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Abstract
We propose augmenting secure boot with a mechanism
to protect against compromises to field-upgradeable de-
vices. In particular, secure boot standards should verify
the firmware of all devices in the computer, not just de-
vices that are accessible by the host CPU. Modern comput-
ers contain many autonomous processing elements, such
as disk controllers, disks, network adapters, and coproces-
sors, that all have field-upgradeable firmware and are an
essential component of the computer system’s trust model.
Ignoring these devices opens the system to attacks similar
to those secure boot was engineered to defeat.

1 Introduction
As computers continually integrate into our business and
personal lives, corporate and home users are storing more
sensitive data on their personal computers. However,
widespread Internet usage has exposed more computers to
attack and provided would-be attackers with the informa-
tion needed to scale such attacks. To protect this increas-
ingly sensitive data from these increasingly prolific attacks,
next-generation personal computers will be equipped with
special hardware and software to make computing more
worthy of trust. Such trustworthy computing will provide
security guarantees never before seen on personal comput-
ers.

Trustworthy computing requires a Trusted Computing
Base (TCB)—a core set of functionality that is assumed
secure—to implement the primitives that provide secu-
rity guarantees. The TCB typically consists of hardware,
firmware, and a basic set of OS services that allow each ap-
plication to protect and secure its data and execution. Se-
curity of the bootstrap mechanism is essential. Modeling
the bootstrap process as a set of discrete steps, if an ad-
versary manages to gain control over any particular step,
no subsequent step can be trusted. For example, consider
a personal computer with a compromised BIOS. The BIOS
can modify the bootstrap loader before it is executed, which
can then insert a backdoor into the OS before the OS gains
control.

This secure bootstrap problem is well-known and vari-
ous solutions have been proposed to deal with it. For exam-
ple, Arbaugh et al. [1] propose a mechanism whereby the
first step in the bootstrap process is immutable and there-
fore trustworthy. This trust is then bootstrapped all the way
up to the operating system by checking a digital signature

for each bootstrap step before it is executed. For exam-
ple, the BIOS could verify a public-key signature of the
disk’s boot sector to ensure its authenticity; the boot sector
could then verify the public-key signature of the OS boot-
strap code, which could likewise verify the privileged OS
processes and drivers. Though such an approach would ob-
viously not guarantee the security of the OS code, it would
at least guarantee the authenticity.

A weakness to this approach is that the BIOS in most
personal computers is writable. One solution is to store
the BIOS on a ROM. However, a ROM-based approach
is by definition inflexible, preventing BIOS updates that
may be required to support maintenance applications, net-
work booting, special devices, or CPU microcode updates.
Furthermore, the use of digital signatures introduces a key
management problem that is amplified by the requirement
to store the initial public key in ROM. To ameliorate these
problems, a secure hardware device can be used both to ver-
ify a programmable BIOS and to authenticate this verifica-
tion. This is the approach taken by the Trusted Computing
Group (TCG)[13], described in Section 2.

Both the Arbaugh et al. and TCG based approaches
share a CPU-centric view of the system that is inadequate
for establishing a trustworthy system. In Section 3, we
argue that, though the current specification goes to much
trouble to defend against attacks utilizing the CPU, it fails
to defend against similar attacks utilizing peripherals, and
in Section 4 we argue that such attacks are not much more
difficult. Section 5 describes how the current specification
could be improved with a minor augmentation.

2 The Current Approach
The Trusted Computing Group advocates using a secure
hardware device to verify the boot sequence and authenti-
cate this verification. Such a device could provide assur-
ance even to a remote user or administrator that the OS at
least started from a trustworthy state. If an OS security hole
is found in the future, the OS can be updated, restarted, and
re-verified to start from this trustworthy state. An exam-
ple of this kind of device is the Trusted Platform Module
(TPM) [14]. Such a device has been shown to enable a re-
mote observer to verify many aspects of the integrity of a
computing environment [8], which in turn enables many of
the security guarantees provided by more complex systems,
such as Microsoft’s NGSCB (formerly Palladium) [4].

The following is a simplified description of how the
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Figure 1: Hashes of the bootstrap code, operating system, and
applications are stored in the Platform Configuration Registers,
which can later be queried to verify what was executed.

TPM can be used to verify the integrity of a computing
system (see the specification for details [15]). The TPM
measures data by hashing the data. It extends a measure-
ment to a Platform Configuration Register (PCR) by hash-
ing together the current value of the PCR and the hash of
the data and storing the result in the PCR. To measure to a
PCR, the TPM measures data and extends it to a PCR. All
code must be measured before control is transferred to it.

When the computer is reset, a small and immutable code
segment (the Core Root of Trust for Measurement, CRTM)
must be given control immediately. The CRTM measures
all executable firmware physically connected to the moth-
erboard, including the BIOS, to PCR[0] (PCR[0] is the first
of sixteen PCRs). The CRTM then transfers control to the
BIOS, which proceeds to measure the hardware configu-
ration to PCR[1] and option ROM code to PCR[2] before
executing option ROMs. Each option ROM must measure
configuration and data to PCR[3]. The BIOS then measures
the Initial Program Loader (IPL) to PCR[4] before transfer-
ring control to it (the IPL is typically stored in the first 512
bytes of a bootable device, called the Master Boot Record).
The IPL measures its configuration and data to PCR[5].
PCR[6] is used during power state transitions (sleep, sus-
pend, etc.), and PCR[7] is reserved. The remaining eight
PCRs can be used to measure the kernel, device drivers,
and applications in a similar fashion (the post-boot envi-
ronment), as Figure 1 depicts.

At this point, the bootstrap code, operating system, and
perhaps a few applications have been loaded. A remote
observer can verify precisely which bootstrap code or op-
erating system has been loaded by asking the TPM to sign
a message with each PCR (the TPM QUOTE command);
this operation is called attestation. If the TPM, operating
system, bootstrap code, and hardware are loaded correctly,
the remote observer can trust the integrity of the system.
The TPM should be able to meet FIPS 140-2 requirements

[14]; hence, it is reasonably safe to assume the TPM is
trustworthy (see FIPS 140-2 requirements for details [16]).
The integrity of the operating system and bootstrap code is
verified by the remote observer; hence, the operating sys-
tem and bootstrap can be trusted to be what the remote ob-
server expects. The hardware, however, is not verified; for-
tunately, hardware is more difficult to spoof than software.

From this, we can describe attacks that are and are not
defended against. Attacks that exploit a known hole in the
OS can be detected at attestation. Attacks that modify the
BIOS, option ROMs, or IPL are detected at boot. Simi-
larly, upgrades and repairs to these components are verifi-
able. However, physical attacks on the TPM (such as inva-
sive micro-probing or EM attacks [7]) or other components
(such as RAM bus analysis) are not detected. Furthermore,
malicious hardware may provide an avenue of attack; a ma-
licious processor would not be detected by attestation, yet
it could circumvent most security policies.

For Microsoft’s NGSCB, an alternate secure boot
method is proposed [15]. This method requires the addition
of a new operation to the CPU instruction set architecture
that resets the CPU and ensures the execution of a secure
loader without reseting the I/O bus. This method allows the
secure loader to gain full control of the CPU without the
need to reinitialize the I/O subsystem. While this method
reduces its reliance on the BIOS, it still assumes that the
CPU is in control of all executable content in the system,
which, we argue, is a flawed assumption.

3 A Security Vulnerability in This System
Though it is relatively safe to trust hardware circuits (be-
cause mask sets are expensive to develop, etc.), there is
less sense in trusting firmware. Firmware is dangerous be-
cause it can be changed by viruses or malicious distribu-
tors. Though current attestation methods detect attacks on
the OS, BIOS, and option ROMs, attacks on other firmware
may be no more difficult. Firmware with direct access to
memory is no less dangerous than the BIOS or the kernel,
and even firmware without direct memory access may re-
quire trust. Hence, though peripherals and memory are im-
plicitly proposed to be a part of the TCB, we do not believe
they are currently adequately verified.

Consider a compromised disk. For example, assume
the delivery person is bribed to allow an attacker to “bor-
row” the disk for a few hours to be returned in “perfect”
condition. This disk could collect sensitive data; mod-
ern disks are large enough that the compromised firmware
could remap writes so as to never overwrite data (similar
to CVFS [10]). On a pre-specified date, or when the disk
starts to run low on storage, the disk can report disk errors.
The disk could ignore commands to perform a low-level
format or otherwise erase its data while being prepared for
warranty service. Once again the bribed delivery person
could allow the attacker physical access, literally deliver-
ing gigabytes of sensitive data to the attacker’s doorstep.
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The attacker could then reset the firmware to act normal
for a few months, leading the disk vendor to send the disk
to another customer because it believes this customer mis-
diagnosed the problem.

Generalized, the above attack takes place in three phases:
first, the device is compromised; second, the device com-
promises the integrity of data; third, the device delivers data
to the attacker. There are many techniques to perform each
of these steps, and security is violated even if the third step
does not occur.

3.1 Compromising a Device
The first step is to compromise the device. We con-
sider only attacks on firmware for autonomous comput-
ing engines that are not under control of the main CPU.
These include the operating systems found on disks [2] and
some network cards [6]. We rule out attacks that replace
parts of the hardware for several reasons: replacement re-
quires physical access; unlike overwriting firmware, re-
placement costs money; the cost of fabricating a custom
device is likely much greater than the cost of modifying the
firmware; etc. Furthermore, we assume the manufacturer is
not malicious.

The most direct attack is to provide a firmware update
to the user and use social engineering to convince the user
to install this update. Or consider the man-in-the-middle
attack, where the device is compromised after it leaves the
trusted manufacturer but before it arrives at the victim. For
example, the manufacturer may outsource the actual man-
ufacturing to a plant in an adversarial country, where the
firmware could easily be replaced. The delivery person, the
installation crew, or the maintainance team could similarly
compromise the firmware. A less glamorous (but more
likely) attack would be to embed the update in a virus or
worm that scans infected systems for vulnerable devices.

Essentially, any attack that can compromise an unat-
tested operating system could likely compromise unat-
tested firmware. Furthermore, note that once a device is
compromised, future firmware updates may not guarantee
that the device is safe (the malicious firmware could modify
the update utility or ignore update commands); also, rein-
stalling the computer software won’t reinstall the firmware.
Hence, compromising firmware is potentially more damag-
ing than compromising the operating system.

3.2 Compromising Data
Once the firmware has been replaced with malicious
firmware, there are two ways in which the device can com-
promise the integrity of data. If the device can directly is-
sue a DMA request, or if it can solicit a device to issue a
DMA request on its behalf, it can overwrite valid data or
read confidential data in host RAM. But even if DMA is
not an option, the device can still store unencrypted and
manipulate unauthenticated data that is fed to it, or simply
discard data.

3.3 Delivering Data to the Attacker
If the compromised device is a network device, it can de-
liver confidential data over the network. If the device has
direct or indirect DMA access, it can bus master a DMA
request to the network device’s ring buffer, which the net-
work device will then transmit over the network. But even
if there is no reachable network connection to the outside
world, a device may still be able to breach confidential-
ity; for example, the device can store data and then misbe-
have, causing the user to send the device in for warranty.
Once again, a man-in-the-middle attack can be used, this
time to extract the data and hide the tracks of the mali-
cious firmware (other attacks used to compromise the de-
vice may be similarly adapted). Note that storing data is not
unique to storage devices; this works for any device with an
EEPROM, and every device vulnerable to an attack on its
firmware has some EEPROM.

3.4 Summary
All DMA-capable peripherals are trusted, and must either
be verifiable or not have firmware. Furthermore, many de-
vices without DMA capabilities are trusted to some degree.
If these devices may have firmware that is not verified, data
sent to them must be either encrypted and authenticated or
insensitive to security violations. There remains a question
of feasibility: even if it is feasible to replace the firmware,
read or modify sensitive data, and deliver sensitive data,
how difficult is it to generate the malicious firmware?

4 Is Writing Malicious Firmware Feasible?
Security is about risk management; hence, it is appropriate
to ask which attacks are most likely. Attacks on software
have been shown to be quite popular; attacks on firmware
and hardware have been less prolific. We argue that attacks
on firmware are only incrementally more difficult than at-
tacks on software, and that, once attacks on software be-
come more difficult, attacks on firmware will become com-
mon. We further argue that attacks on hardware are more
difficult because hardware is not malleable; hence, circuits
and ROMs are relatively trustworthy.

Because security is about risk management, there is a
natural tendency for conflicts to escalate to slightly more
sophisticated variants. Defenders plug the easiest holes,
and attackers ratchet attacks up to the next level. For ex-
ample, the simplest buffer-overrun relies on jumping to
executable code on the stack. The direct solution, non-
executable stacks, led to slightly more elaborate attacks
[17]. Perhaps the greatest vulnerability of firmware attacks
is that modifying firmware may be no harder than modi-
fying OS code. We believe attacks have been limited up
to this point because firmware has been less homogeneous
than software and most programmers have less experience
with firmware. Both of these factors are changing: device
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vendors are consolidating, and programmers are being ex-
posed to firmware. The LinuxBIOS project [5] has success-
fully replaced the BIOS of several commodity PCs to pro-
vide flexibility. Also, hacked firmware is becoming more
common: many DVD players have hacked firmware to sup-
port DVDs from any region [9], and game stations such as
the X-Box have hacked versions of firmware [3] that con-
vert them into cheap computers.

As discussed above, any device that can DMA and any
device that is fed unencrypted or unauthenticated data is a
threat. Unless these devices are verified, one of two op-
tions must be taken to ensure security: either DMA must
be disabled and all accesses to devices must be encrypted
and authenticated, or memory must not be trusted (as in
AEGIS [11] or XOM [12]). Both options are severe and
would limit performance.

5 The Technical Solution
This paper contributes two complimentary technical solu-
tions: 1) Each compliant device must be included in the
TCB. It must ensure that its firmware is signed and veri-
fied at startup just like the rest of the executable code, and
it must verify its children. Such recursive verification will
form a tree of trust. 2) Every other device must be recog-
nized as explicitly external to the TCB. Applications must
be aware that it is unsafe, and its I/O must be sandboxed.

5.1 An Example: A Trustworthy Disk
A trustworthy disk would have a firmware signing mecha-
nism: for example, a cheap processor and ROM for some
immutable root of trust. On power-on, this system would
work in much the same manner as the TPM; all security
sensitive code would be measured to a local PCR, which
would then be signed with a key embedded in the disk’s
TPM and returned to the host CPU on request. Of crucial
importance is that this mechanism is not necessary for basic
operation of the device; it is an optional feature. The disk
can be manufactured and the additional firmware signing
hardware can be installed optionally. The signing hardware
could read the firmware directly and send the measurement
through a vendor specific command to the host CPU. Such
a solution would have a marginal cost for systems without
the security hardware, and likely less than a dollar for sys-
tems with the hardware, which both keeps costs down and
provides disk vendors with a “value add.”

5.2 The Generalized Solution: A Verification
Mechanism for Trusted Peripherals

A generalized version of the above solution is to descend
the device chain and recursively verify the trustworthiness
of all devices. On system reset, the BIOS and option ROMs
are currently measured, as well as the current hardware
configuration. When the hardware configuration is mea-
sured, each device should measure its firmware. For ex-
ample, when the PCI bus is configured and measured, each

device on the PCI bus should attest its firmware, if it is
field-upgradeable. During PCI configuration, the SCSI host
adapter will be queried; the SCSI host adapter will measure
its firmware then query each disk; finally, each disk will
measure its firmware and return this measurement. This
creates a tree of trusted devices, as depicted in Figure 2.

The host can determine the trustworthiness of a device
by assuming that the device was initially secure and there-
fore verify the initial attestation statement against future
ones, or the host can compare the firmware attestation state-
ment against a trust certificate provided by the device ven-
dor. If the device is unable to provide an attestation state-
ment or the vendor is unable to provide a trust certificate,
we have to assume the firmware and therefore the device
cannot be trusted.

5.3 Untrustworthy Devices
Because there may exist some devices whose trustworthi-
ness is unknown, there must be a compatibility mode. One
solution is to tag such devices as untrustworthy, and restrict
their DMA access to a memory address range sandbox us-
ing mechanisms similar to an I/O-MMU or machine parti-
tioning [4]. Furthermore, the operating system and sensi-
tive applications must understand that they cannot rely on
unencrypted or unauthenticated data sent or received from
an untrustworthy device. All devices bridged by an un-
trustworthy device are untrustworthy; for example, a trust-
worthy disk attached to an untrustworthy SCSI controller
is untrustworthy.

5.4 Guarantees Provided
If all critical software and firmware are verifiable, then only
attacks on hardware can go undetected. For example, con-
sider a system where the OS is verifiable, boot firmware is
verifiable, field upgradable firmware for trusted devices is
verifiable, and all other devices are sandboxed as in Sec-
tion 5.3. Then all remotely malleable components are veri-
fiable, and, for the first time ever, strong guarantees can be
provided: all remote attacks on PCs are remotely detectable
as soon as the method of attack is known, patches can be
verifyably installed, and attacks cannot survive across re-
boot. A remote observer can verify that a PC is not vul-
nerable to any known remote attacks; attacks can no longer
hide in unverified storage. Known attacks on software are
likely to be fixed with a patch that can be verifyably in-
stalled. Likewise for firmware; furthermore, if no patch
is provided, the firmware can be isolated as untrustwor-
thy. Hence, assuming that all vulnerabilities are eventu-
ally discovered—and many vulnerabilities are discovered
before attacks surface—attackers are limited to hardware
attacks. Hardware attacks either requires physical access
or buggy hardware; the former is hard to come by and the
latter can be isolated.
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Figure 2: a) On reset, the CRTM measures the BIOS to PCR[0] before transferring control to it. b) The BIOS recursively measures
devices on the PCI bus and PCI-X bus. c) The IDE controller and Gigabit Ethernet controller do not support firmware measurements—
they cannot be trusted—and hence their DMA must be sandboxed (the Gigabit Ethernet sandbox is its entire ring buffer). d) The SCSI
controller reports that one of its disks cannot be trusted with unencrypted or unauthenticated sensitive data. e) The USB controller
reports that the Camera cannot be trusted; however, the USB controller itself can still utilize DMA.

6 Conclusion
The added complexity of any security facility is worthwhile
only if the additional security provided justifies its cost.
But the additional security of current secure bootstrap fa-
cilities is minimal, because they are vulnerable to attacks
on firmware. These attacks are at least as damaging as
their software counterparts, as deployable, and nearly as
straight forward. Fortunately, a simple extension to secure
bootstrap prevents such attacks on firmware. This exten-
sion utilizes the current framework, allows device vendors
to cheaply add the required functionality, and accounts for
legacy hardware. It makes known remote attacks detectable
and forces attackers to focus on hardware attacks, which—
though possible—are difficult enough to justify the cost of
secure bootstrap.
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