RTRBench: A Benchmark Suite for Real-Time Robotics

Mohammad Bakhshalipour
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
bakhshalipour@cmu.edu

Maxim Likhachev
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
maxim@cs.cmu.edu

Phillip B. Gibbons
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
gibbons@cs.cmu.edu

Abstract—The emergence of “robotics in the wild” has triggered a wave of recent research in hardware and software to boost robots’ compute capabilities. Nevertheless, research in this area is hindered by the lack of a comprehensive benchmark suite.

In this paper, we present RTRBench, a benchmark suite for robotic kernels. RTRBench includes 16 kernels, spanning the entire software pipeline of a wide swath of robots, all implemented in C++ for fast execution.

Together with the suite, we conduct an evaluation of the workloads at the architecture level. We pinpoint the sources of inefficiencies in a modern robotic processor when executing the robotic kernels, along with the opportunities for improvements.

The source code of the benchmark suite is available in https://cmu-roboarch.github.io/rtrbench/.

I. INTRODUCTION

Robots are increasingly playing a prominent role in our technological society. The global robotics market is estimated to reach US $210 billion by 2025, up from $40 billion in 2017 [86]. Accordingly, the global competition to develop the most sophisticated robots in the world is already underway [24], [95]. The path towards developing the most advanced robots in various fields like autonomous vehicles, search and rescue, organ transplant, home assistance, unmanned aerial vehicles, and so forth, has given growing importance to research in this area.

The widespread deployment of “robotics in the wild” necessitates that robots operate effectively and safely under real-time constraints. Hence, robots need to have great compute capabilities to solve various complex artificial intelligence (AI) problems at speed. This requirement has sparked recent research in software and hardware techniques to accelerate various robotic kernels.

Unfortunately, the lack of a comprehensive benchmark suite significantly hampers the research in this emerging area. Most recent research proposals include only one [57], [64], [88] or a few [31], [74] kernels in their evaluations. However, different robotic tasks have different characteristics and requirements: when evaluating a system- or architecture-level technique on only one kernel, its effect on other kernels remains unclear.

In this paper, we present Real-Time Robotics Benchmark (RTRBench), a benchmark suite for robotic workloads. We implement a comprehensive set of kernels that span the whole software pipeline of most autonomous robots. RTRBench includes kernels from robot perception, planning, and control. Unlike most prior proposals that use Python, we write all codes in C++ for fast execution. Even though Python modules, which are constituents of prior Python-based suites, have been highly optimized, their performance is still far from their C++-based counterparts [50].

Importantly, to evaluate new hardware techniques, kernels should be easy to simulate on micro-architectural simulators, ahead of any hardware fabrication. We implement a harness for kernels to streamline the simulation process. The harness communicates with the simulator and controls the simulation process.

Finally, we study the architectural implications of the benchmarks running on a modern robotic processor. We pinpoint the sources of inefficiencies in the architecture and discuss the improvement opportunities.

II. RELATED WORK

Robotic workload characterizations of prior work [74], [94] are perhaps the closest work to RTRBench. PerceptIn [5], a self-driving car startup, details the execution statistics of different kernels internal to their autonomous cars in a recent report [94]. RoBoX [74], a hardware acceleration research proposal, evaluates multiple in-house robotic kernels and reports their execution characteristics. Unfortunately, their workloads are not publicly available.

Robotic Operating System (ROS) [7] is a middleware for robot development. It provides a framework for operations like low-level device control, hardware abstraction, and package management. It also includes the implementation of some commonly-used robot kernels. Kernels (ROS processes) can be combined to model various robots. ROS provides particular API and communication primitives for enabling such combinations to model a variety of real-world robots. ROS, however, does not consider performance as the main objective. The main goal of ROS is to provide easy and fast robot development. More than three-fourths of the codes are written in Python, and even those written in C++ are not tuned for performance. Moreover, its primitives like TCP-based inter-process communication present significant challenges for simulating the kernels.

Several pieces of prior work have proposed benchmarks for particular robotic tasks. For example, SBPL [8] provides a benchmark for search-based robot planning; OMPL [9] targets sampling-based motion planning algorithms; MAVBench [19] provides a framework for developing micro aerial vehicles;
and RLBench [43] is a suite for robot learning kernels. Each of these benchmarks covers a limited range of kernels and does not represent the entire software pipeline of robots. Noteworthy, the combination of these suites, in order to have a more comprehensive set of diverse kernels, is not straightforward, as they use dissimilar set-ups (e.g., Python versus C++). Moreover, many of these suites, if not all, do not accomplish RTRBench’s goals: (i) real-time performance and (ii) easy to simulate.

Finally, some educational libraries provide open-source implementations of robotic kernels. For example, the popular PythonRobotics library [76] provides a Python code collection of robotic algorithms. These libraries, however, do not consider performance as the main objective, and hence, cannot be used as benchmarks for evaluating techniques in the context of real-time robotics.

In a nutshell, RTRBench offers three important features that prior proposals lack wholly or partially:

1) **Comprehensive**: RTRBench covers the entire pipeline of a variety of robots, with kernels implementing perception, planning, and control tasks. Many prior proposals (e.g., [8], [9], [43]) include only one stage of the software pipeline.

2) **Real-Time**: RTRBench includes kernels implemented for fast execution. From the chosen algorithms down to programming and compilation, RTRBench considers performance as the main objective. Prior benchmarks (e.g., [1], [76]) sacrifice performance for implementation ease.

3) **Easy-to-simulate**: RTRBench implements kernels such that they are easy to simulate by current micro-architectural simulators (details in §VI). Most prior proposals do not offer this feature; for example, the Python runtime of [7], [43], [76], or the TCP-based communication primitives of [7] pose significant challenges to current simulators.

III. Background: Robot Software Pipeline

Fig. 1 shows the software pipeline of a generic robot. The pipeline consists of **Perception**, **Planning**, and **Control** stages.

A. Perception:

The perception unit is responsible for understanding the state of the environment and the robot itself. It reads raw data from sensors and inferences the robot’s state (e.g., location, orientation) and the surrounding environment (e.g., obstacles around the robot). Understanding the robot state is known as **localization** and understanding the environment is known as **mapping**.

B. Planning:

The planning stage is responsible for generating a path from the current position towards a target position. The planner uses the perception stage’s output to comprehend the position of the obstacles and searches the environment to find an efficient (e.g., short), **collision-free** path.

C. Control:

The control stage is responsible for generating commands to follow the path generated by the planning stage. The controller calculates the appropriate dynamics (e.g., velocity, acceleration) the robot needs in order to observe to *efficiently* follow the path. Once the dynamics are calculated, the controller sends the proper signals to the robot’s actuators.

Depending on the robot, task, and environment, any of the stages could be the performance bottleneck. For example, with a home assistant robot trying to find a soda in a cluttered refrigerator, the perception (understanding the contents of the refrigerator) could be the performance bottleneck. With a pilotless drone trying to find a short path in an environment with high resolution, the planning could limit the end-to-end performance. Finally, with a self-driving car needing a smooth trajectory, the control stage could be the performance bottleneck.

IV. Simulation Methodology

For simulation experiments, we use the zsim [77] micro-architectural simulator and model a processor whose specifications resemble the Intel Core i3-8109U [11]. Intel Core i3-8109U is a state-of-the-art low-end processor used in robotic systems like the LoCoBot manipulator [4] that we will study in this paper. The processor has two cores, operates at a 3 GHz frequency, and has a 4 MB on-chip cache. Two LPDDR3-2133 memory channels establish processor-memory communications, providing up to 37.5 GB/s bandwidth.

We simulate all kernel programs until they finish and report the results only for the region of interest (ROI). For every kernel, we provide a harness that is used to supply inputs to the kernel, indicate its ROI, and communicate with the simulator.

Finally, we report the evaluation results for every kernel running it with a typical, realistic configuration, on a representative inputset. However, we have implemented all of the kernels in a flexible way such that they can be easily executed with other configuration parameters and inputsets.

V. RTRBench Kernels

Table I summarizes RTRBench’s kernels along with their key characteristics. We select kernels such that the suite covers the entire software pipeline of most autonomous robots. As an example, in robots operating in low-dimensional spaces (e.g., a self-driving car operating in a 2D/3D space), best-first graph search algorithms like A* [40] are used to accomplish path planning. However, in high-dimensional spaces (e.g., a stationary robotic arm with multiple degrees-of-freedom), sampling-based algorithms like RRT [55] are used for planning. We
include both kernels in the suite to represent various real-world robots.

Moreover, we consider algorithms and methods whose effectiveness is established in the community. For example, classic yet extensively-used approaches like particle filter localization [28], whose effectiveness is widely established, are included in our suite. However, recently proposed methods like Q-learning–based path planning has an unclear performance beyond the evaluated scopes, and are not included in our suite.

Following, we provide a description of our kernels, along with their architecture-level evaluations. Noteworthy, while we evaluate the kernels in the context of a simulation framework, they can be employed in scopes beyond simulation, including in ROS-like middlewares and real-world robots. Finally, the kernels’ names have two parts: the first part indicates the corresponding pipeline stage and the second part is an abbreviation of the corresponding algorithm/method.

01.pfl

Description: Particle filter localization [48], [90], [96] is a method to estimate a robot’s state (location, orientation) as it moves and senses the environment, given a known map.

Fig. 2 shows an overview of the kernel in an environment modeling a robot moving in the Wean Hall building of Carnegie Mellon University. The robot is equipped with an odometer and a laser rangefinder.

The method maintains many particles, each representing a particular hypothesis of the robot’s state. All particles are initially sampled from a uniform random distribution, meaning the robot could be anywhere in the environment (Fig. 2(a)). Throughout the operation, the particles are re-sampled based on sensory data: particles whose hypothesis matches the sensed data re-appear with a higher chance. Finally, the particles converge toward the robot’s actual state (Fig. 2(b)).

The odometry measure the distance traveled by the robot at each step (the blue arrow in Fig. 2(c)). The odometry readings are used to update particles’ hypothesis of the robot’s state. The laser rangefinder casts rays in different directions and measures the closest obstacle in every direction (the red arrows in Fig. 2(c)). The laser readings are used to update particles’ hypothesis of the obstacles’ position. We evaluate the kernel in five different parts of the building.

Evaluation: Our evaluations show that ray-casting is the single major performance bottleneck: 67% to 78% of the entire execution time is spent in ray-casting. Ray-casting is the process of matching laser readings with hypotheses. Every particle traverses the map in different directions corresponding to the actually cast rays, and finds the closest obstacle to the robot in every direction. Then, it matches up the traverse distance (hypothesis) with the sensed data from the laser rays, and updates the hypothesis according to a sensor model.

Ray-casting exhibits significant spatial locality and fine-grained parallelism. The map traversal entails checking the map cells that are nearby each other (spatial locality); also, the cells can be checked in parallel (fine-grained parallelism). These two features make hardware acceleration a perfect fit for ray-casting, as realized in Intel’s new design: Intel offers a ray-casting accelerator in 10 nm CMOS [46] for edge robotics and augmented reality applications.

02.ekfslam

Description: When the environment map is not known, which is a common case for applications like self-driving cars and pilotless drones, the robot should simultaneously infer both the surrounding environment and its own location. This operation is known as simultaneous localization and mapping (SLAM). The environment is typically inferred by identifying several landmarks (e.g., a tall tower in a city) and keeping track of the robot’s state relative to them.

Extended Kalman filter (EKF) is a widely-used method to solve the SLAM problem [52], [91], [97]. EKF uses a series of measurements (e.g., the robot’s distance from a tower measured using GPS), and infers the state of the robot and the environment. An important feature of EKF is its robustness against measurement noises, which is achieved by accounting for uncertainties in estimations.

Fig. 2 shows an overview of the kernel in an environment modeling a robot moving through a synthetic setting with six landmarks. The robot constantly reads its distance and
angle with the landmarks from its sensors. We add Gaussian-distributed noise to each sensor measurement. Fig. 3(b) shows the results of EKF. Green points are the estimated locations of the landmarks (mapping), and the blue points are the estimated locations of the robot (localization). Red ellipses around the locations represent the uncertainties the method accounts for in its estimations.

Evaluation: Frequent matrix operations (multiplication, inversion), performed for updating the estimations based on sensory data, are the major performance bottleneck of the workload, taking more than 85% of execution time. More specifically, instruction level parallelism (ILP) is limited by the number of function units (FU) that conduct the matrix operations; we observe a decent performance improvement with increasing the number of FUs. However, increasing FUs is not an appealing approach for low-end processors, like the modeled one. As the matrices are not too large and fit in the caches, parallel near-cache computation methods seem a promising approach for performance improvement.

03.srec

Description: Scene reconstruction [50], [51], [61], [84] is the process of capturing the shape and appearance of the objects in an environment. We implement the scene reconstruction mechanism of [50], a real-time 3D reconstruction mechanism in dynamic scenes. It uses the iterative closest point (ICP) algorithm of prior work [66] to reconstruct the scene from different point clouds.

A point cloud is a set of data points in space that represents a 3D shape or object. In scene reconstruction [50], the robot’s cameras generate multiple different scans of the environment (e.g., with different camera rotations), and then the robot uses ICP to evaluate their clouds of points. ICP essentially tries to reconcile two clouds of points to have a unified understanding of the environment.

We evaluate the kernel using the living_room inputset from the ICL-NUIM [39] dataset. Fig. 4(a) shows the environment (one photo out of all taken by the robot’s camera), and Fig. 4(b) shows the output of ICP.

Evaluation: The memory system is a significant bottleneck of the workload. Manipulating point clouds generates numerous irregular accesses, overwhelming the memory system. More than 68% of the execution time is spent waiting for memory. Prefetching predicted memory accesses in order to reduce memory latency stalls does not seem to be a promising solution because (i) memory accesses are not easy-to-predict, and (ii) the bottleneck is memory bandwidth, not memory latency. Near-data processing approaches seem more fitting, particularly because of the low compute-to-communicate ratio of data.

Another important bottleneck is massive matrix operations (e.g., cross-multiplication, inversion). Though matrix data has a regular layout that is amenable to high ILP, the operations would need a large number of FUs to exploit the ILP.

Finally, a GPU, if it could be afforded in the robot, is a by far better platform for scene reconstruction. GPUs offer significantly higher memory bandwidth, tolerate memory stalls to a large extent, and can better exploit the data-parallel nature of scene reconstruction [27].

04.pp2d

Description: Path planning is the process of finding an efficient, collision-free path from the current state (location) to a goal state for a robot in complex surroundings.

In path planning, the environment is represented as a graph (Fig. 5(a)), and the planner searches it using a graph search algorithm, A* [40], along with its variants and extensions, is the seminal algorithm widely used in various robot path planning applications. The key novelty of A* over other graph search algorithms like Dijkstra is its heuristic for estimating the distance from the goal. We use Euclidean distance as the heuristic function. The search algorithm returns the path that should be taken by the robot to reach the goal.

To ensure the final path is collision-free, the planner performs frequent collision detection operations (Fig. 5(a)). Collision detection is the task of checking whether the robot would collide with obstacles in the environment if it were in a particular state.

We implement a mobile robot navigating in 2D environments, modeling a self-driving car navigating in a city. We use Boston_1_1024 of Moving AI [87], which is a snapshot of Boston, Massachusetts, as the environment (Fig. 5(b)). The car’s length × width is 4.8m × 1.8m. We choose the start and goal points such that the car traverses a long distance, observing different obstacle patterns.

Evaluation: Collision detection is the major performance bottleneck. More than 65% of the entire execution time is spent in collision detection. Similar to ray-casting (§V.1),
collision detection exhibits significant fine-grained parallelism and spatial locality.

Checking the collision status of every part of the robot’s body is independent of other parts; the operations can be completely parallelized. Importantly, the parallelism is extremely fine-grained: every operation is simply checking a cell value. Also, the parts of the robot that are tested for collision belong to one integrated body; collision detection computation is fundamentally spatially-located: the occupancy grid cells that are checked during a collision detection are nearby each other.

Significant fine-grained parallelism and spatial locality make hardware acceleration a perfect fit for collision detection, as realized by recent work [16], [57], [62], [63].

05.pp3d

Description: We implement a mobile robot navigating in a 3D environment. The kernel is similar to pp2d, but the planning has one more dimension: the z dimension. We model an unmanned aerial vehicle (UAV), a.k.a. drone, navigating in an outdoor environment, fr_campus of [2], which is a snapshot of Freiburg campus (Fig. 6(a)). We assume the UAV is small and fits in one resolution unit. Like pp2d, we choose the start and goal points such that the UAV traverses a long distance, observing different obstacle patterns.

Irregular-data prefetchers can reduce the data stalls to some extent. We evaluated an over-approximated implementation of VLDP [83] and found that it can eliminate around one-third of the data misses. Also, speculative parallelism approaches [13], [16], [45] could be quite effective in parallelizing such hard to parallelize graph search algorithms. Another appealing approach is data-centric execution. Particularly because the computation on every graph node is short (e.g., heuristic calculation, cost update), data-centric architectures, that off-load short tasks to different execution engines located near the corresponding data [58], could significantly accelerate the search process.

06.movtar

Description: This kernel represents a complex planning problem, in which a robot is trying to catch a moving target (Fig. 7). The assumption is that the robot knows the trajectory of the target (i.e., the location of the target at any given time). The environment is 2D but path planning is done in 3D, with time as the third dimension.

We create our own synthetic environments. Every location in the environment has a particular cost for the robot. The goal of the robot is to catch the target with minimum cost.

Without a well-informing heuristic, this problem cannot be solved in a reasonable amount of time in large environments. We use backward Dijkstra [17] as our heuristic function: before starting planning, the backward Dijkstra algorithm is executed to calculate the heuristic values in an environment-aware manner (e.g., accounting for obstacles).

After calculating the heuristic values, the search algorithm runs on a conceptual 3D graph to catch the moving target with the lowest possible cost. We use Weighted A* (WA*) [72] instead of A* to accelerate the graph search. WA* inflates the heuristic by a factor of ε. This way, the search is biased towards the nodes that are closer to the goal, resulting in a faster search. On the flip side, the final path cost could become ε times higher than the shortest path cost.

Evaluation: Other than collision detection, the graph search is another major performance bottleneck. Fig. 6(b) shows an example of the graph search problem. Search algorithms like Dijkstra and A* try to find the shortest path between a start point (e.g., ‘S’ in Fig. 6(b)) and a goal point (e.g., ‘G’ in Fig. 6(b)). These algorithms (i) exhibit irregular traversal, and (ii) are hard to parallelize. As a result, the execution suffers from tremendous serialization in both intra-node (limited ILP due to load misses) and inter-node (limited thread-level parallelism due to data dependency) computations.
Heuristic values, particularly when tight optimality guarantees are not required, are amenable for approximation.

07. prm

Description: Motion planning for stationary robotic arm manipulators with multiple degrees-of-freedom (DoF) is one of the challenging, time-consuming kernels in robotics. The problem has been targeted in a variety of levels from algorithm to, recently, architecture [57], [62], [63], [64].

Fig. 8(a) shows an example of arm planning. A 3-DoF robot should move its end-effector (end of the robot’s arm) from a start point, \((x_s, y_s)\), to a goal point, \((x_g, y_g)\). Planning for a robotic arm is performed in joints’ angle space: the planner calculates a series of \((\alpha_i, \beta_i, \gamma_i)\)s to guide the end-effector from the start point to the goal point.

![Robotic arm motion planning.](image)

Robotic arm planning has as many dimensions as its DoF. When the number of dimensions grows, it is not feasible to include the entire configuration space in the graph. For example, for a 5-DoF robotic arm with a minimum angle rotation of 10°, the configuration space could include \((360°/10°)^5 \approx 60M\) different values. Building a graph with that many nodes would make the problem infeasible to solve in a reasonable time.

High-dimensional planning is performed by sampling the configuration space. Probabilistic RoadMap (PRM) [14], [25], [49], [78] is a seminal algorithm for path planning in high-dimensional configuration spaces. PRM has offline and online phases. In the offline phase, it takes random samples from the configuration space of the robot, then tests whether they are collision-free, and finally connects nearby samples to form a graph, an example of which is shown in Fig. 8(b).

In the online phase, PRM adds the start and goal configurations to the graph, and accomplishes the planning by searching the graph with an algorithm like A* to find a path from the start to the goal (green path in Fig. 8(b)). We model a 5-DoF arm manipulator operating in two synthetic environments, as shown in Fig. 9. Map-F represents a free environment, and Map-C shows a cluttered one.

Evaluation: The offline process could be significantly lengthy, but it is paid only once and is done offline. The online search process, however, is on the critical path and can limit the performance. The search suffers from the same problems as in pp2d, even more so. The samples are literally random, and the graph traversal is quite irregular. Moreover, the data of every node is even larger, as every node keeps the entire sample configuration (n floating point numbers corresponding to n joint angles; e.g., 40 bytes with a 5-DoF arm). Therefore, the importance of prefetching is more pronounced in this context.

Also, frequent L2-norm calculations, which are done to calculate the distance of samples in n-dimension space, is another bottleneck. Prior work [41], [67] proposes specialized imprecise hardware for operations like L2-norm and multiply-accumulate, that can be used to accelerate PRM.

08. rrt

Description: PRM is efficient in static environments (i.e., the obstacles around the robot do not change). However, since it relies on an offline-trained graph, it cannot react to changes in the environment: if the obstacles in the environment are relocated, the built graph is out of date.

Rapidly-exploring Random Trees (RRT) [22], [29], [55] is a widely-used algorithm for high-dimensional planning in dynamic environments. RRT draws random samples and extends a tree (not a more general graph) from the start configuration towards the goal configuration. An example of such a tree is shown in Fig. 10. During extending the tree, RRT checks the collision status of different configurations with the obstacles in the environment. We evaluate the kernel on Map-C and Map-F. Unlike prm, rrt does not have any apriori knowledge of the maps, and hence builds the entire data structure online.

![Arm manipulator planning by the RRT algorithm.](image)

Evaluation: Collision detection is a major performance bottleneck of the application, taking up to 62% of the execution time. Unlike PRM that has an offline phase and performs collision checks offline, RRT does not have an offline phase, and hence, collision checks fall into the critical path of the execution. As discussed for pp2d, hardware acceleration is able to largely accelerate collision detection, as realized by recent work [16], [57], [62], [63].

Nearest neighbor search is another performance bottleneck, taking up to 31% of the execution time. When drawing a sample, RRT searches the other samples to find the near ones to connect the new sample to them. This operation exhibits irregular memory accesses, because the samples whose values
(angles) are close could be allocated in distant memory locations. This results in a large L1 data cache miss ratio (12%–22% in our experiments), significantly hurting the performance. The problem is observed in other classic applications like pattern recognition [89] and computer vision [15], as well. Prior work proposes in-memory computation [75] and informed caching [71] for accelerating the nearest neighbor search operations.

09. rrtstar

Description: RRT is fast but can return an inefficient, costly path [47]. RRT* [34], [47], [92] is a variant of RRT that returns an asymptotically optimal path. RRT* improves path quality by rewiring the tree: when a random sample is added to the tree, near neighbors are evaluated and the connections change if the addition of the new node can reduce the path cost.

Fig. 11 shows an example of rewiring. Fig. 11(a) shows the tree before rewiring. First, a random sample, named \(R \) (the red node), is drawn. Then, the nearest neighbor of \(R \) in the tree, named \(P \), is found. \(R \) is connected to \(P \) and becomes its child. The RRT algorithm stops at this step. However, RRT* evaluates the near neighbors of \(R \) (the yellow circle) for rewiring. There is only one node, named \(N \), in the neighborhood. RRT* evaluates whether removing the previous connection of \(N \) and connecting it to \(R \) improves the cost of path to \(N \) or not. If so, \(N \) is rewired, as shown in Fig. 11(b).

We evaluate RRT* on the Map–C and Map–F environments.

Evaluation: RRT* is significantly slower (up to \(8 \times \) in our experiments) but generates shorter paths (1.6× on average) as compared to RRT.

RRT*, like RRT, suffers from high collision detection and nearest neighbor search latency. The contribution of the latter increases to up to 49% due to frequent rewiring operations.

10. rrtp

Description: RRT* provides an asymptotically optimal path but it can significantly increase the execution time of RRT.

Prior work [12], [68], [31], [93] proposes post-processing the path produced by RRT to improve the path cost, while avoiding the high execution time of RRT*. The post-processing involves iterating over the nodes of the path and shortcutting them to reduce the final cost. Fig. 12 shows examples of shortcutting.

Fig. 12(a) shows the path before post-processing. The post-processing works based on the triangle inequality. Two nodes along the path are shortcutted if they can be directly connected to each other; i.e., there are not any obstacles among them. For example, in Fig. 12(a), the two node pairs connected by dashed green lines can be shortcutted, while the node pair connected by a dashed red line cannot. Fig. 12(b) shows the path after post-processing. The post-processing step could run for several iterations to further reduce the path cost.

We evaluate RRT* on the Map–C and Map–F environments.

Evaluation: RRT* with post-processing exhibits computation characteristics (and path cost) that lie in between RRT* and the baseline RRT. The overhead of nearest neighbor search operations decreases as compared to RRT* due to the lack of rewiring operations; and, the cost of post-processing is added on top of the baseline RRT.

11. symblk

Description: Symbolic planning [18], [21], [35] is a general framework to solve a variety of robotic planning problems. In symbolic planning, the problem is represented using high-level, human-readable symbols. The inputs of the planner are the valid symbols, initial state, goal state, and valid actions. An action is a set of operations done by the robot and results in changing the state of the robot and/or environment. Every action has preconditions and effects. Preconditions are the conditions a state must have for an action to be applicable to it. Effects are the changes an action makes to a state. The problem is ultimately represented as a graph search and the planner computes a sequence of actions to reach the goal state from the initial state. The strength of symbolic planning is its generality: one symbolic planner can solve any problem that can be described in the symbolic language.

We implement a symbolic planner and solve the blocks world problem [88] in its context. Fig. 13(a) shows parts of a symbolic representation of the blocks world problem, and Fig. 13(b) shows a sketch of the problem in its initial state. Even though blocks world is a toy problem, it shares the same kernel with many realistic NP-hard search problems including robotic vision, motor control, and probabilistic inference [85].
Evaluation: The kernel has only dominant operations: searching the graph nodes to find a set of actions, and string manipulation inside nodes. The former exhibits the same behavior as other graph search kernels in the context of robot planning; e.g., pp2d, pp3d, and pzm.

The string manipulation has long been targeted in the context of computer architecture [12], [33] for classic applications like packet routing and web querying. With the growing popularity of applications like bioinformatics and genome sequence analysis, and the viability of hardware acceleration, string manipulation hardware accelerators are revisited by recent work [20], [37]. Such accelerators can be repurposed for accelerating symbolic planning, with minimum effort.

12. sym-fext

Description: We model a firefighting problem and solve it in the context of symbolic planning. The problem is inspired by the final challenge at MIT’s 1st Summer School on Cognitive Robotics [10]. There are two robots: a mobile robot and a quadcopter. By landing on the mobile robot, the quadcopter pours water on the fire. The quadcopter has a limited battery level and a limited water tank; in case of low battery or water, the quadcopter needs to charge its battery or fill its tank before pouring water on the fire. The ultimate goal of the problem is to extinguish the fire. Fig. 14 shows parts of the symbolic representation of the problem.

![Fig. 14: Firefighter robots.](image)

Evaluation: The kernel uses the same symbolic planner as in sym-bkw, and hence, it largely exhibits the same (architectural) characteristics. However, **sys-fext** exhibits a higher level of parallelism (~3.2x) since it has more valid actions. Every action translates into an edge in the graph representation of the problem, and the neighbors of every node at each step can be evaluated in parallel.

13. dmp

Description: Dynamic movement primitives (DMP) [53], [79], [80] is a control kernel to generate a smooth trajectory based on the path computed by the robot’s path planner. DMP represents the problem using a virtual spring and damper system and adapts it to the planned path.

DMP uses Gaussian bias functions and shape parameters to define the overall trajectory shape. These parameters are often acquired through imitation learning [42] and linear regression, typically through a single demonstration. Once the parameters are acquired, the final trajectory, including the position, velocity, and acceleration parameters, is computed.

We train the model using data gathered from a demonstration of an in-house wheeled robot. We evaluate the model for a reference trajectory depicted by orange in Fig. 15. The black lines in Fig. 15 show the trajectory (left) and velocity (right) generated by DMP.

![Fig. 15: Dynamic movement primitives.](image)

Evaluation: The ILP is low (instructions-per-cycle (IPC) < 1) due to significant data dependency in the algorithm: the trajectory, velocity, and acceleration are all computed incrementally. Dataflow architectures [56] have been shown to be effective for this kind of computation.

14. mpc

Description: Model predictive control (MPC) is a mechanism used to control a process while satisfying a set of constraints. In robotics, it is used to generate control inputs to the robot’s actuators to efficiently follow the path absorbed from the planning stage [23], [26], [54]. For example, with a self-driving car, the constraints could be the maximum speed, and the goal could be following a path with minimum fuel usage.

Fig. 16 shows an overview of the kernel in an environment modeling a self-driving car following a long reference trajectory while not exceeding predefined velocity and acceleration values. The cost is formulated as a function of the deviation from the reference trajectory and the state change during the path.

![Fig. 16: Model predictive control.](image)

Evaluation: The major bottleneck of the kernel is solving the optimization problem, taking more than 80% of the entire execution time. RoBoX [74] proposes a full-fledged accelerator for accelerating this process. It uses specialized logic and near-data computation to solve the problem significantly faster.

15. cem

Description: We model a ball-throwing robot whose throwing skills get improved using reinforcement learning. We use
V-REP [73] to simulate the robot and the environment. Fig. 17 shows the environment. A 2-DoF robotic arm applies a certain force to throw a ball towards a certain goal. The purpose of reinforcement learning is to learn the best force and configuration (joints’ angles). The reward of the learning is how close the final location of the ball is to the goal.

Cross-entropy method (CEM) [70] is a Monte Carlo optimization method. CEM learns the policy (throwing parameters) by repeatedly drawing samples, collecting rewards, and minimizing the cross-entropy loss to shift the policy towards samples that result in larger rewards. We execute CEM for five iterations and draw fifteen samples in every iteration. Fig. 18 shows how reward (higher is better) changes over learning.

Fig. 18: Rewards over time using CEM.

Evaluation: Recent work [82] proposes hardware acceleration for reinforcement learning that can be well applicable in this context as well. Also, we find the sort operations (for finding the largest rewards) as a non-trivial execution bottleneck of the algorithm, taking around one-third of the entire execution time, depending on the learning algorithm configuration.

16.bo

Description: In robotics, Bayesian optimization (BO) is used to optimize control parameters in reinforcement learning [44]. BO is data-efficient and gradient-free, and is increasingly used to solve a variety of control problems.

We implement BO in the context of the ball-throwing robot scenario. We use an upper confidence bound (UCB) acquisition function. Training and testing are done using a Gaussian process. Fig. 19 shows how the reward changes over the course of the 45 iterations of the learning process.

Evaluation: The kernel exhibits largely the same characteristics as cem. However, computationally, it is more intensive (∼15000× more iterations). Hardware acceleration of the reinforcement learning kernel can be a perfect architectural solution to accelerate the application. Also, since more metadata is kept with BO, its sort operation is more time-consuming (∼6× as compared to cem).

VI. IMPLEMENTATION DETAILS

System Requirements: We test RTRBench under Ubuntu 18.04 with Linux Kernel 4.15, and compile with GCC 11.1.0. However, RTRBench can be used with a variety of other operating systems and compilers. As we use C++17, the minimum required GCC version is 8.0 (Clang: 5.0; Visual Studio: 15.8).

Also, we integrate the kernels with zsim [77], and communicate the regions of interest (ROIs) using zsim hooks. Without zsim (either real execution or in the context of other simulators), the harness instructions will be safely executed: no effect on correctness and virtually zero effect on performance. We believe RTRBench can be smoothly integrated/used with other simulators, as well; however, the ROI communications should be coded based on the target simulator.

Usage & Flexibility: We provide a Makefile for every kernel. Also, we provide a usage help message for every kernel. Running the binary file of a kernel with --help will print the help message. For example, Fig. 20 shows an example of a help message.

$./rrt.out --help

USAGE:

./rrt.out [OPTIONS] [FLAGS]

OPTIONS:
--bias <val> Random number generation bias
--config <val> Input config file
--epsilon <val> Epsilon (minimum movement)
--map <val> Input map file
--output <val> Output path file
--radius <val> Neighborhood distance
--samples <val> Maximum samples

FLAGS:
--help, -h Print help message

Fig. 20: An example of a help message.
VII. COMPARISON WITH OPEN-SOURCE REPOSITORIES

As we mentioned in VI, there are a few educational open-source libraries that provide implementations of robotic kernels. The main problem with these libraries is that they do not consider performance as the main objective, and hence, cannot be used as a benchmark for real-time robotics.

In this section, we compare the performance of our suite against PythonRobotics (P-Rob) [6], [7] and CppRobotics (C-Rob) [1]. P-Rob is a popular robotic library with ~4.8K forks and ~14.8K stars (as of 04/01/2022). P-Rob provides a Python code collection of the robotic kernels operating on small, synthetic input sets. C-Rob translates some of the P-Rob kernels to C++.

As a case study, we compare pp2d with the counterpart kernels in P-Rob (a_star.py) and C-Rob (a_star.cpp). We removed the code for generating animations from the competitor libraries, to accelerate their execution. We conduct this experiment on a real machine, as the competitor libraries are not easy to simulate (Python runtime, etc.). Our machine uses Intel Xeon CPU E5-2670 [3] cores operating at 2.60 GHz, with the operating system and compiler described in VI.

As input sets, we use the map provided by the competitor libraries, which is depicted in Fig. 21(a). Because the map is small, we also scale it by different factors to evaluate the implementations in larger (or finer-resolution) environments. Fig. 21(b) shows the execution time results.

![Fig. 21: Performance comparison of different methods.](image)

As the results show, the competitor libraries are far from real-time. Our implementation is 357×3469 faster than P-Rob, and 74×13576 faster than C-Rob. P-Rob, not surprisingly, suffers from the tremendous overhead of the Python runtime. For C-Rob, we investigated its source code for this particular kernel, and found that the main source of inefficiency is passing large data structures to functions needlessly by value instead of by reference. As noted above, and highlighted by this performance comparison, these libraries are designed for educational purposes and not for real-time experiments.

VIII. CONCLUSION

Research on real-time robotics is significantly hindered by the lack of a comprehensive benchmark suite. In this paper, we present RTRBench, a benchmark suite for robotic kernels. RTRBench includes 16 kernels, spanning the entire software pipeline of a wide swath of robots. Together with the suite, we conduct an evaluation of the workloads at the architecture level and suggest opportunities for performance improvements.

ACKNOWLEDGMENT

This work was supported in part by National Science Foundation grant CCF-2028949, by a VMware University Research Fund Award, and by the Parallel Data Lab (PDL) Consortium (Alibaba, Amazon, Datrimum, Facebook, Google, Hewlett-Packard Enterprise, Hitachi, IBM, Intel, Microsoft, NetApp, Oracle, Salesforce, Samsung, Seagate, and TwoSigma). Mohammad Bakhshaliour was supported by the Apple CMU ECE PhD Fellowship in Integrated Systems. We would like to thank the anonymous reviewers for their valuable comments, and our shepherd, Jaekyu Lee, for his feedback.

REFERENCES

