upwith ad click, whichmeans that 97% of learning
computations result in no revenue. A recent study shows that the
average actual click-through rate per ad is 1.91% among 2367 Google
AdWords advertisers, which is similar to our workload [1]. As we
will show in the following analysis, most of the ad clicks and the
corresponding revenue are contributed by a few percent of distinct
query phrases. This motivates us to consider a hybrid caching
strategy depending on the revenue history.

In Figure 2 the cost indicator is divided by 1000 in order to plot
all the lines in the same magnitude. This cost indicator is more
than 1000 times of the total query requests, which means that the
scoring-based selection needs to score and select from more than
1000 ads on average for each query request. This illustrates the
learning computation cost per query.

In the following workload analysis, we provide a deeper study
of the logs in a single day on Wed Dec 7th. We do perform the same
analysis on all the days in the week, and the results are similar
among different days just like the trend in Figure 2.
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Figure 4: CDF of normalized ad click revenue for each query
request. Note the y-axis starts at 0.97. A few outliers are trun-
cated on the right end of the figure. Largest normalized ad
click revenue is 1000.

3.3 Frequency distribution
Figure 3 plots the percentage of total query requests contributed
by the top x% query phrases, both with and without personaliza-
tion information (location, gender, age). When considering the
personalization, requests with the same query phrase but different
personalization are separated into different categories. As the figure
shows, the frequency distribution is highly skewed in both cases.
When personalization is not considered, top 1% query phrases con-
tribute to 64% of the total query requests. When personalization
is considered, the distribution is less skewed since query phrases
are separated by different personalization information. However,
top 1% query phrases still contribute to as high as 44% of the total
query requests. This highly skewed frequency distribution indi-
cates that even a small cache could achieve a rather high hit rate,
demonstrating an opportunity for caching.

3.4 Ad click revenue distribution
Figure 4 plots the CDF of normalized ad click revenue for each query
request. Each ad click revenue is normalized by multiplying the
same constant coefficient. Similar to Figure 2, Figure 4 shows that
over 97% of the query requests have no ad click and no revenue. In
addition, the 3% query requests with clicks are contributed by only
about 5% of the distinct query phrases. For the query requests with
ad click revenue, most of them have similar normalized revenue
from 0 to 5. On the other hand, about 0.08% of the query requests
have revenue from 5 to 1000 (truncated in the figure).

When considering caching for search advertising systems, one
important consideration is to avoid potential ad click revenue loss.
Since there are only about 5% of distinct query phrases that ever
have requests with revenue, it seems that it’s possible to just not
cache any requests belonging to those query phrases so as to mini-
mize potential revenue loss. However, since some of those query
phrases have very high frequency (a query phrase may have many
query requests, but only a few percentages of requests end up with
ad clicks), these 5% of query phrases contribute to 60% of the total
requests. Thus we still want to cache these phrases to save the cost
but we need a more intelligent refresh strategy to deal with these
query phrases with revenue.

3.5 Ad-serving cost distribution
Figure 5 plots the CDF of the cost indicator for each query request.
About 40% of the query requests have no candidate ads for scoring.
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Figure 5: CDF of ad-serving cost indicator for each query re-
quest. Note the y-axis starts at 0.35. A few outliers are trun-
cated on the right end of the figure.
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Figure 6: CDF of ads list similarity score for each query re-
quest.

There are two main sources of such query requests: the correspond-
ing query phrase might be too rare that no advertiser provides ads
related to it; or the Bing advertising system recognizes the query
request as fraud so that it doesn’t serve any ad to it. For the other
60% of the query requests, each request has thousands of ads in av-
erage to be scored. It is still beneficial to cache those requests with
zero cost, since it will still save the processing time of the request
by skipping the candidate selection and scoring-based selection.
For an input with thousands of ads, it takes tens of milliseconds
for hundreds of machines to compute the scoring-based selection
result. Based on this cost indicator distribution and the number of
dedicated machines, the total learning cost of search advertising
systems would typically be around 10% to 30% of the total revenue.
This cost distribution shows that the learning-based ads selection re-
quires substantial computation power thus needs caching to reduce
the number of dedicated machines and the overall cost.

3.6 The intrinsic variance of learning
algorithm results

Compared to the traditional caching, one of the biggest differences
for the ad-serving cache is that the cached learning algorithm re-
sults (pre-auction ads list) have intrinsic variance. For two search
queries with the same query phrase, the ads selected by the learning
algorithms may vary a lot due to three main reasons: 1) Advertisers
may remove old ads or submit new ads between the two search
queries; 2) Different learning algorithms may have different results.
And learning algorithms have uncertainties on ad selection so that
even the same algorithmwith the same input may result in different
outputs; 3) Different personalization information may result in dif-
ferent ads selections. Due to this variance of ads list, continuously
serving cached ads list without refresh may lose the chance to select

the ads with highest expected revenue for each query, thus affect
the ad click revenue.

To quantify this variance, we calculate the similarity score which
is the percentage of ads shown in ads list of last query request with
the same phrase (when personalization is considered, it has to be
both the same phrase and the same personalization information).
Higher similarity score means higher similarity between the two
consecutive requests with the same key. Figure 6 plots the CDF of
this similarity score for each query request, both with and without
personalization. Note that when calculating the similarity scores: 1)
The first request of each query phrase doesn’t have the similarity
score; 2) When two consecutive query requests with the same query
phrase both have empty ads list, the second query request doesn’t
have the similarity score.

When personalization is not considered, about 30% of the query
requests has 0% similarity. Among these requests, 11% of the query
requests belong to the case where the last request with the same
query phrase has no ads listed. The other 19% of the query requests
belong to the case where the non-empty ads list of the last request
with the same query phrase has zero intersection with the current
ads list. On the other hand, 24% of the query requests have 100%
similarity, which means the current ads list can be completely
covered by the last ads list related to the same query phrase. Overall,
the average similarity is 45%.

When personalization (location, gender, age) is considered, over-
all the similarity scores increase since the query requests with the
same query phrase and personalization have more stable ads list.
About 17% of the query requests has 0% similarity. Among these
requests, 7% of the query requests belong to the case where the last
request with the same query phrase has no ads listed. The other
10% of the query requests belong to the case where the non-empty
ads list of the last request with the same query phrase has zero
intersection with the current ads list. On the other hand, 29% of the
query requests have 100% similarity. Overall, the average similarity
is 58%.

The similarity score distributions indicate that personalization
can increase the similarity score and reduce the variance of the ads
list. On the other hand, the similarity score variance shows that
the cache needs a dynamic and adaptive refresh policy to keep the
average similarity at a high level to avoid revenue loss.

3.7 Effect of personalization
Previous sections provide some insights about the personalization
considered by the learning-based ads selection. Using personaliza-
tion could increase the similarity between ads list, thus reduces po-
tential revenue loss by caching. However, personalization increase
the number of distinct query phrase, thus reduce the cache hit rate
and cost savings. We consider three personalization features in our
workload analysis: location, gender, and age of the user. Using these
three personalization features on all distinct query phrases would
double the number of distinct cache entry keys in our workload. In
search advertising systems, there are other personalization features
(e.g., IP address and user ID) that could also be included into the
cache entry key. In our workload analysis and cache design, we
select the three personalization features since they appear to be
the key features in Bing Ads system’s ads selection, and they are
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common features that should exist in any search advertising sys-
tem. Exploring how to accommodate more personalization features
within limited memory and communication/computation limits is
an open direction. In addition, it would be preferable for the cache
to have a selective personalization policy that make personalization
decisions based on actual necessity of each distinct query phrase.

4 AD-SERVING OPTIMIZED CACHING
As we show in Section 5, domain-agnostic caching mechanisms
such as pure LRU or LRUwith a fixed refresh rate work poorly for ad
serving. Depending on how their parameters are chosen, they either
reduce revenue excessively, or fail to reduce the computation cost. In
this section, we discuss three domain-specific caching mechanisms
we devised to avoid these problems.

4.1 Ad-serving cache design space
To build an effective ad-serving cache for maximizing cost saving
while minimizing revenue loss, we discuss three important design
questions as below.

1. What keys to cache? Query phrase is the most common choice
as the key. However, since personalized information such as location
and gender could affect the ads lists variance, only using query
phrase may result in large difference between the cached ads versus
the actual ads, causing revenue loss. On the other hand, one may
choose to use query phrase together with personalization features
as cache key. This approach reduces the potential discrepancies
between cached and actual results. However, as studied in web
search engine caching, personalization could render lower hit rate
since the reuse frequency would be lower — the cost saving of the
cache would be less [8]. How to exploit personalization features in
the cache design is an important question.

2.What values to cache? Themost intuitive answer is to cache the
pre-auction ads lists computed by the scoring-based selection from
the previous cache miss or last refresh. However, as described in
Section 3.6, this pre-auction ads list has intrinsic variance, especially
when the personalization is not considered. This could be a source
of lower similarity scores and higher revenue loss, posing another
challenge to the cache design.

3. When to refresh? Due to intrinsic variance of the pre-auction
ads list, the ad-serving cache needs an active refresh policy to avoid
revenue loss. A basic approach is to have a refresh rate with fixed
period or frequency: a higher rate reduces revenue impact but
also reduces cost savings, and vice versa. Can we do better? The
workload properties discussed in Section 3.4 shed some light — the
revenue is contributed by only a small portion of distinct query
phrases. Could we apply different refresh rate to query phrases
with potentially different revenue impact?

Beyond the above three major design questions, cache size and
replacement policies are two common aspects to consider during
cache design. We found, though, the decision for them at ad-serving
cache is fairly intuitive given the properties of the workload.
•With respect to cache size, a small cache could achieve good per-

formance since the query frequency distribution is highly skewed
(Section 3.3) and the key-value pair we cache has rather small sizes.
Thus it’s possible to have a large enough cache to store all key-value

pairs. Whether the cache size is infinite or not, it is important to
actively refresh the cached key-value pairs to keep the freshness of
the cached ads list and avoid potential revenue loss.
• Because it is inexpensive to have a large enough cache for

frequently accessed items and most of cache update comes from
refreshing policy, the choice of the replacement policy becomes
less important in this context. We find least recently used (LRU)
policy works well, and more advanced policies such as GreedyDual-
Size [10] and GD-Wheel [15] only bring marginal benefits.

4.2 What keys to cache: selective
personalization

To better exploit the benefit of personalization, we propose a se-
lective personalization strategy. For those query phrase with no
revenue generated before, we don’t consider personalization to save
more computation cost. For those query phrases that have revenue
history, we use the combination of query phrase and personaliza-
tion features (location, gender, age of the user) as the key. When a
query phrase starts to generate revenue, we insert a new cache en-
try with the three personalization feature included and remove the
old cache entry. By using a subset of key personalization features
only for those query phrases that contribute to the total revenue, we
could avoid additional revenue loss while minimizing the reduction
of cost savings. For the evaluation in Section 5, we compare the
performance of selective personalization with the cases where we
apply the three personalization features to all/none of the cache
entries.

4.3 What values to cache: ads list merging
To reduce the effect of the ads list variance, we propose to cache a
merged ads list based on all previous pre-auction ads lists computed
by the scoring-based selection. Specifically, we use a fixed size queue
to maintain the cached ads list. The size of the queue is a bit larger
than the usual size of a single pre-auction ads list. Whenever a
refresh is scheduled, instead of completely replacing the cached ads
list, we update the cached ads list by inserting new ads to the head
of the queue. If the ad already exists in the queue, we move the ad
to the head of the queue. When the queue is full, we evict the ad at
the tail of the queue. By caching a merged ads list, we could reduce
the variance of the ads list thus avoid revenue loss.

4.4 When to refresh: revenue-aware adaptive
refresh

Recent works for web search engine caching propose to use hybrid
strategies [11, 17] and adaptive refresh frequency [4, 7] based on
access frequencies to increase cache hit rate while reducing stale-
ness. For search advertising caching, however, minimizing revenue
loss is the primary design goal that other refresh policies do not
consider, and this goal requires the refresh policy to take both the
revenue history and the staleness (intrinsic variance) of the cached
results into consideration. We propose a revenue-aware adaptive
refresh policy which assigns different refresh rates to cache entries
based on the revenue history and the ads list similarity score. For
those query phrases with no revenue generated before, we assign
a fixed and conservative refresh rate to the corresponding cache



Workload Analysis and Caching Strategies for Search Advertising Systems SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Algorithm 1: How the proposed mechanisms process cache
access
input :Query phrase: q,

personalization information: p ,
list of query phrases with revenue history: R ,
the hashtable that stores the cache entries: H ,
the LRU queue: L.

output :Ads list on cache hit, or null on cache miss.
key ← q
if q ∈ R then

key ← key + p
end
if H [key] = null then

return null
end
freq← H [key].refreshFreq
cnt← H [key].refreshCnt
if cnt%freq = 0 then

// do refresh
{ad } ← new pre-auction ads list computed by scoring-based
selection
if q ∈ R then

similarity← compare(H [key].cachedAds, {ad })
update H [key].refreshFreq based on similarity

end
H [key].cachedAds← merge(H [key].cachedAds, {ad })
H [key].refreshCnt← 1

else
increment H [key].refreshCnt

end
move H [key].lruNode to the head of L
return H [key].cachedAds
(if there is any ad get clicked, insert q into R .)

entries. For those query phrases that have revenue history, the cor-
responding cache entries have an aggressive and dynamic refresh
rate which keeps changing based on the similarity score. After each
refresh we compute the similarity score of the old cached ads list
based on the new refreshed ads list. We reduce the refresh rate
if the similarity score is high, and vice versa. With such adaptive
refresh policy, the ad-serving cache could make a better tradeoff
between the cost saving and the freshness of the cached ads list.
When a query phrase starts to generate revenue, the conservative
refresh rate will be replaced by the aggressive refresh rate. For the
evaluation in Section 5, we compare this adaptive refresh policy
with completely no refresh and a refresh policy that assigns the
same fixed refresh rate to each cache entry.

4.5 Summary
To summarize, we show how the proposed three domain-specific
caching mechanisms handle cache access and insertion in Algo-
rithm 1 and 2. When handling cache access, we first determine
the key based on whether the query phrase has revenue history
or not. If so, we combine the query phrase and the personalization
information as the key. Otherwise we just use the query phrase
as the key. On cache miss, we need to run all ads selection stages
and later insert the pre-auction ads list into the cache. On cache
hit, we first decide whether or not refresh the cached ads list based
on the stored refresh frequency and the frequency counter of the

Algorithm 2: How the proposed mechanisms process cache
insertion (after Algorithm 1 returns null)
input :Query phrase: q,

personalization information: p ,
pre-auction ads list to be cached: {ad },
list of query phrases with revenue history: R ,
the hashtable that stores the cache entries: H ,
the LRU queue: L.

key ← q
if q ∈ R then

delete H [key] if exists
key ← key + p

end
while size (H ) ≥ cache size do

// eviction
evict the tail of L and delete its entry in H

end
H [key].cachedAds← {ad }
H [key].refreshCnt← 1
H [key].lruNode← new node at the head of L
if q ∈ R then

H [key].refreshFreq← aggressive frequency
else

H [key].refreshFreq← conservative frequency
end

entry. If we do refresh, we first compute the new pre-auction ads
list just like a cache miss. If the query phrase has revenue history,
we update the aggressive refresh frequency based on the similarity
between the cached ads list and the new ads list. Then we merge
the new ads list into the cached ads list and reset the frequency
counter. If we don’t refresh, we increment the frequency counter.
Finally we move the entry to the head of the LRU queue, and return
the cached ads list. If later any ad is clicked by the user, we will add
the query phrase to the list of query phrases with revenue history.

When handling cache insertion, we first determine the key based
on whether the query phrase has revenue history or not. If the
cache is full, we evict the least recently accessed cache entry. Then
we cache the pre-auction ads list computed by the scoring-based
selection, set the frequency counter, add the entry to the head of
the LRU queue, and set the refresh frequency based on the query
phrase’s revenue history.

5 EVALUATION
To evaluate the proposed caching mechanisms, we simulate a cache
based on the traces from Bing Ads. We first compare the proposed
cache design with the traditional domain-agnostic designs. Then
we evaluate the benefit of each single domain-specific caching
mechanism. Additionally, we discuss about the parameter turning
for the proposed cache design.

5.1 Simulation setup
To evaluate the proposed domain-specific caching mechanisms, we
build a cache simulator to simulate the logs of Bing advertising
system. Each timestamped log entry represents the information
related to a single search query request: the query phrase, the
personalization features (location, gender, age of the user), cost



SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Conglong Li, David G. Andersen, Qiang Fu, Sameh Elnikety, and Yuxiong He

indicator (learning computation cost), pre-auction ads list (output
of scoring-based selection and the ads list we want to cache as
well), which ads got clicked and the corresponding revenues. The
cache simulator reads log entries chronologically, makes caching
decisions (insertion, eviction, refresh) based on the strategies, and
evaluates the caching performances. We use the logs of last hour on
Dec 6th 2016 to warm up the cache, and simulate the logs on Dec
7th 2016 which is the same as what we analyzed in Section 3. As
mentioned in Section 3, the workloads are similar on different days,
thus simulating a single day can represent the caching performances
on longer durations.

We simulate a cache with LRU replacement policy and one mil-
lion entries, which is large enough to cache the top query phrases.
Since the value of each cache entry stores an ads list with vari-
able numbers of ads, cache entries may have different sizes. How-
ever, each ad in the list only takes a few kilobytes including the
corresponding metadata. The proposed merging technique would
increase the total number of ads to cache, but we limit the size
of merged list to reduce this space overhead so that the memory
footprint is only increased by no more than 15%.

5.2 Implementation of caching mechanisms
We apply the three proposed domain-specific caching mechanisms
and their alternatives to the cache and compare the performances:
revenue-aware adaptive refresh is compared with no refresh and
fixed-rate refresh; ads list merging is compared with no merging;
selective personalization is compared with no personalization and
always considering personalization to all cache entries.

We use refresh frequency to represent the refresh rate. When
the refresh frequency is n, the cached object will be refreshed at
the nth cache hit after the last refresh. When the refresh frequency
is 1, the cached object will be refreshed at the start of every request,
which has the same performance as no cache case. For the revenue-
aware adaptive refresh policy, we use a fixed refresh frequency of
20 for the query phrases with no revenue generated before. For the
query phrases with revenue history, we initially assign a refresh
frequency of 1 (always refresh). Then we dynamically update the
refresh frequency based on the similarity between the cached ads
list and the new ads list at refresh. If the similarity is more than
90%, we increment the refresh frequency by 1. If the similarity is
less than 70%, we decrement the refresh frequency by 1 (or un-
changed if the frequency is already 1). We maintain a hashtable
to store all query phrases with revenue history in last three days
before simulation and update it during simulation. The memory
overhead of this hashtable is only about a few hundred megabytes
in our experiments. In real production, this hashtable could also
be implemented as a LRU-like queue with fixed size if memory is
limited. For the fixed-rate refresh policy, we use a refresh frequency
of 2 which is the highest fixed frequency besides the no cache case.
To better evaluate the benefit of the adaptive refresh policy, we also
evaluate the performance of a two-level fixed-rate refresh policy,
where we use two fixed refresh frequencies of 1 and 20 for the query
phrases with and without revenue generated before, respectively.

When applying ads list merging, we use a fixed size queue to
maintain the cached ads list as described in Section 4.3. The size
of the queue is larger than but at the same magnitude of the usual

size of a single pre-auction ads list. Thus the increased size of pre-
auction ads list won’t affect the processing time of the final auction
process.

5.3 Performance metric
To compare the performance of different caching designs, we use
six performance metrics as below.

1. Hit rate. Hit rate is one of the basic caching performance
metrics. It represents the percentage of search query requests that
result in cache hits. Note that if there is a refresh triggered at a
cache hit, we count it as a cache miss since the refresh requires
the candidate selection and scoring-based selection to update the
cached ads list.

2. Average similarity score. To represent the variance between
the cached ads list and the actual ads list, we calculate the average
similarity score on cache hits which is similar to the calculation
in Section 3.6. On cache hit, the similarity score is the number of
intersected ads between the cached and actual ads lists divided by
the number of ads in the actual ads list. Note that the size of the
cached ads list will not affect the similarity score, since we assume
that the final auction can select the right ads to show even if the
cached ads list includes extra ads than the actual ads list.

3. Percentage of cost saving. A cache can save the cost of learning-
based ads selection on cache hits. Thus we calculate how much cost
is saved compared to the no cache case by dividing the total cost
indicator on cache hits by the total cost indicator on all queries.

4. Pessimistic Revenue impact. It is impossible to accurately cal-
culate the revenue impact of caching in simulations, since we don’t
know user’s action when the presented ads are changed. Thus we
use two different ways to estimate the revenue impact of caching.
One way is to only count the ad click revenue if the clicked ads
are cached on cache hits. This is a pessimistic estimation since the
user may click other ads even though the actual clicked ads are not
presented. A negative revenue impact means caching reduces the
total revenue and vice versa.

5. Optimistic Revenue impact. Another way to estimate the rev-
enue impact is to calculate the potential revenue of each ads list.
For each advertisement, the scoring-based selection will estimate
the click-through rate which is the probability of the user to click
the ad. In addition, each advertisement has an average revenue per
click base on the click history. Thus we could calculate the potential
revenue of each advertisement by multiplying the click-through
rate with the average revenue per click. Then we calculate the
potential revenue of each cached and actual ads list by dividing
the total potential revenue by the number of ads in the list. With
the potential revenue of each cached and actual ads list, we can
estimate the overall revenue impact of caching. This is an optimistic
and less time-sensitive estimation of the revenue impact, since the
potential revenue related to a query phrase won’t change much
over a short period. Thus if this optimistic revenue impact is posi-
tive and small (within a few percent), we interpret it as that caching
has insignificant revenue impact.
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Figure 7: Hit rate, average similarity, cost saving, and
pessimistic&optimistic revenue impact for the traditional
cache designs and the proposed cache with all three domain-
specific cachingmechanisms. For all the numbers the higher
the better.
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the profit impact is zero.

6. (Pessimistic) net profit impact. The net profit is equal to the
total revenue subtracted by the total cost. As mentioned in work-
load analysis, 0.1 to 0.3 would be a representative range of learn-
ing cost-to-revenue ratio for search advertising systems. However,
there exist other operating costs that are hard to estimate. Thus
we present the net profit impact as an absolute value. Based on
Microsoft earnings release, the total revenue of Bing Ads is $1465.85
million in fiscal year 2016 4th quarter [2]. Thus we calculate the
expected net profit impact for the quarter as (total revenue × pes-
simistic revenue impact) + (total revenue × cost-to-revenue ratio
× cost saving). When the cost-to-revenue ratio is higher, saving
the same percentage of cost has higher benefit on the net profit.
When the cost-to-revenue ratio is lower, it’s more important to
avoid revenue loss before saving the cost.

5.4 Comparing different cache designs
We first compare the performance of traditional domain-agnostic
cache designs with the proposed cache using all three domain-
specific caching mechanisms as illustrated in Figure 7. We evaluate
two different traditional cache designs with no refresh or a fixed
refresh frequency of 2 (without personalization). When there is no
refresh, the cache hit rate is as high as 67.2% and the cost saving
is as high as 46.0%. However, the average similarity is as low as
43.1% since there is no refresh at all and the personalization is not
considered. As the result, the pessimistic revenue impact is as bad
as −25.5%. Even the optimistic revenue impact is as bad as −6.7%.

When a fixed refresh frequency of 2 is used, the hit rate drops
to 36.3% and the cost saving drops to 27.7%. However, the cache
is able to avoid additional revenue loss by refreshing the cache
entries. The average similarity slightly rises from 43.1% to 47.8%,
and the pessimistic revenue impact rises from −25.5% to −14.1%.
The optimistic revenue impact is close to 0. Even with a fixed
refresh frequency of 2, the pessimistic revenue impact is still very
bad. This shows that sometimes the cache needs to always refresh
some entries in order to avoid revenue loss. However, if the cache
always refresh all entries, it’s the same as no cache and there is
neither revenue loss nor cost saving. Thus we need a refresh policy
to assign different refresh frequencies and adaptively change the
frequency based on the similarity score.

Finally we apply all the three domain-specific caching mecha-
nisms: revenue-aware adaptive refresh, ads list merging, and selec-
tive personalization. The hit rate drops to 20.7% but the average
similarity rises from 47.8% to 78.3%. The pessimistic revenue impact
changes from −14.1% to −1.3%, while the cost saving still keeps at
20.6%. The optimistic revenue impact is close to 0. The performance
of proposed ad-serving cache achieves our expectations: reduce the
learning computation cost while minimizing the potential revenue
loss.

Figure 8 plots the net profit impact of the three cache designs at
different learning cost-to-revenue ratios. Within the representative
cost-to-revenue ratio range between 0.1 to 0.3, the traditional cache
without refresh has a net profit impact between −306.4 and −171.5
million dollar. Even with a fixed refresh frequency of 2, the net
profit impact is still as bad as −166.1 to −84.9 million dollar. On
the other hand, the proposed domain-specific cache provides a net
profit impact between 11.1 and 71.5 million dollar. In addition to
the ratio for Bing Ads, we also plot the cases for even smaller or
larger cost-to-revenue ratios. Both of the traditional designs cannot
provide positive profit impact even with a 0.5 cost-to-revenue ratio.
On the other hand, our proposed cache starts to provide positive
profit impact when the total learning cost is more than about 7%
of the total revenue. In the following evaluations, we report the
net profit impact based on the representative cost-to-revenue ratio
range (0.1 to 0.3) for search advertising systems.

In the following sections, we will evaluate the incremental bene-
fits of each domain-specific caching mechanism. First we compare
different refresh policies. Then we evaluate the benefit of ads list
merging. Finally we compare different personalization policies.

5.5 Comparing refresh policies
Figure 9 compares the performance of fixed refresh (frequency of 2),
two-level fixed refresh (frequency of 20/1), and the adaptive refresh
(frequency of 20/dynamic) without personalization and ads list
merging. As we discussed in last section, using a single fixed-rate
refresh frequency cannot avoid most of the revenue loss.

The two-level fixed-rate refresh policy uses two fixed refresh
frequencies for phrases with and without revenue history. For those
phrases with revenue generated before, they are always refreshed
just like there is no cache. As the result, the pessimistic revenue
impact rises from −14.1% to −2.0%. However, this fixed aggressive
refresh frequency leads to a hit rate as low as 15.7% and a cost
saving as low as 16.6%.
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Figure 10: Hit rate, average similarity, cost saving, and pes-
simistic&optimistic revenue impact for different refresh
policies without personalization and with&without merg-
ing. The corresponding net profit impacts are: -$166.1 to -
$84.9million, -$130.9 to -$49.7million, -$5.1 to $66.7million,
and -$12.2 to $77.8 million.

Compared to the two-level fixed-rate refresh, the proposed revenue-
aware adaptive refresh policy uses the same fixed refresh frequency
of 20 for the phrases without revenue history. On the other hand,
the adaptive refresh policy uses an aggressive (start from 1) but
dynamic (change based on similarity score) refresh frequency for
the phrases with revenue history. As the result, the hit rate rises
from 15.7% to 29.1% and the cost saving rises from 16.6% to 24.5%.
Although the pessimistic revenue impact slightly drops from −2.0%
to −2.8%, the net profit impact increases from [−$5, $43.7] million
to [−$5.1, $66.7] million. This shows that the adaptive refresh policy
optimizes the tradeoff between cost saving and revenue impact.

5.6 Effect of ads list merging
Figure 10 compares the performance of fixed-rate refresh and adap-
tive refresh both with and without the ads list merging mechanism.
When applying the ads list merging to the fixed-rate refresh case,
the hit rate and cost saving don’t change since the refresh rate is
fixed. On the other hand, the average similarity rises from 47.8%
to 76.1%. As the result, the pessimistic revenue impact rises from
−14.1% to −11.7%, and the net profit impact rises from [−$166.1,
−$84.9] million to [−$130.9, −$49.7] million. This shows that ads
list merging reduces the variance of ads lists and avoids additional
revenue loss.
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Figure 11: Hit rate, average similarity, cost saving, and pes-
simistic&optimistic revenue impact for different refresh
policies withoutmerging andwith different personalization
policies. The corresponding net profit impacts are: -$38.7 to
$12.9million, $7.5 to $54.7million, and $8.8 to $64.5million.

When applying the ads list merging to the adaptive refresh case,
both the hit rate and the cost saving rises. This is because the
phrases with revenue history use a refresh frequency dynamically
changed based on the similarity score. Since the ads list merging
mechanism increases the average similarity from 70% to 80%, the
number of refresh reduces so that the hit rate and cost saving
increase. However, since the number of refresh reduces and no
personalization is considered, the pessimistic revenue impact drops
from −2.8% to −3.9%. This shows that personalization is necessary
for those revenue-sensitive phrases.

5.7 Comparing personalization policies
Figure 11 compares the performance of fixed-rate refresh and adap-
tive refresh with different personalization policies. Comparing to
the fixed-rate refresh case in Figure 10, adding the three person-
alization features to all phrases reduces the hit rate from 36.3% to
27.1%. The cost saving also drops from 27.7% to 17.6% due to the
increased number of distinct keys. On the other hand, the average
similarity rises from 47.8% to 59.8%, the pessimistic revenue impact
rises from −14.1% to −4.4%, and the net profit impact rises from
[−$166.1, −$84.9] million to [−$38.7, $12.9] million. This shows
that personalization could reduce the variance of ads lists and avoid
revenue loss. However, personalization also reduces the hit rate
and cost saving.

Similarly comparing to the adaptive refresh case in Figure 10,
adding the three personalization features to all phrases reduces the
hit rate from 29.1% to 17.5% and the cost saving drops from 24.5%
to 16.1%. The average similarity keeps at the same level since the
adaptive refresh policy dynamically changes the refresh frequency
based on the similarity score. On the other hand, the pessimistic
revenue impact rises from −2.8% to −1.1%, and the net profit impact
changes from [−$5.1, $66.7] million to [$7.5, $54.7] million. Again
the drop of cost saving is an issue when applying personalization,
and we need a selective way to apply personalization to the revenue-
sensitive phrases.

Comparing with applying personalization to all phrases, the pro-
posed selective personalization policy only apply personalization
to the phrases with revenue history. As the result, the hit rate rises
from 17.5% to 19.3% and the cost saving rises from 16.1% to 19.0%.
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The pessimistic revenue impact slightly drops from −1.1% to −1.3%,
while the net profit impact rises from [$7.5, $54.7] million to [$8.8,
$64.5] million. This shows that selective personalization policy is a
more efficient way to utilize the personalization information.

5.8 Discussion on parameter tuning
Refresh rate. The proposed adaptive refresh policy depends on

4 parameters: the fixed refresh frequency for entries without rev-
enue; the initial refresh frequency for entries with revenue; and the
low/high watermark for changing the aggressive frequency based
on the similarity score. Changing the fixed refresh frequency for
entries without revenue mostly just affect the cost saving. Changing
the initial refresh frequency for entries with revenue has noticeable
affect on revenue loss. This is because the intrinsic variance of
ads lists makes it necessary to always refresh for some of revenue-
sensitive phrases. Similarly, using stricter low/high watermark in-
creases number of refreshes, and reduces both revenue loss and
cost saving.

Merged ads list size limit. Larger merging size limit apparently
provides more chances to avoid revenue loss but incur higher space
overhead. However, both the revenue benefit and the space over-
head have diminishing returns since less number of phrases have
additional distinct pre-auction ads.

Cache size. Since the frequency distribution in Bing Ads work-
load is highly skewed, using the 1-million-entry cache size in the
simulations provides decent performance. We also tried to increase
the cache size to 2 million entries, but it only provides minimal
benefit since the tail phrases have low frequencies.

6 CONCLUSION
Machine learning models provide reliable ads selection for search
advertising systems. However, the complexity of learning algo-
rithms and the large input size incur substantial computation cost.
The highly skewed frequency distribution of search queries pro-
vides opportunities for caching the learning computation results.
However, as we learn from workload analysis of the Bing advertis-
ing system, the intrinsic variance of the learning algorithm results
leads to substantial revenue loss for traditional domain-agnostic and
revenue-agnostic cache designs. Based on cache simulation results,
a traditional cache can reduce cost by up to 27.7% but has negative
revenue impact as bad as −14.1%. This leads to a negative net profit
impact as bad as −$166.1 to −$84.9 million in a quarter. We propose
three domain-specific caching mechanisms—revenue-aware adap-
tive refresh, ads list merging, and selective personalization—and
prove by cache simulations that applying these caching mecha-
nisms can reduce learning computation cost while minimizing the
revenue loss. With the proposed caching mechanisms, caching can
reduce as much as 20.6% of the cost while capping revenue impact
between −1.3% and 0%. This leads to a positive net profit impact as
large as $11.1 to $71.5 million.
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