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Abstract—The emergence of “robotics in the wild” has trig-
gered a wave of recent research in hardware and software to
boost robots’ compute capabilities. Nevertheless, research in this
area is hindered by the lack of a comprehensive benchmark suite.

In this paper, we present RTRBench , a benchmark suite
for robotic kernels. RTRBench includes 16 kernels, spanning
the entire software pipeline of a wide swath of robots, all
implemented in C++ for fast execution.

Together with the suite, we conduct an evaluation of the
workloads at the architecture level. We pinpoint the sources of
inefficiencies in a modern robotic processor when executing the
robotic kernels, along with the opportunities for improvements.

The source code of the benchmark suite is available in
https://cmu-roboarch.github.io/rtrbench/.

Index Terms—Robotics, Benchmarking, Workload Character-
ization, Computer Architecture, Simulation.

I. INTRODUCTION

Robots are increasingly playing a prominent role in our
technological society. The global robotics market is esti-
mated to reach US $210 billion by 2025, up from $40
billion in 2017 [86]. Accordingly, the global competition
to develop the most sophisticated robots in the world is
already underway [24], [95]. The path towards developing
the most advanced robots in various fields like autonomous
vehicles, search and rescue, organ transplant, home assistance,
unmanned aerial vehicles, and so forth, has given growing
importance to research in this area.

The widespread deployment of “robotics in the wild” ne-
cessitates that robots operate effectively and safely under real-
time constraints. Hence, robots need to have great compute
capabilities to solve various complex artificial intelligence
(AI) problems at speed. This requirement has sparked recent
research in software and hardware techniques to accelerate
various robotic kernels.

Unfortunately, the lack of a comprehensive benchmark suite
significantly hampers the research in this emerging area. Most
recent research proposals include only one [57], [64], [88] or a
few [31], [74] kernels in their evaluations. However, different
robotic tasks have different characteristics and requirements:
when evaluating a system- or architecture-level technique on
only one kernel, its effect on other kernels remains unclear.

In this paper, we present Real-Time Robotics Benchmark
(RTRBench) , a benchmark suite for robotic workloads. We
implement a comprehensive set of kernels that span the whole
software pipeline of most autonomous robots. RTRBench
includes kernels from robot perception, planning, and control.

Unlike most prior proposals that use Python, we write all codes
in C++ for fast execution. Even though Python modules, which
are constituents of prior Python-based suites, have been highly
optimized, their performance is still far from their C++-based
counterparts [56].

Importantly, to evaluate new hardware techniques, kernels
should be easy to simulate on micro-architectural simulators,
ahead of any hardware fabrication. We implement a harness
for kernels to streamline the simulation process. The harness
communicates with the simulator and controls the simulation
process.

Finally, we study the architectural implications of the bench-
marks running on a modern robotic processor. We pinpoint the
sources of inefficiencies in the architecture and discuss the
improvement opportunities.

II. RELATED WORK

Robotic workload characterizations of prior work [74], [94]
are perhaps the closest work to RTRBench . PerceptIn [5],
a self-driving car startup, details the execution statistics of
different kernels internal to their autonomous cars in a recent
report [94]. RoBoX [74], a hardware acceleration research
proposal, evaluates multiple in-house robotic kernels and
reports their execution characteristics. Unfortunately, their
workloads are not publicly available.

Robotic Operating System (ROS) [7] is a middleware for
robot development. It provides a framework for operations like
low-level device control, hardware abstraction, and package
management. It also includes the implementation of some
commonly-used robot kernels. Kernels (ROS processes) can
be combined to model various robots. ROS provides particular
API and communication primitives for enabling such combi-
nations to model a variety of real-world robots. ROS , however,
does not consider performance as the main objective. The main
goal of ROS is to provide easy and fast robot development.
More than three-fourths of the codes are written in Python,
and even those written in C++ are not tuned for performance.
Moreover, its primitives like TCP-based inter-process com-
munication present significant challenges for simulating the
kernels.

Several pieces of prior work have proposed benchmarks for
particular robotic tasks. For example, SBPL [8] provides a
benchmark for search-based robot planning; OMPL [9] targets
sampling-based motion planning algorithms; MAVBench [19]
provides a framework for developing micro aerial vehicles;
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Fig. 1: Robots’ computation pipeline.

and RLBench [43] is a suite for robot learning kernels. Each
of these benchmarks covers a limited range of kernels and
does not represent the entire software pipeline of robots.
Noteworthy, the combination of these suites, in order to
have a more comprehensive set of diverse kernels, is not
straightforward, as they use dissimilar set-ups (e.g., Python
versus C++). Moreover, many of these suites, if not all, do
not accomplish RTRBench ’s goals: (i) real-time performance
and (ii) easy to simulate.

Finally, some educational libraries provide open-source
implementations of robotic kernels. For example, the popular
PythonRobotics library [76] provides a Python code collection
of robotic algorithms. These libraries, however, do not con-
sider performance as the main objective, and hence, cannot be
used as benchmarks for evaluating techniques in the context
of real-time robotics.

In a nutshell, RTRBench offers three important features that
prior proposals lack wholly or partially:

1) Comprehensive: RTRBench covers the entire pipeline
of a variety of robots, with kernels implementing percep-
tion, planning, and control tasks. Many prior proposals
(e.g., [8], [9], [43]) include only one stage of the
software pipeline.

2) Real-Time: RTRBench includes kernels implemented
for fast execution. From the chosen algorithms down
to programming and compilation, RTRBench considers
performance as the main objective. Prior benchmarks
(e.g., [1], [76]) sacrifice performance for implementation
ease.

3) Easy-to-simulate: RTRBench implements kernels such
that they are easy to simulate by current micro-
architectural simulators (details in §VI). Most prior
proposals do not offer this feature; for example, the
Python runtime of [7], [43], [76], or the TCP-based com-
munication primitives of [7] pose significant challenges
to current simulators.

III. BACKGROUND: ROBOT SOFTWARE PIPELINE

Fig. 1 shows the software pipeline of a generic robot. The
pipeline consists of Perception, Planning, and Control stages.

A. Perception: The perception unit is responsible for
understanding the state of the environment and the robot
itself. It reads raw data from sensors and infers the robot’s
state (e.g., location, orientation) and the surrounding
environment (e.g., obstacles around the robot). Understanding
the robot state is known as localization and understanding
the environment is known as mapping.

B. Planning: The planning stage is responsible for generating
a path from the current position towards a target position.
The planner uses the perception stage’s output to comprehend
the position of the obstacles and searches the environment to
find an efficient (e.g., short), collision-free path.

C. Control: The control stage is responsible for generating
commands to follow the path generated by the planning stage.
The controller calculates the appropriate dynamics (e.g.,
velocity, acceleration) the robot needs in order to observe to
efficiently follow the path. Once the dynamics are calculated,
the controller sends the proper signals to the robot’s actuators.

Depending on the robot, task, and environment, any of the
stages could be the performance bottleneck. For example, with
a home assistant robot trying to find a soda in a cluttered
refrigerator, the perception (understanding the contents of the
refrigerator) could be the performance bottleneck. With a
pilotless drone trying to find a short path in an environment
with high resolution, the planning could limit the end-to-
end performance. Finally, with a self-driving car needing a
smooth trajectory, the control stage could be the performance
bottleneck.

IV. SIMULATION METHODOLOGY

For simulation experiments, we use the zsim [77] micro-
architectural simulator and model a processor whose specifi-
cations resemble the Intel Core i3-8109U [11]. Intel Core i3-
8109U is a state-of-the-art low-end processor used in robotic
systems like the LoCoBot manipulator [4] that we will study
in this paper.

The processor has two cores, operates at a 3 GHz frequency,
and has a 4 MB on-chip cache. Two LPDDR3-2133 memory
channels establish processor-memory communications, provid-
ing up to 37.5 GB/s bandwidth.

We simulate all kernel programs until they finish and report
the results only for the region of interest (ROI). For every
kernel, we provide a harness that is used to supply inputs to the
kernel, indicate its ROI, and communicate with the simulator.

Finally, we report the evaluation results for every kernel
running it with a typical, realistic configuration, on a repre-
sentative inputset. However, we have implemented all of the
kernels in a flexible way such that they can be easily executed
with other configuration parameters and inputsets.

V. RTRBench KERNELS

Table I summarizes RTRBench ’s kernels along with their
key characteristics. We select kernels such that the suite covers
the entire software pipeline of most autonomous robots. As an
example, in robots operating in low-dimensional spaces (e.g., a
self-driving car operating in a 2D/3D space), best-first graph
search algorithms like A? [40] are used to accomplish path
planning. However, in high-dimensional spaces (e.g., a station-
ary robotic arm with multiple degrees-of-freedom), sampling-
based algorithms like RRT [55] are used for planning. We



Table I: RTRBench ’s kernels and their key characteristics.

Kernel Stage Bottleneck(s) Kernel Stage Bottleneck(s)
01.pfl Perception Ray-casting 09.rrtstar Planning Collision detection, nearest neighbor search
02.ekfslam Perception Matrix operations 10.rrtpp Planning Collision detection, nearest neighbor search
03.srec Perception Point cloud operations, matrix operations 11.sym-blkw Planning Graph search, string manipulation
04.pp2d Planning Collision detection 12.sym-fext Planning Graph search, string manipulation
05.pp3d Planning Collision detection, graph search 13.dmp Control Fine-grained serialization
06.movtar Planning Input-dependent 14.mpc Control Optimization
07.prm Planning Graph search, L2-norm calculations 15.cem Control Sort
08.rrt Planning Collision detection, nearest neighbor search 16.bo Control Sort

include both kernels in the suite to represent various real-world
robots.

Moreover, we consider algorithms and methods whose
effectiveness is established in the community. For example,
classic yet extensively-used approaches like particle filter lo-
calization [28], whose effectiveness is widely established, are
included in our suite. However, recently proposed methods like
Q-learning–based path planning has an unclear performance
beyond the evaluated scopes, and are not included in our suite.

Following, we provide a description of our kernels, along
with their architecture-level evaluations. Noteworthy, while we
evaluate the kernels in the context of a simulation framework,
they can be employed in scopes beyond simulation, including
in ROS-like middlewares and real-world robots. Finally, the
kernels’ names have two parts: the first part indicates the corre-
sponding pipeline stage and the second part is an abbreviation
of the corresponding algorithm/method.

01.pfl

Description: Particle filter localization [48], [90], [96] is a
method to estimate a robot’s state (location, orientation) as
it moves and senses the environment, given a known map.

Fig. 2 shows an overview of the kernel in an environment
modeling a robot moving in the Wean Hall building of
Carnegie Mellon University. The robot is equipped with an
odometer and a laser rangefinder.

The method maintains many particles, each representing
a particular hypothesis of the robot’s state. All particles are
initially sampled from a uniform random distribution, meaning
the robot could be anywhere in the environment (Fig. 2-
(a)). Throughout the operation, the particles are re-sampled
based on sensory data: particles whose hypothesis matches
the sensed data re-appear with a higher chance. Finally, the
particles converge toward the robot’s actual state (Fig. 2-(b)).

The odometer measures the distance traveled by the robot at
each step (the blue arrow in Fig. 2-(c)). The odometry readings
are used to update particles’ hypothesis of the robot’s state.
The laser rangefinder casts rays in different directions and
measures the closest obstacle in every direction (the red arrows
in Fig. 2-(c)). The laser readings are used to update particles’
hypothesis of the obstacles’ position. We evaluate the kernel
in five different parts of the building.
Evaluation: Our evaluations show that ray-casting is the single
major performance bottleneck: 67% to 78% of the entire
execution time is spent in ray-casting. Ray-casting is the
process of matching laser readings with hypotheses. Every
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Fig. 2: Particle filter localization.

particle traverses the map in different directions corresponding
to the actually cast rays, and finds the closest obstacle to
the robot in every direction. Then, it matches up the traverse
distance (hypothesis) with the sensed data from the laser rays,
and updates the hypothesis according to a sensor model.

Ray-casting exhibits significant spatial locality and fine-
grained parallelism. The map traversal entails checking the
map cells that are nearby each other (spatial locality); also,
the cells can be checked in parallel (fine-grained parallelism).
These two features make hardware acceleration a perfect fit
for ray-casting, as realized in Intel’s new design: Intel offers a
ray-casting accelerator in 10 nm CMOS [46] for edge robotics
and augmented reality applications.

02.ekfslam

Description: When the environment map is not known, which
is a common case for applications like self-driving cars and
pilotless drones, the robot should simultaneously infer both the
surrounding environment and its own location. This operation
is known as simultaneous localization and mapping (SLAM).
The environment is typically inferred by identifying several
landmarks (e.g., a tall tower in a city) and keeping track of
the robot’s state relative to them.

Extended Kalman filter (EKF) is a widely-used method
to solve the SLAM problem [52], [91], [97]. EKF uses a
series of measurements (e.g., the robot’s distance from a tower
measured using GPS), and infers the state of the robot and the
environment. An important feature of EKF is its robustness
against measurement noises, which is achieved by accounting
for uncertainties in estimations.

Fig. 3 shows an overview of the kernel in an environment
modeling a robot moving through a synthetic setting with
six landmarks. The robot constantly reads its distance and



angle with the landmarks from its sensors. We add Gaussian-
distributed noise to each sensor measurement. Fig. 3-(b) shows
the results of EKF . Green points are the estimated locations of
the landmarks (mapping), and the blue points are the estimated
locations of the robot (localization). Red ellipses around the
locations represent the uncertainties the method accounts for
in its estimations.

The modeled environment(a) EKF results for the modeled problem(b)

Robot

Fig. 3: SLAM using Extended Kalman Filter .

Evaluation: Frequent matrix operations (multiplication, in-
version), performed for updating the estimations based on
sensory data, are the major performance bottleneck of the
workload, taking more than 85% of execution time. More
specifically, instruction level parallelism (ILP) is limited by
the number of function units (FU) that conduct the matrix
operations; we observe a decent performance improvement
with increasing the number of FUs. However, increasing FUs
is not an appealing approach for low-end processors, like the
modeled one. As the matrices are not too large1 and fit in the
caches, parallel near-cache computation methods [69] seem a
promising approach for performance improvement.

03.srec

Description: Scene reconstruction [50], [51], [61], [84] is the
process of capturing the shape and appearance of the objects
in an environment. We implement the scene reconstruction
mechanism of [50], a real-time 3D reconstruction mechanism
in dynamic scenes. It uses the iterative closest point (ICP)
algorithm of prior work [66] to reconstruct the scene from
different point clouds.

A point cloud is a set of data points in space that represents
a 3D shape or object. In scene reconstruction [50], the robot’s
cameras generate multiple different scans of the environment
(e.g., with different camera rotations), and then the robot uses
ICP to evaluate their clouds of points. ICP essentially tries to
reconcile two clouds of points to have a unified understanding
of the environment.

We evaluate the kernel using the living_room inputset
from the ICL-NUIM [39] dataset. Fig. 4-(a) shows the envi-
ronment (one photo out of all taken by the robot’s camera),
and Fig. 4-(b) shows the output of ICP .
Evaluation: The memory system is a significant bottleneck of
the workload. Manipulating point clouds generates numerous
irregular accesses, overwhelming the memory system. More

1The size of matrices is proportionate to the number of different measure-
ment types (distance and angle in the modeled application).

The environment(a) The reconstructed scene(b)

Fig. 4: 3D reconstruction in dynamic scenes.

than 68% of the execution time is spent waiting for memory.
Prefetching predicted memory accesses in order to reduce
memory latency stalls does not seem to be a promising
solution because (i) the memory accesses are not easy-to-
predict, and (ii) the bottleneck is memory bandwidth, not
memory latency. Near-data processing approaches [65] seem
more fitting, particularly because of the low compute-to-
communicate ratio [60] of data.

Another important bottleneck is massive matrix operations
(e.g., cross-multiplication, inversion). Though matrix data has
a regular layout that is amenable to high ILP, the operations
would need a large number of FUs to exploit the ILP.

Finally, a GPU, if it could be afforded in the robot, is a
by far better platform for scene reconstruction. GPUs offer
significantly higher memory bandwidth, tolerate memory stalls
to a large extent, and can better exploit the data-parallel nature
of scene reconstruction [27].

04.pp2d

Description: Path planning is the process of finding an effi-
cient, collision-free path from the current state (location) to a
goal state for a robot in complex surroundings.

In path planning, the environment is represented as a graph
(Fig. 5-(a)), and the planner searches it using a graph search
algorithm. A? [40], along with its variants and extensions,
is the seminal algorithm widely used in various robot path
planning applications. The key novelty of A? over other graph
search algorithms like Dijkstra is its heuristic for estimating
the distance from the goal. We use Euclidean distance as the
heuristic function. The search algorithm returns the path that
should be taken by the robot to reach the goal.

To ensure the final path is collision-free, the planner
performs frequent collision detection operations (Fig. 5-(a)).
Collision detection is the task of checking whether the robot
would collide with obstacles in the environment if it were in
a particular state.

We implement a mobile robot navigating in 2D environ-
ments, modeling a self-driving car navigating in a city. We use
Boston_1_1024 of Moving AI [87], which is a snapshot
of Boston, Massachusetts, as the environment (Fig. 5-(b)).
The car’s length×width is 4.8m × 1.8m. We choose the start
and goal points such that the car traverses a long distance,
observing different obstacle patterns.
Evaluation: Collision detection is the major performance
bottleneck. More than 65% of the entire execution time is
spent in collision detection. Similar to ray-casting (§V.1),
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Fig. 5: 2D path planning.

collision detection exhibits significant fine-grained parallelism
and spatial locality.

Checking the collision status of every part of the robot’s
body is independent of other parts; the operations can be com-
pletely parallelized. Importantly, the parallelism is extremely
fine-grained: every operation is simply checking a cell value.
Also, the parts of the robot that are tested for collision belong
to one integrated body; collision detection computation is
fundamentally spatially-located: the occupancy grid cells that
are checked during a collision detection are nearby each other.

Significant fine-grained parallelism and spatial locality
make hardware acceleration a perfect fit for collision detection,
as realized by recent work [16], [57], [62], [63].

05.pp3d

Description: We implement a mobile robot navigating in a 3D
environment. The kernel is similar to pp2d, but the planning
has one more dimension: the z dimension. We model an
unmanned aerial vehicle (UAV), a.k.a. drone, navigating in an
outdoor environment, fr_campus of [2], which is a snapshot
of Freiburg campus (Fig. 6-(a)). We assume the UAV is small
and fits in one resolution unit. Like pp2d, we choose the start
and goal points such that the UAV traverses a long distance,
observing different obstacle patterns.
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Fig. 6: 3D path planning.

Evaluation: Other than collision detection, the graph search
is another major performance bottleneck. Fig. 6-(b) shows
an example of the graph search problem. Search algorithms
like Dijkstra and A? try to find the shortest path between
a start point (e.g., ‘S’ in Fig. 6-(b)) and a goal point (e.g.,
‘G’ in Fig. 6-(b)). These algorithms (i) exhibit irregular
traversal, and (ii) are hard to parallelize. As a result, the
execution suffers from tremendous serialization in both intra-
node (limited ILP due to load misses) and inter-node (limited
thread-level parallelism due to data dependency) computations.

Irregular-data prefetchers can reduce the data stalls to some
extent. We evaluated an over-approximated implementation of
VLDP [83] and found that it can eliminate around one-third of
the data misses. Also, speculative parallelism approaches [13],
[16], [45] could be quite effective in parallelizing such hard
to parallelize graph search algorithms. Another appealing
approach is data-centric execution. Particularly because the
computation on every graph node is short (e.g., heuristic
calculation, cost update), data-centric architectures, that of-
fload short tasks to different execution engines located near
the corresponding data [58], could significantly accelerate the
search process.

06.movtar

Description: This kernel represents a complex planning prob-
lem, in which a robot is trying to catch a moving target (Fig. 7).
The assumption is that the robot knows the trajectory of the
target (i.e., the location of the target at any given time). The
environment is 2D but path planning is done in 3D, with time
as the third dimension.

We create our own synthetic environments. Every location
in the environment has a particular cost for the robot. The goal
of the robot is to catch the target with minimum cost.

Without a well-informing heuristic, this problem cannot be
solved in a reasonable amount of time in large environments.
We use backward Dijkstra [17] as our heuristic function:
before starting planning, the backward Dijkstra algorithm is
executed to calculate the heuristic values in an environment-
aware manner (e.g., accounting for obstacles).

After calculating the heuristic values, the search algorithm
runs on a conceptual 3D graph to catch the moving target with
the lowest possible cost. We use Weighted A? (WA?) [72]
instead of A? to accelerate the graph search. WA? inflates
the heuristic by a factor of ε . This way, the search is biased
towards the nodes that are closer to the goal, resulting in a
faster search. On the flip side, the final path cost could become
ε times higher than the shortest path cost.
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Fig. 7: Catching a moving target.

Evaluation: The performance of the kernel is largely de-
pendent on the inputset. In large environments, the kernel
exhibits virtually the same characteristics as pp3d. In small
environments, however, unlike pp3d, the contribution of the
heuristic calculation latency to the end-to-end latency grows up
to 62%. Approximate hardware acceleration [30], [59] can be
used for improving the performance of heuristic calculations.



Heuristic values, particularly when tight optimality guarantees
are not required, are amenable for approximation.

07.prm

Description: Motion planning for stationary robotic arm ma-
nipulators with multiple degrees-of-freedom (DoF) is one
of the challenging, time-consuming kernels in robotics. The
problem has been targeted in a variety of levels from algorithm
to, recently, architecture [57], [62], [63], [64].

Fig. 8-(a) shows an example of arm planning. A 3-DoF
robot should move its end-effector (end of the robot’s arm)
from a start point, (xs,ys), to a goal point, (xg,yg). Planning for
a robotic arm is performed in joints’ angle space: the planner
calculates a series of (αi,βi,γi)s to guide the end-effector from
the start point to the goal point.
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PRM graph(b)3-DoF robotic arm(a)

Fig. 8: Robotic arm motion planning.

Robotic arm planning has as many dimensions as its DoF.
When the number of dimensions grows, it is not feasible to
include the entire configuration space in the graph. For exam-
ple, for a 5-DoF robotic arm with a minimum angle rotation
of 10◦, the configuration space could include ( 360◦

10◦ )
5 ≈ 60M

different values. Building a graph with that many nodes would
make the problem infeasible to solve in a reasonable time.

High-dimensional planning is performed by sampling the
configuration space. Probabilistic RoadMap (PRM) [14], [25],
[49], [78] is a seminal algorithm for path planning in high-
dimensional configuration spaces. PRM has offline and online
phases. In the offline phase, it takes random samples from the
configuration space of the robot, then tests whether they are
collision-free, and finally connects nearby samples to form a
graph, an example of which is shown in Fig. 8-(b).

In the online phase, PRM adds the start and goal configura-
tions to the graph, and accomplishes the planning by searching
the graph with an algorithm like A? to find a path from the
start to the goal (green path in Fig. 8-(b)). We model a 5-DoF
arm manipulator operating in two synthetic environments, as
shown in Fig. 9. Map-F represents a free environment, and
Map-C shows a cluttered one.
Evaluation: The offline process could be significantly lengthy,
but it is paid only once and is done offline. The online search
process, however, is on the critical path and can limit the
performance. The search suffers from the same problems as in
pp2d, even more so. The samples are literally random, and the
graph traversal is quite irregular. Moreover, the data of every
node is even larger, as every node keeps the entire sample
configuration (n floating point numbers corresponding to n
joint angles; e.g., 40 bytes with a 5-DoF arm). Therefore, the
importance of prefetching is more pronounced in this context.
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Fig. 9: Synthetic maps for evaluating the robotic arm.

Also, frequent L2-norm calculations, which are done to
calculate the distance of samples in n-dimension space, is
another bottleneck. Prior work [41], [67] proposes specialized
imprecise hardware for operations like L2-norm and multiply-
accumulate, that can be used to accelerate PRM .

08.rrt

Description: PRM is efficient in static environments (i.e., the
obstacles around the robot do not change). However, since it
relies on an offline-trained graph, it cannot react to changes
in the environment: if the obstacles in the environment are
relocated, the built graph is out of date.

Rapidly-exploring Random Trees (RRT) [22], [29], [55]
is a widely-used algorithm for high-dimensional planning
in dynamic environments. RRT draws random samples and
extends a tree (not a more general graph) from the start
configuration towards the goal configuration. An example of
such a tree is shown in Fig. 10. During extending the tree,
RRT checks the collision status of different configurations
with the obstacles in the environment. We evaluate the kernel
on Map-C and Map-F. Unlike prm, rrt does not have any
apriori knowledge of the maps, and hence builds the entire
data structure online.

(𝛼𝑠, 𝛽𝑠, 𝛾𝑠)

(𝛼𝑔 , 𝛽𝑔, 𝛾𝑔)

Fig. 10: Arm manipulator planning by the RRT algorithm.

Evaluation: Collision detection is a major performance bot-
tleneck of the application, taking up to 62% of the execution
time. Unlike PRM that has an offline phase and performs
collision checks offline, RRT does not have an offline phase,
and hence, collision checks fall into the critical path of the
execution. As discussed for pp2d, hardware acceleration is
able to largely accelerate collision detection, as realized by
recent work [16], [57], [62], [63].

Nearest neighbor search is another performance bottleneck,
taking up to 31% of the execution time. When drawing a
sample, RRT searches the other samples to find the near ones
to connect the new sample to them. This operation exhibits
irregular memory accesses, because the samples whose values



(angles) are close could be allocated in distant memory loca-
tions. This results in a large L1 data cache miss ratio (12%-
22% in our experiments), significantly hurting the perfor-
mance. The problem is observed in other classic applications
like pattern recognition [89] and computer vision [15], as
well. Prior work proposes in-memory computation [75] and
informed caching [71] for accelerating the nearest neighbor
search operations.

09.rrtstar

Description: RRT is fast but can return an inefficient, costly
path [47]. RRT ? [34], [47], [92] is a variant of RRT that
returns an asymptotically optimal path. RRT ? improves path
quality by rewiring the tree: when a random sample is added
to the tree, near neighbors are evaluated and the connections
change if the addition of the new node can reduce the path
cost.

Fig. 11 shows an example of rewiring. Fig. 11-(a) shows
the tree before rewiring. First, a random sample, named R
(the red node), is drawn. Then, the nearest neighbor of R
in the tree, named P, is found. R is connected to P and
becomes its child. The RRT algorithm stops at this step.
However, RRT ? evaluates the near neighbors of R (the yellow
circle) for rewiring. There is only one node, named N, in the
neighborhood. RRT ? evaluates whether removing the previous
connection of N and connecting it to R improves the cost of
path to N or not. If so, N is rewired, as shown in Fig. 11-(b).

We evaluate RRT ? on the Map-C and Map-F environments.

𝑆
𝐺

𝑆
𝐺

𝑁 𝑁

𝑃 𝑃

Before rewiring(a) After rewiring(b)

𝑅 𝑅

Fig. 11: A rewiring example with RRT ?.

Evaluation: RRT ? is significantly slower (up to 8× in our
experiments) but generates shorter paths (1.6× on average) as
compared to RRT .

RRT ?, like RRT , suffers from high collision detection and
nearest neighbor search latency. The contribution of the latter
increases to up to 49% due to frequent rewiring operations.

10.rrtpp

Description: RRT ? provides an asymptotically optimal path
but it can significantly increase the execution time of RRT .

Prior work [32], [68], [81], [93] proposes post-processing
the path produced by RRT to improve the path cost,
while avoiding the high execution time of RRT ?. The post-
processing involves iterating over the nodes of the path and
shortcutting them to reduce the final cost. Fig. 12 shows
examples of shortcutting.

Fig. 12-(a) shows the path before post-processing. The post-
processing works based on the triangle inequality. Two nodes
along the path are shortcutted if they can be directly connected

𝑆
𝐺

Before post-processing(a) After post-processing(b)

𝑆
𝐺

Fig. 12: Post-processing the path found by RRT .

to each other; i.e., there are not any obstacles among them.
For example, in Fig. 12-(a), the two node pairs connected by
dashed green lines can be shortcutted, while the node pair
connected by a dashed red line cannot. Fig. 12-(b) shows the
path after post-processing. The post-processing step could run
for several iterations to further reduce the path cost.

We evaluate RRT ? on the Map-C and Map-F environments.
Evaluation: RRT with post-processing exhibits computation
characteristics (and path cost) that lie in between RRT ? and
the baseline RRT . The overhead of nearest neighbor search
operations decreases as compared to RRT ? due to the lack of
rewiring operations; and, the cost of post-processing is added
on top of the baseline RRT .

11.sym-blkw

Description: Symbolic planning [18], [21], [35] is a general
framework to solve a variety of robotic planning problems.
In symbolic planning, the problem is represented using high-
level, human-readable symbols. The inputs of the planner are
the valid symbols, initial state, goal state, and valid actions.
An action is a set of operations done by the robot and results
in changing the state of the robot and/or environment. Every
action has preconditions and effects. Preconditions are the
conditions a state must have for an action to be applicable
to it. Effects are the changes an action makes to a state. The
problem is ultimately represented as a graph search and the
planner computes a sequence of actions to reach the goal state
from the initial state. The strength of symbolic planning is its
generality: one symbolic planner can solve any problem that
can be described in the symbolic language.

We implement a symbolic planner and solve the blocks
world problem [38] in its context. Fig. 13-(a) shows parts of
a symbolic representation of the blocks world problem, and
Fig. 13-(b) shows a sketch of the problem in its initial state.
Even though blocks world is a toy problem, it shares the same
kernel with many realistic NP-hard search problems including
robotic vision, motor control, and probabilistic inference [85].

Symbolic description of  a blocks world problem(a)

Symbols: A, B, C, Table
Initial conditions: On(A, B), On(B, Table), On(C, Table), ... 
Goal conditions: On(B, C), On(C, A), On(A, Table)
Actions:

Move(b, x, y)
Preconditions: On(b, x), Clear(b), Clear(y), ...
Effects: On(b, y), Clear(x), !On(b, x), !Clear(y)

⋮

B C

A

Blocks world(b)

Fig. 13: Blocks world problem.



Evaluation: The kernel has only dominant operations: search-
ing the graph nodes to find a set of actions, and string
manipulation inside nodes. The former exhibits the same
behavior as other graph search kernels in the context of robot
planning; e.g., pp2d, pp3d, and prm.

The string manipulation has long been targeted in the con-
text of computer architecture [12], [33] for classic applications
like packet routing and web querying. With the growing
popularity of applications like bioinformatics and genome
sequence analysis, and the viability of hardware acceleration,
string manipulation hardware accelerators are revisited by
recent work [20], [37]. Such accelerators can be repurposed
for accelerating symbolic planning, with minimum effort.

12.sym-fext

Description: We model a firefighting problem and solve it in
the context of symbolic planning. The problem is inspired by
the final challenge at MIT’s 1st Summer School on Cognitive
Robotics [10]. There are two robots: a mobile robot and a
quadcopter. By landing on the mobile robot, the quadcopter
pours water on the fire. The quadcopter has a limited battery
level and a limited water tank; in case of low battery or water,
the quadcopter needs to charge its battery or fill its tank before
pouring water on the fire. The ultimate goal of the problem
is to extinguish the fire. Fig. 14 shows parts of the symbolic
representation of the problem.

Symbols: A, B, C, D, E, W, F, Q, R
Initial conditions: Quad(Q), Rob(R), At(Q, B), At(R, A), Loc(A), InAir(Q), ...
Goal conditions: ExtThree(F)
Actions:

MoveToLoc(x,y)
Preconditions: Loc(x), Loc(y), At(R, x), InAir(Q)
Effects: At(R, y), !At(R, x)

FillWater(x)
Preconditions: Quad(x), OnRob(x), EmptyTank(x), At(R, W), At(Q, W)
Effects: !EmptyTank(x), FullTank(Q)

⋮

Fig. 14: Firefighter robots.

Evaluation: The kernel uses the same symbolic planner as in
sym-blkw, and hence, it largely exhibits the same (architec-
tural) characteristics. However, sys-fext exhibits a higher
level of parallelism (∼3.2×) since it has more valid actions.
Every action translates into an edge in the graph representation
of the problem, and the neighbors of every node at every step
can be evaluated in parallel.

13.dmp

Description: Dynamic movement primitives (DMP) [53], [79],
[80] is a control kernel to generate a smooth trajectory based
on the path computed by the robot’s path planner. DMP
represents the problem using a virtual spring and damper
system and adapts it to the planned path.

DMP uses Gaussian bias functions and shape parameters
to define the overall trajectory shape. These parameters are
often acquired through imitation learning [42] and linear
regression, typically through a single demonstration. Once
the parameters are acquired, the final trajectory, including the
position, velocity, and acceleration parameters, is computed.

We train the model using data gathered from a demonstra-
tion of an in-house wheeled robot. We evaluate the model for
a reference trajectory depicted by orange in Fig. 15. The black
lines in Fig. 15 show the trajectory (left) and velocity (right)
generated by DMP .
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Fig. 15: Dynamic movement primitives.

Evaluation: The ILP is low (instructions-per-cycle (IPC) < 1)
due to significant data dependency in the algorithm: the trajec-
tory, velocity, and acceleration are all computed incrementally.
Dataflow architectures [36] have been shown to be effective
for this kind of computation.

14.mpc

Description: Model predictive control (MPC) is a mechanism
used to control a process while satisfying a set of constraints.
In robotics, it is used to generate control inputs to the robot’s
actuators to efficiently follow the path absorbed from the
planning stage [23], [26], [54]. For example, with a self-
driving car, the constraints could be the maximum speed, and
the goal could be following a path with minimum fuel usage.

Fig. 16 shows an overview of the kernel in an environment
modeling a self-driving car following a long reference trajec-
tory while not exceeding predefined velocity and acceleration
values. The cost is formulated as a function of the deviation
from the reference trajectory and the state change during the
path.
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Fig. 16: Model predictive control.

Evaluation: The major bottleneck of the kernel is solving the
optimization problem, taking more than 80% of the entire ex-
ecution time. RoBoX [74] proposes a full-fledged accelerator
for accelerating this process. It uses specialized logic and near-
data computation to solve the problem significantly faster.

15.cem

Description: We model a ball-throwing robot whose throwing
skills get improved using reinforcement learning. We use



V-REP [73] to simulate the robot and the environment. Fig. 17
shows the environment. A 2-DoF robotic arm applies a certain
force to throw a ball towards a certain goal. The purpose
of reinforcement learning is to learn the best force and
configuration (joints’ angles). The reward of the learning is
how close the final location of the ball is to the goal.

Robot

Ball

Goal

Force
Sensor

Fig. 17: Ball-throwing robot.

Cross-entropy method (CEM) [70] is a Monte Carlo opti-
mization method. CEM learns the policy (throwing parame-
ters) by repeatedly drawing samples, collecting rewards, and
minimizing the cross-entropy loss to shift the policy towards
samples that result in larger rewards. We execute CEM for five
iterations and draw fifteen samples in every iteration. Fig. 18
shows how reward (higher is better) changes over learning.
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Fig. 18: Rewards over time using CEM .

Evaluation: Recent work [82] proposes hardware acceleration
for reinforcement learning that can be well applicable in this
context as well. Also, we find the sort operations (for finding
the largest rewards) as a non-trivial execution bottleneck of
the algorithm, taking around one-third of the entire execution
time, depending on the learning algorithm configuration.

16.bo

Description: In robotics, Bayesian optimization (BO) is used
to optimize control parameters in reinforcement learning [44].
BO is data-efficient and gradient-free, and is increasingly used
to solve a variety of control problems.

We implement BO in the context of the ball-throwing
robot scenario. We use an upper confidence bound (UCB)
acquisition function. Training and testing are done using a
Gaussian process. Fig. 19 shows how the reward changes over
the course of the 45 iterations of the learning process.
Evaluation: The kernel exhibits largely the same characteris-
tics as cem. However, computationally, it is more intensive
(∼15000× more iterations). Hardware acceleration of the
reinforcement learning kernel can be a perfect architectural so-
lution to accelerate the application. Also, since more metadata
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Fig. 19: Rewards over time using BO .

is kept with BO , its sort operation is more time-consuming
(∼6× as compared to cem).

VI. IMPLEMENTATION DETAILS

System Requirements: We test RTRBench under Ubuntu
18.04 with Linux Kernel 4.15, and compile with GCC
11.1.0. However, RTRBench can be used with a variety of
other operating systems and compilers. As we use C++17,
the minimum required GCC version is 8.0 (Clang: 5.0;
Visual Studio: 15.8).

Also, we integrate the kernels with zsim [77], and com-
municate the regions of interest (ROIs) using zsim hooks.
Without zsim (either real execution or in the context of other
simulators), the harness instructions will be safely executed: no
effect on correctness and virtually zero effect on performance.
We believe RTRBench can be smoothly integrated/used with
other simulators, as well; however, the ROI communications
should be coded based on the target simulator.

Usage & Flexibility: We provide a Makefile for every kernel.
Also, we provide a usage help message for every kernel.
Running the binary file of a kernel with --help will print
the help message. For example, Fig. 20 shows an example of
a help message.

$ ./rrt.out --help

USAGE:
./rrt.out [OPTIONS] [FLAGS] 

OPTIONS:
--bias <val> Random number generation bias
--config <val> Input config file
--epsilon <val> Epsilon (minimum movement)
--map <val> Input map file
--output <val> Output path file
--radius <val> Neighborhood distance
--samples <val> Maximum samples

FLAGS:
--help, -h Print help message

Fig. 20: An example of a help message.

Also, as the figure shows, we implement the kernels in a
completely flexible manner; all of the configuration/execution
parameters can be set/changed from the command line. Not
shown in the figure, we provide proper default values for the
configuration parameters.

Inputsets: In the paper, we typically report kernel execution
results for one inputset per kernel. However, in the repository,
we provide multiple inputsets for many of the kernels.



VII. COMPARISON WITH OPEN-SOURCE REPOSITORIES

As we mentioned in §II, there are a few educational
open-source libraries that provide implementations of robotic
kernels. The main problem with these libraries is that they do
not consider performance as the main objective, and hence,
cannot be used as a benchmark for real-time robotics.

In this section, we compare the performance of our
suite against PythonRobotics (P-Rob) [6], [76] and
CppRobotics (C-Rob) [1]. P-Rob is a popular robotic library
with ∼4.8K forks and ∼14.8K stars (as of 04/01/2022).
P-Rob provides a Python code collection of the robotic
kernels operating on small, synthetic inputsets. C-Rob
translates some of the P-Rob kernels to C++.

As a case study, we compare pp2d with the counterpart
kernels in P-Rob (a_star.py) and C-Rob (a_star.cpp).
We removed the code for generating animations from the
competitor libraries, to accelerate their execution. We conduct
this experiment on a real machine, as the competitor libraries
are not easy to simulate (Python runtime, etc.). Our machine
uses Intel Xeon CPU E5-2670 [3] cores operating at 2.60 GHz,
with the operating system and compiler described in §VI.

As inputset, we use the map provided by the competitor
libraries, which is depicted in Fig. 21-(a). Because the map
is small, we also scale it by different factors to evaluate the
implementations in larger (or finer-resolution) environments.
Fig. 21-(b) shows the execution time results.

Scale
Time (s)

P-Rob C-Rob RTRBench

1 1.44E-01 3.00E-02 4.03E-04

2 6.49E-01 2.70E-01 1.37E-03

4 3.53E+00 2.15E+00 5.04E-03

8 2.07E+01 2.92E+01 2.13E-02

16 1.38E+02 4.37E+02 1.03E-01

32 9.93E+02 6.56E+03 4.83E-01

64 7.65E+03 6.56E+03 2.20E+00

The environment(a) Execution time of  different methods(b)
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Fig. 21: Performance comparison of different libraries.

As the results show, the competitor libraries are far from
real-time. Our implementation is 357×–3469× faster than
P-Rob , and 74×–13576× faster than C-Rob . P-Rob , not
surprisingly, suffers from the tremendous overhead of the
Python runtime. For C-Rob , we investigated its source code
for this particular kernel, and found that the main source of
inefficiency is passing large data structures to functions need-
lessly by value instead of by reference. As noted above, and
highlighted by this performance comparison, these libraries
are designed for educational purposes and not for real-time
experiments.

VIII. CONCLUSION

Research on real-time robotics is significantly hindered by
the lack of a comprehensive benchmark suite. In this paper,
we present RTRBench , a benchmark suite for robotic kernels.
RTRBench includes 16 kernels, spanning the entire software
pipeline of a wide swath of robots. Together with the suite, we

conduct an evaluation of the workloads at the architecture level
and suggest opportunities for performance improvements.

ACKNOWLEDGMENT

This work was supported in part by National Science Foun-
dation grant CCF-2028949, by a VMware University Research
Fund Award, and by the Parallel Data Lab (PDL) Consor-
tium (Alibaba, Amazon, Datrium, Facebook, Google, Hewlett-
Packard Enterprise, Hitachi, IBM, Intel, Microsoft, NetApp,
Oracle, Salesforce, Samsung, Seagate, and TwoSigma). Mo-
hammad Bakhshalipour was supported by the Apple CMU
ECE PhD Fellowship in Integrated Systems. We would like to
thank the anonymous reviewers for their valuable comments,
and our shepherd, Jaekyu Lee, for his feedback.

REFERENCES

[1] “CppRobotics,” https://github.com/onlytailei/CppRobotics.
[2] “Freiburg Campus 360 Degree 3D Scans,” http://ais.informatik.uni-fre

iburg.de/projects/datasets/fr360/.
[3] “Intel Xeon Processor E5-2670,” https://ark.intel.com/content/www/us

/en/ark/products/64595.
[4] “LoCoBot: An Open Source Low Cost Robot,” http://www.locobot.org/.
[5] “PerceptIn,” https://www.perceptin.io/.
[6] “PythonRobotics,” https://github.com/AtsushiSakai/PythonRobotics.
[7] “ROS - Robot Operating System,” https://www.ros.org/.
[8] “Search-Based Planning Lab,” http://www.sbpl.net/.
[9] “The Open Motion Planning Library,” http://ompl.kavrakilab.org/.

[10] “1st Summer School on Cognitive Robotics,” http://cognitive-robotics
17.csail.mit.edu/, 2017.

[11] “Intel Core I3-8109U Processor,” https://ark.intel.com/content/www/us
/en/ark/products/135936, 2018.

[12] M. Aldwairi, T. Conte, and P. Franzon, “Configurable String Match-
ing Hardware for Speeding Up Intrusion Detection,” ACM SIGARCH
Computer Architecture News, vol. 33, no. 1, pp. 99–107, 2005.

[13] S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and D. I. August, “Per-
spective: A Sensible Approach to Speculative Automatic Parallelization,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2020, pp. 351–
367.

[14] D. Baek, M. Hwang, H. Kim, and D.-S. Kwon, “Path Planning for
Automation of Surgery Robot Based on Probabilistic Roadmap and
Reinforcement Learning,” in International Conference on Ubiquitous
Robots (UR). IEEE, 2018, pp. 342–347.

[15] F. Bajramovic, F. Mattern, N. Butko, and J. Denzler, “A Comparison of
Nearest Neighbor Search Algorithms for Generic Object Recognition,”
in International Conference on Advanced Concepts for Intelligent Vision
Systems. Springer, 2006, pp. 1186–1197.

[16] M. Bakhshalipour, S. B. Ehsani, M. Qadri, D. Guri, M. Likhachev,
and P. B. Gibbons, “RACOD: Algorithm/Hardware Co-Design for
Mobile Robot Path Planning,” in International Symposium in Computer
Architecture (ISCA). IEEE/ACM, 2022.

[17] G. Bakhtyar, V. Nguyen, M. Cetin, and D. Nguyen, “Backward Dijkstra
Algorithms for Finding the Departure Time Based on the Specified
Arrival Time for Real-Life Time-Dependent Networks,” Journal of
Applied Mathematics and Physics, vol. 4, no. 1, 2016.

[18] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic Planning and Control of Robot Motion [grand
Challenges of Robotics],” IEEE Robotics & Automation Magazine,
vol. 14, no. 1, pp. 61–70, 2007.

[19] B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and V. Reddi,
“MAVBench: Micro Aerial Vehicle Benchmarking,” in International
Symposium on Microarchitecture (MICRO). IEEE/ACM, 2018, pp.
894–907.

[20] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S.
Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand
et al., “Genasm: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis,” in
International Symposium on Microarchitecture (MICRO). IEEE/ACM,
2020, pp. 951–966.
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