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ABSTRACT
As robots increasingly permeate modern society, it is crucial for
the system and hardware research community to bridge its long-
standing gap with robotics. This divide has persisted due to the lack
of (i) a systematic performance evaluation of robotics on different
computing platforms and (ii) a comprehensive, open-source, cross-
platform benchmark suite.

To address these gaps, we present a systematic performance study
of robotics on modern hardware and introduce RoWild, an open-
source benchmark suite for robotics that is comprehensive and
cross-platform. Our workloads encompass a broad range of robots,
including driverless vehicles, pilotless drones, and stationary robotic
arms, and we evaluate their performance on a spectrum of modern
computing platforms, from low-end embedded CPUs to high-end
server-grade GPUs.

Our findings reveal that current architectures experience signifi-
cant inefficiencies when executing robotic workloads, highlighting
the need for architectural advancements. We discuss approaches
for meeting these requirements, offering insights for improving the
performance of robotics.

The full version of the paper is available in [11], and the source
code of the benchmark suite is available in [2].

CCS CONCEPTS
• Computing methodologies→ Robotic planning;Modeling
methodologies; •General and reference→Measurement; Eval-
uation; Performance; • Computer systems organization →
Real-time system architecture; Architectures.
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1 INTRODUCTION
The advancement of robotics technology is rapidly changing the
world we live in. With predictions of 20 million robots by 2030 [1]
and a market capitalization of US$210 billion by 2025 [23], it is clear
that robotics will play an increasingly important role in society.
To become widespread, robots need to meet the demands of real-
world environments, which necessitates them being autonomous
and capable of performing complex artificial intelligence (AI) tasks
in real-time.

Computer hardware and architecture play a paramount role in
realizing real-time robotics, evidenced by the deployment of robot-
specific hardware accelerators in the architecture of the latest edge
processors. Recent robotic platforms [14, 15, 17] include hardware
accelerators for operations like tree-extension and ray-casting that
have massive usage in robotics; Intel’s multi-robot system [14] has
a full-fledged “Robot SoC.”

Surprisingly, the computer systems research community has under-
explored robotics. This is borne out by the scant few publications
in top computer systems conferences. There is a large gap between
robotics and the computer systems community, depriving robotics
of many improvements achievable by system-level techniques.

The gap is largely because of the lack of (i) a systematic perfor-
mance study and (ii) a comprehensive, open-source, cross-platform
benchmark suite. As a result of (i), the robotic tasks, their perfor-
mance requirements, and their system-level implications are unclear
to the community. And, due to (ii), the few research papers include
only one [9, 19] or a couple of applications [20, 22] in their evalua-
tions, leaving the impact on other applications unknown.

2 THE ROWILD BENCHMARK SUITE
This paper aims to bridge this gap by introducing RoWild, a com-
prehensive, open-source, cross-platform robotic benchmark suite.
The challenge of benchmarking robotics lies in the vast array of
applications, from self-driving cars to home-assistant robots, with
more to come in the future. It is impractical to represent all of these
applications in a single benchmark suite. RoWild overcomes this
challenge by exploiting the fact that different robots, despite their
different applications, perform a finite set of common “robotic tasks”
such as scene understanding and pathfinding. For instance, both self-
driving cars and home-assistant robots require scene understanding.
Nevertheless, the algorithms and constraints in conducting such
tasks can vary widely across different applications.

RoWild comprises a wide range of robotic tasks, encompassing the
software pipeline of practically all autonomous robots. With versa-
tility in mind, RoWild implements each task with various algorithms
and parameters. This flexible approach enables the configuration and
pipelining of tasks to model the end-to-end computation of diverse
robotic applications. By including a broad set of tasks and algorithms,
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RoWild is capable of modeling numerous robotic applications, thus
providing a comprehensive benchmark suite.

Our choice of implemented tasks and algorithms stems from an
analysis of 29 industrial robots, encompassing a diverse range from
arm manipulators and home-cleaning robots to self-driving vehicles.
This analysis was undertaken to ensure a broad yet relevant selection.
Additionally, we incorporate state-of-the-art research algorithms
(e.g., deep learning-based pathfinding) into RoWild, positioning it as
a suitable suite for future robotics. We develop RoWild with essential
considerations: specifically, RoWild is high-performance, simulator-
friendly, versatile, and modular. Table 1 compares key features of
RoWild and the related work.

Table 1: Comparison of related work features with RoWild. More ✔

is better. ✣ shows variable outcomes (✘ or ✔) based on specifics like
kernel or simulator.
End-to High- Simulator Multi- Versatile System-LevelPaper/Repository Scope -End Perf. -Friendly Platform & Modular Analysis

Lin et al. [18] Self-Driving Unknown Unknown
Yu et al. [24] Cars ✔ ✔✔ (private) ✔✔ (private) ✔

MAVBench [12] Drones ✔ ✔ ✣ ✔ ✘ ✔

One-off [8, 13, 16] Single Task ✘ ✣ ✣ ✘ ✔ ✘

ROS [7] Broad ✘ ✣ ✘ ✘ ✔ ✘

Educational [3, 6] Broad ✘ ✘ ✣ ✘ ✘ ✘

RTRBench [10] Broad ✘ ✔ ✔ ✘ ✔ ✘

RoWild Broad ✔ ✔✔ ✔ ✔✔ ✔ ✔✔

3 COMPREHENSIVE PERFORMANCE STUDY
This paper’s second contribution is to investigate the system-level
implications of robotics. Using RoWild’s tasks, we model six different
end-to-end robotic applications and evaluate them on a spectrum
of platforms, ranging from low-end embedded CPUs to high-end
server-grade GPUs. Table 2 summarizes the modeled applications,
and Table 3 presents the evaluated platforms.

Table 2: The modeled end-to-end applications.
Name Mission Environment Name Mission Environment

DeliBot Delivery Our Campus PatrolBot Patrolling Our Campus
MoveBot Manipulation Synthetic HomeBot Cleaning Hypersim [21]
FlyBot Photography FR Campus [4] CarriBot Transportation Intel Lab [5]

Table 3: The evaluated compute platforms.
Freq. TDP MemoryPlatform Cores (GHz) (W) (GB)

ARM Cortex A57 CPU 4 1.43 10 4
Nvidia Maxwell GPU 128 0.92 10 4
Intel Xeon Gold CPU 20 (×2) 2.10 125 384
Nvidia Titan X GPU 3584 1.41 250 12

While previous studies [10, 12] have conducted some system-
level analysis (e.g., CPU vs. GPU) specific to their applications, these
analyses remained at a high level. In contrast, our study delves
deeper to investigate low-level implications, including the efficacy
of caching, prefetching, and vectorization.

4 EVALUATION HIGHLIGHTS
Our system-level investigations reveal significant inefficiencies in the
architecture of today’s prevailing compute platforms when executing
robotic workloads. Specifically, we find:

• Vectorization Is Ineffective. Despite the large silicon real-estate
it occupies, CPU vectorization does little for robotic tasks: in
the common case of an axis-unaligned orientation, the robot’s
memory layout is not vectorization-friendly.

• On-Edge Parallelism Hits The Memory Wall. Massive par-
allelism on edge platforms (e.g., Nvidia’s Jetson Nano) is bottle-
necked by memory: the memory wall is hit well before Amdahl’s
law.

• Simple PrefetchersAre Inadequate.While simple data prefetch-
ers can help with robotics workloads, complex AI algorithms used
in robotics often use irregular data structures, producing memory
patterns that defeat commercial prefetchers.

• Caches Perform Significant Unnecessary Data Movements.
Hardware caches are unaware of the robots’ software semantics; in
many cases, caches work in opposition to them. As a consequence,
caches perform excessive data movements, utilizing the memory
hierarchy inefficiently.
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