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Abstract

This paper presents the design and implementation of

DOT, a flexible architecture for data transfer. This archi-

tecture separates content negotiation from the data transfer

itself. Applications determine what data they need to send

and then use a new transfer service to send it. This transfer

service acts as a common interface between applications

and the lower-level network layers, facilitating innovation

both above and below. The transfer service frees devel-

opers from re-inventing transfer mechanisms in each new

application. New transfer mechanisms, in turn, can be eas-

ily deployed without modifying existing applications.

We discuss the benefits that arise from separating data

transfer into a service and the challenges this service must

overcome. The paper then examines the implementation of

DOT and its plugin framework for creating new data trans-

fer mechanisms. A set of microbenchmarks shows that

the DOT prototype performs well, and that the overhead

it imposes is unnoticeable in the wide-area. End-to-end

experiments using more complex configurations demon-

strate DOT’s ability to implement effective, new data deliv-

ery mechanisms underneath existing services. Finally, we

evaluate a production mail server modified to use DOT us-

ing trace data gathered from a live email server. Converting

the mail server required only 184 lines-of-code changes to

the server, and the resulting system reduces the bandwidth

needed to send email by up to 20%.

1 Introduction

Bulk data transfers represent more than 70% of Internet

traffic [3]. As a result, many efforts have examined ways

to improve the efficiency and speed of these transfers, but

these efforts face a significant deployment barrier: Most

applications do not distinguish between their control logic

and their data transfer logic. For example, HTTP and

SMTP both interleave their control commands (e.g., the

HTTP header, SMTP’s “mail from:”, etc.) and their

data transfers over the same TCP connection. Therefore,

new innovations in bulk data transfer must be reimple-

mented for each application. Not surprisingly, the rate of

adoption of innovative transfer mechanisms, particularly in

existing systems, is slow.

Data transfer applications typically perform two differ-

ent functions. The first is content negotiation, which is

very application-specific. For example, a Web download

involves transmitting the name of the object, negotiating

the language for the document, establishing a common for-

mat for images, and storing and sending cookies. The sec-

ond function is data transfer, in which the actual data bits

are exchanged. The process of data transfer is generally

independent of the application, but applications and proto-

cols almost always bundle these functions together.

Historically, data transfers have been tightly linked with

content negotiation for several reasons. The first is likely

expediency: TCP and the socket API provide a mechanism

that is “good enough” for application developers who wish

to focus on the other, innovative parts of their programs.

The second reason is the challenge of naming. In order

to transfer a data object, an application must be able to

name it. The different ways that applications define their

namespaces and map names to objects is one of the key

differences between many protocols. For example, FTP

and HTTP both define object naming conventions, and may

provide different names for the same objects. Other proto-

cols such as SMTP only name their objects implicitly dur-

ing the data transfer.

As a concrete example of the cost of this coupling, con-

sider the steps necessary to use BitTorrent [8] to accelerate

the delivery of email attachments to mailing lists. Such

an upgrade would require changes to each sender and re-

ceiver’s SMTP servers, and modifications to the SMTP

protocol itself. These changes, however, would only bene-

fit email. To use the same techniques to speed Web down-

loads and reduce the load at Web servers would again re-

quire modification of both the HTTP protocol and servers.

We propose cleanly separating data transfer from appli-

cations. Applications still perform content negotiation us-

ing application-specific protocols, but they use a transfer
service to perform bulk point-to-point data transfers. The

applications pass the data object that they want to send to

the transfer service. The transfer service is then responsi-

ble for ensuring that this object reaches the receiver. The

simplest transfer service might accomplish this by sending

the data via a TCP connection to the receiver. A more com-

plex transfer service could implement the above BitTorrent

data transfer techniques, making them available to SMTP,

HTTP, and other applications.

Separating data transfer from the application provides
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Figure 1: DOT Overview

several benefits. The first benefit is for application devel-

opers, who can re-use available transfer techniques instead

of re-implementing them. The second benefit is for the

inventors of innovative transfer techniques. Applications

that use the transfer service can immediately begin using

the new transfer techniques without modification. Innova-

tive ideas do not need to be hacked into existing protocols

using application-specific tricks. Because the transfer ser-

vice sees the whole data object that the application wants

to transfer, it can also apply techniques such as coding,

multi-pass compression, and caching, that are beyond the

reach of the underlying transport layers. The transfer ser-

vice itself is not bound to using particular transports, or

even established transports—it could just as well attempt

to transfer the data using a different network connection or

portable storage device.

Moving data transfer into a new service requires ad-

dressing three challenges. First, the service must provide a

convenient and standard API for data transfer applications.

Second, the architecture should allow easy development

and deployment of new transfer mechanisms. Finally, the

service must be able to support applications with diverse

negotiation and naming conventions.

We present the design and implementation of a Data-
Oriented Transfer service, or DOT, shown in Figure 1. The

design of DOT centers around a clean interface to a mod-

ular, plugin based architecture to facilitate the adoption of

new transfer mechanisms. DOT uses recent advances in

content-based naming to name objects based upon their

cryptographic hash, providing a uniform naming scheme

across all applications.

This paper makes three contributions. First, we propose

the idea of a data transfer service—a new way of structur-

ing programs that do bulk data transfer, by separating their

application-specific control logic from the generic function

of data transfer. Second, we provide an effective design for

such a service, its API and extension architecture, and its

core transfer protocols. Finally, we evaluate our imple-

mentation of DOT with a number of micro- and macro-

benchmarks, finding that it is easy to integrate with appli-

cations, and that by using DOT, applications can achieve

significant bandwidth savings and easily take advantage of

new network capabilities.

2 Transfer Service Scenarios
The advantage of a generic interface for data transfer is

that it enables new transfer techniques across several ap-

plications. While we have implemented several transfer

techniques within the DOT prototype, we believe its true

power lies in the ability to accommodate a diverse set of

scenarios beyond those in the initial prototype. This sec-

tion examines several of these scenarios that we believe a

transfer service enables, and it concludes with an examina-

tion of situations for which we believe the transfer service

is inappropriate.

• A first benefit the transfer service could provide is

cross-application caching. A DOT-based cache could

benefit a user who receives the same file through

an Instant Messaging application as well as via an

email attachment. The benefits increase with multi-

user sharing. An organization could maintain a sin-

gle cache that handled all inbound data, regardless of

which application or protocol requested it.

• Content delivery networks such as Akamai [1] could

extend their reach beyond just the Web. A “data de-

livery network” could accelerate the delivery of Web,

Email, NNTP, and any other data-intensive proto-

col, without customizing the service for each applica-

tion. DOT could provide transparent access to Inter-

net Backplane Protocol storage depots [4], to a stor-

age infrastructure such as Open DHT [30], or to a col-

lection of BitTorrent peers.

• The transfer service is not bound to a particular net-

work, layer, or technology. It can use multi-path

transfers to increase its performance. If future net-

works provided the capability to set up dedicated op-

tically switched paths between hosts, the transfer ser-

vice could use this facility to speed large transfers.

The transfer need not even use the network: it could

use portable storage to transfer data [14, 42].

• Finally, the benefits of the transfer service are not lim-

ited to simply exchanging bits. DOT creates the op-

portunity for making cross-application data proces-

sors that can interpose on all data transfers to and

from a particular host. These proxies could provide

services such as virus scanning or compression. Data

processors combined with a delegation mechanism

such as DOA [41] could also provide an architec-

turally clean way to perform many of the functions

provided by today’s network middleboxes.

The transfer service might be inappropriate for real-

time communication such as telnet or teleconferencing.

DOT’s batch-based architecture would impose high latency

upon such applications. Nor is the transfer service ideal for

applications whose communication is primarily “control”
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Figure 2: Example DOT Configuration. The GTC provides the transfer service functionality.

data, such as instant messaging with small messages. The

overhead of the transfer service may wipe out any bene-

fits it would provide. An important aspect of future work

is to define this boundary more concretely—for instance,

can the transfer service provide an interface to a multicast-

based data transfer?

With these examples of the benefits that a transfer ser-

vice could provide in mind, the next section examines a

more concrete example of an example DOT configuration.

2.1 Example
Figure 2 shows an example DOT configuration that allows

data transfers to proceed using multiple Internet connec-

tions and a portable storage device. This configuration pro-

vides three properties:

Surviving transient disconnection and mobility. Cop-

ing with disconnection requires that a transfer persist de-

spite the loss of a transport-layer connection. In the ex-

ample configuration, the multi-path plugin uses both the

wireless and DSL links simultaneously to provide redun-

dancy and load balancing. Mobility compounds the prob-

lem of disconnection because the IP addresses of the two

endpoints can change. DOT’s data-centric, content-based

naming offers a solution to this problem because it is not

tied to transport-layer identifiers such as IP addresses.

Transferring via portable storage. Portable stor-

age offers a very high-latency, high-bandwidth transfer

path [14, 42]. DOT’s modular architecture provides an

easy way to make use of such unconventional resources.

A portable storage plugin might, for example, copy some

or all of the object onto an attached disk. When the disk

is plugged into the receiver’s machine, the corresponding

transfer plugin can pull any remaining data chunks from

the disk. An advanced implementation might also make

these chunks available to other machines in the network.

Using caching and multiple sources. The receiver

can cache chunks from prior transfers, making them avail-

able to subsequent requests. The configuration above also

shows how the transfer service can fetch data from multi-

ple sources. Here, the multi-path plugin requests chunks

in parallel from both the portable storage plugin and a set

of network transfer plugins. The transfer plugins pull data

from two different network sources (the sender and a mir-

ror site) over two network interfaces (wireless and DSL).

3 Related Work
There are considerable bodies of work that have explored

better ways to accomplish data transfers and architectures

that insert a protocol between the application and the trans-

port layers. We believe that DOT differs from prior work

in choosing an architectural split (running as a service and

primarily supporting point-to-point object transfers) that is

both powerful enough to support a diverse set of underly-

ing mechanisms, and generic enough to apply to a wide

variety of applications.

Our design for DOT borrows from content-addressable

systems such as BitTorrent [8] and DHTs. Like DHTs,

DOT uses content-based naming to provide an application-

independent handle on data.

DOT also bears similarity to the Internet Backplane Pro-

tocol (IBP) [4], which aims to unify storage and transfer,

particularly in Grid applications. Unlike IBP, DOT does

not specify a particular underlying method for data trans-

fer; rather, DOT separates transfer methods from appli-

cations, so that future protocols like IBP could be imple-

mented and deployed more rapidly.

At the protocol level, BEEP, the Blocks Extensible Ex-

change Protocol [32], is close in spirit to DOT. BEEP aims

to save application designers from re-inventing an appli-

cation protocol each time they create a new application,

by providing features such as subchannel multiplexing and

capability negotiation on top of underlying transport lay-

ers. BEEP is a protocol framework, available as a library

against which applications can link and then extend to suit

their own needs. BEEP’s scope covers the application’s

content negotiation and data transfer. In contrast, DOT is

a service that is shared by all applications; thus, a single

new DOT plug-in can provide new transfer mechanisms or

interpose on data to all applications.

Protocols such as FTP [26], GridFTP [35], ISO FTAM

(ISO 8571), and even HTTP [15] can be used by appli-



cations to access data objects, either by invoking a client

for that protocol or by implementing it within the applica-

tion protocol. Many of the transfer techniques that distin-

guish these protocols (e.g., GridFTP’s use of parallel data

streams or negotiation of transfer buffer sizes) could be

implemented as a DOT transfer plugin. By doing so, an

unmodified “DOT-based” FTP client would then be able to

take advantage of the new functionality, reducing the effort

required to adopt the protocol enhancements.

Proxies are commonly used to process legacy applica-

tion traffic in new ways. While DOT aims to be more gen-

eral than application-specific examples such as Web prox-

ies, it bears resemblance to generic proxies such as the

DNS-based OCALA [18] or the packet capture approaches

used by RON [2] and the X-bone [38] to re-route traffic

to an overlay. The drawback of these more generic ap-

proaches is that they lack knowledge of what the applica-

tion is attempting to do (e.g., transfer a certain block of

data) and so become limited in the tools they can apply.

However, some of the advantages of DOT can be realized

through the use of protocol-specific proxies. For example,

our modified email server can be used as a mail relay/proxy

when co-located with unmodified mail servers.

The initial DOT plugins borrow techniques from sev-

eral research efforts. Rhea et al. designed a Web proxy-

to-proxy protocol that transfers content hashes to reduce

bandwidth [29]. We show in Section 6.3 that DOT obtains

similar benefits with email traffic. Spring and Wetherall

use a similar hash-based approach to discover data dupli-

cation at the IP layer [34], and the rsync program uses

a fingerprint-like approach to efficiently synchronize files

across the network [39]. Mogul et al. showed similar ben-

efits arising from using delta encoding in HTTP [22].

Finally, distributed object and file systems attempt to

provide a common layer for implementing distributed sys-

tems. These systems range from AFS [17] and NFS [6] to

research systems too numerous to cover in detail. Promi-

nent among these are the storage systems that use content-

addressable techniques for routing, abstracting identity,

and saving bandwidth and storage [5, 9, 10, 12, 23, 27,

36]. Recent file systems have also incorporated portable

storage for better performance [25, 37].

Like these distributed storage systems, DOT aims to

mask the underlying mechanics of network data transfer

from applications. Unlike these systems, DOT does not

provide a single mechanism for performing the transfers.

Its extensible architecture does not assume a “one size fits

all” model for the ways applications retrieve their data. We

do not wish to force the user of a DOT-based application to

depend on an underlying distributed system if they only

wish to perform point-to-point transfers. DOT comple-

ments many of these distributed systems by providing a

single location where service developers can hook in, al-

lowing applications to take advantage of their services.

Figure 3: A data exchange using DOT

4 Design

This section first presents the basic system architecture,

and then examines several details: (1) the manner in which

applications use DOT; (2) the way the DOT transfer plug-

ins and the default DOT transfer protocol operate; (3) the

way that DOT accesses storage resources; and (4) the way

that DOT plugins can be chained together to extend the

system.

Applications interact with the transfer service as shown

in Figure 1. Applications still manage their control chan-

nel, which handles content negotiation, but they offload

bulk transfers to the transfer service. The transfer service

delivers the data to the receiver using lower layer system

and network resources, such as TCP or portable storage.

DOT is a receiver-pull, point-to-point service. We chose

the receiver pull model to ensure that DOT only begins

transferring data after both the sending and receiving ap-

plications are ready. We chose to focus on point-to-point

service for two reasons: First, such applications repre-

sent the most important applications on the Internet (e.g.,

HTTP, email, etc.). Second, we believe that those point-to-

multipoint applications that focus on bulk data transfer can

be easily supported by DOT’s plug-in model (e.g., trans-

parent support for BitTorrent or CDNs).

Figure 3 shows the basic components involved in a DOT-

enabled data transfer: the sender, receiver, and the DOT

transfer service. The core of the transfer service is pro-

vided by the DOT Generic Transfer Client (GTC). The

GTC uses a set of plugins to access the network and lo-

cal machine resources:

• Transfer plugins accomplish the data transfer be-

tween hosts. Transfer plugins include the default

GTC-to-GTC transfer plugin and the portable storage

transfer plugin.

• Storage plugins provide DOT with access to local

data, divide data into chunks, and compute the con-

tent hash of the data. Storage plugins include the disk-

backed memory cache plugin used in our implemen-

tation, or a plugin that accesses locally indexed data

on the disk.

Sending data using DOT involves communication



among the sender, receiver, and the GTC. Figure 3 enu-

merates the steps in this communication:

(1) The receiver initiates the data transfer, sending an

application-level request to the sender for object X. Note

that the sender could also have initiated the transfer.

(2) The sender contacts its local GTC and gives the GTC

object X using the put operation.

(3) When the put is complete, the GTC returns a unique

object identifier (OID) for X to the sender as well as a set

of hints. These hints, described in Section 4.2.1, help the

receiver know where it can obtain the data object.

(4) The sender passes the OID and the hints to the re-

ceiver over the application control channel.

(5) The receiver uses the get operation to instruct its

GTC to fetch the object corresponding to the given OID.

(6) The receiver’s GTC fetches the object using its trans-

fer plugins, described in Section 4.2, and then

(7) returns the requested object to the receiver.

(8) After the transfer is complete, the receiver continues

with its application protocol.

DOT names objects by OID; an OID contains a crypto-

graphic hash of the object’s data plus protocol information

that identifies the version of DOT being used. The hash

values in DOT include both the name of the hash algorithm

and the hash value itself.

4.1 Transfer Service API

The application-to-GTC communication, shown in Ta-

ble 1, is structured as an RPC-based interface that imple-

ments the put and get family of functions for senders and

receivers respectively. A key design issue for this API

is that it must support existing data-transfer applications

while simultaneously enabling a new generation of appli-

cations designed from the ground-up to use a transfer ser-

vice. Our experience implementing a DOT prototype has

revealed several key design elements:

Minimal changes to control logic. Using the data

transfer service should impose minimal changes to the con-

trol logic in existing applications. We created a stub library

that provides a read/write socket-like interface, allowing

legacy applications to read data from the GTC in the same

way they previously read from their control socket. This

interface requests that the GTC place data in-order before

sending it to the application.

Permit optimization. The second challenge is to en-

sure that the API does not impose an impossible perfor-

mance barrier. In particular, the API should not mandate

extra data copies, and should allow an optimized GTC im-

plementation to avoid unnecessarily hashing data to com-

pute OIDs. Some applications also use special OS features

(e.g., the zero-copy sendfile system call) to get high

performance; the API should allow the use of such ser-

vices or provide equivalent alternatives. To address such

performance concerns, the GTC provides a file-descriptor

Figure 4: Relationship between DOT objects, chunks, OIDs
and descriptors

passing API that sends data to the GTC via RPC.1 DOT

gives high-performance applications the choice to receive

data out-of-order to reduce buffering and delays.

Data and application fate sharing. The third design is-

sue is how long the sender’s GTC must retain access to the

data object or a copy of it. The GTC will retain the data

provided by the application at least until either: (a) the

application calls GTC_done(); or (b) the application dis-

connects its RPC connection from the GTC (e.g., the appli-

cation has exited or crashed). There is no limit to how long

the GTC may cache data provided by the application—our

implementation retains this data in cache until it is evicted

by newer data.

4.2 DOT Transfer Plugins
The GTC transfers data through one or more transfer plu-

gins. These plugins have a simple, standard interface that

can implement diverse new transfer techniques. Internally,

the GTC splits objects into a series of chunks. Each chunk

is named with a descriptor, which contains a hash of the

chunk, its length, and its offset into the object. Figure 4

shows the relationship between objects, OIDs, chunks, and

descriptors. The transfer plugin API has three functions:

get_descriptors(oid, hints[], cb)
get_chunks(descs[], hints[], cb)
cancel_chunks(descriptors[])

A transfer plugin must support the first two functions.

The cb parameter is an asynchronous callback function to

which the plugin should pass the returned descriptors or

chunks. Some plugins may not be able to cancel an in-

progress request once it has gone over the network, and so

may discard cancel requests if necessary.

To receive data, the GTC calls into a single transfer plu-

gin with a list of the required chunks. That plugin can

transfer data itself or it can invoke other plugins. Com-

plex policies and structures, such as parallel or multi-path

transfers, can be achieved by a cascade of transfer plug-

ins that build upon each other. For example, the current

DOT prototype provides a multi-path plugin which, when

1DOT does not yet cache object OIDs, but we note that systems such

as EMC’s Centera [13] already store the hash of files, so such an opti-

mization is feasible.



Type Command Description

PUT Commands

t_id GTC_put_init() Initiates an object “put”. Returns a transaction identifier.

void GTC_put_data(t_id, data) Adds object data to the GTC

(OID, GTC_put_commit(t_id) Marks the end of object data transfer. Returns an opaque

Hints) structure consisting of the OID and Hints

(OID, GTC_put_fd(file descriptor) Optimized put operation that uses an open file descriptor
Hints)

void GTC_done(OID) Allows the GTC to release resources associated with OID.

GET Commands

t_id GTC_get_init(OID, mode, hints) Initiates an object fetch. Returns a transaction identifier.

Mode can be Sequential or Out-of-Order.

int GTC_get(t_id, buf, &offset, &size) Read data from the GTC. Returning zero indicates EOF.

Table 1: The Application-to-GTC API

instantiated, takes a list of other transfer plugins to which

it delegates chunk requests.

Every GTC implementation must include a default

GTC-GTC plugin that is available on all hosts. This plugin

transfers data between two GTCs via a separate TCP con-

nection, using an RPC-based protocol. The receiver’s GTC

requests a list of descriptors from the sender’s GTC that

correspond to the desired OID. Once it starts receiving de-

scriptors, the receiver’s GTC can begin sending pipelined

requests to transfer the individual chunks.

4.2.1 Receiving data: Hints

As DOT is based on a receiver-pull model, hints are used

to inform the receiver’s GTC of possible data locations.

They are generated by the sender’s GTC, which the sender

passes to the receiver over the application control channel.

The receiver passes the hints to its GTC. Hints, associated

with an OID, are only generic location specifiers and do

not include any additional information on how the fetched

data should be interpreted. Section 7 discusses how DOT

could support mechanisms such as content encoding and

encryption via additional per-chunk metadata.

A hint has three fields: method, priority, and weight.
The method is a URI-like string that identifies a DOT plu-

gin and then provides plugin-specific data. Some examples

might be gtc://sender.example.com:9999/ or

dht://OpenDHT/. As with DNS SRV records [16], the

priority field specifies the order in which to try different

sources; the weight specifies the probability with which a

receiver chooses different sources with the same priority.

By convention, the sender’s GTC will include at least one

hint—itself—because the sender’s GTC is guaranteed to

have the data.

4.3 Storage Plugins
The main purpose of the GTC is to transfer data, but the

GTC must sometimes store data locally. The sender’s GTC

must hold onto data from the application until the receiver

is able to retrieve it. The receiver’s GTC, upon retrieving

data might need to reassemble out-of-order chunks before

handing the data to the receiver, or may wish to cache the

data to speed subsequent transfers.

The GTC supports multiple storage plugins, to provide

users and developers with flexible storage options. Exam-

ples of potential back-ends to the storage plugins include

in-memory data structures, disk files, or an SQL database.

The current DOT prototype contains a single storage plu-

gin that uses in-memory hash tables backed by disk. The

storage plugin is asynchronous, calling back to the GTC

once it stores the data.

All DOT storage plugins provide a uniform interface to

the GTC. To add data to the storage plugin, the GTC uses

an API that mirrors the application PUT API in Table 1.

In addition to whole object insertion, the storage plugins

export an API for single chunk storage. This API allows

the GTC or other plugins to directly cache or buffer chunk

data. The lookup functions are nearly identical to those

supported by the transfer plugins, except that they do not

take a hints parameter:

put_chunk(descriptor, data)
release_chunk(descriptor)
get_descriptors(oid, cb)
get_chunks(descriptors[], cb)

4.4 Configuring Plugins
DOT transfer plugins are configured as a data pipeline,

passing get_descriptors and get_chunks re-

quests on to subsequent transfer plugins. A simple DOT

configuration consists of the GTC, a local storage plugin,
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Figure 5: A simple DOT configuration

and a default GTC-GTC transfer plugin, shown in Figure 5.

This configuration is instantiated as follows:

m = new gtcdMain();
sp = new storagePlugin(m);
xp = new xferPlugin(m);

m->set_xferPlugin(xp);
m->set_storagePlugin(sp);

Plugins that can push data, such as the portable storage

plugin, need to be notified when new data becomes avail-

able. These plugins register with the GTC to receive notice

when a new data object is inserted into the GTC for trans-

fer, by calling register_push().

5 Implementation
DOT is implemented in C++ using the libasync [21] li-

brary. Libasync provides a convenient callback-based

model for creating event-driven services. DOT makes ex-

tensive use of libasync’s RPC library, libarpc, for handling

communication both on the local machine and over the net-

work. For instance, the default GTC-GTC protocol is im-

plemented using RPC.

5.1 Multi-path Plugin
The DOT multi-path plugin acts as a load balancer between

multiple transfer plugins, each of which is bound to a par-

ticular network interface on a multi-homed machine. The

plugin is configured with a list of transfer plugins to which

it should send requests. The sub-plugins can be configured

in one of two ways. Some plugins can receive requests in

small batches, e.g., network plugins that synchronously re-

quest data from a remote machine. Other plugins instead

receive a request for all chunks at once, and will return

them opportunistically. The latter mode is useful for plu-

gins such as the portable storage plugin that opportunisti-

cally discover available chunks.

The multi-path plugin balances load among its sub-

plugins in three ways. First, it parcels requests to sub-

plugins so that each always has ten requests outstanding.

Second, to deal with slow or failed links, it supports re-

quest borrowing where already-issued requests are shifted

from the sub-plugin with the longest queue to one with an

empty queue. Third, it cancels chunk requests as they are

satisfied by other sources.

5.2 Portable Storage Plugin
On the sender side, the portable storage plugin (PSP) reg-

isters to receive notifications about new OIDs generated by

the GTC. When a new OID is discovered, the PSP copies

the blocks onto the storage device. The implementation is

naive, but effective: Each chunk is stored as a separate file

named by its hash, and there is no index.

On the receiver, the PSP acts as a transfer plugin ac-

cessed by the multi-path plugin that receives a request for

all descriptors. It polls the portable storage device every 5

seconds to determine if new data is available.2 If the device

has changed, the PSP scans the list of descriptors stored on

the flash device and compares them to its list of requested

descriptors, returning any that are available.

5.3 Chunking
The storage plugin also divides input data into chunks. To

do so, it calls into a chunker library. The chunker is a C++

class that is instantiated for each data object sent to the stor-

age plugin. It provides a single method, chunk_data,

that receives a read-only pointer to additional data. It re-

turns a vector of offsets within that data where the storage

plugin should insert a chunk boundary. Our current im-

plementation supports two chunkers, one that divides data

into fixed-length segments, and one that uses Rabin fin-

gerprinting [28, 20] to select data-dependent chunk bound-

aries. Rabin fingerprinting involves computing a function

over a fixed-size sliding window of data. When the value of

the function is zero, the algorithm signals a boundary. The

result is that the boundaries are determined by the value of

the data; they are usually the same despite small insertions

or deletions of data.

5.4 Stub Library
Most applications are not written to send data using RPC

calls to a local transfer service. To make it easy to port

existing applications to use DOT, we created a socket-like

stub library that preserves the control semantics of most

applications. The library provides five functions:

dot_init_get_data(oid+hints)
dot_init_put_data()
dot_read_fn(fd, *buf, timeout)
dot_write_fn(fd, *buf, timeout)
dot_fds(*read, *write, *time)

get and put return a forged “file descriptor” that is

used by the read and write functions. The read and

2Polling, while less efficient than receiving notification from the OS,

was deemed more portable.
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Figure 6: gcp vs. other standard file transfer tools

write functions provide a blocking read and write inter-

face. The fds function allows select-based applications to

query the library to determine which real file descriptors

the application should wait for, and for how long. Sec-

tion 6.3 shows how the stub library made it easy to inte-

grate DOT with a production mail server package.

6 Evaluation
The primary goal of the DOT architecture is to facilitate

innovation without impeding performance. This section

first examines a number of microbenchmarks of basic DOT

transfers to understand if there are bottlenecks in the cur-

rent system, and to understand whether they are intrinsic

or could be circumvented with further optimization. It then

examines the performance of plugins that use portable stor-

age and multiple network paths to examine the benefits that

can arise from using a more flexible framework for data

transfer. This section concludes by examining the integra-

tion of DOT into Postfix [40], a popular mail server.

6.1 Microbenchmarks
To demonstrate DOT’s effectiveness in transferring bulk

data, we wrote a simple file transfer application, gcp, that

is similar to the secure copy (scp) program provided with

the SSH suite. gcp, like scp, uses ssh to establish a re-

mote connection and negotiate the control part of the trans-

fer such as destination file path, file properties, etc. The

bulk data transfer occurs via GTC-GTC communication.

We used this program to transfer files of sizes ranging

from 4KB to 40MB under varying network conditions. In

the interests of space, we present only the results from the

40MB file transfer as it highlights the potential overheads

of DOT. These results, shown in Figure 6, compare the

performance of gcp to wget, a popular utility for HTTP

downloads, scp, and a modified version of scp that, like

gcp, does not have the overhead of encryption for the bulk

data transfer. All tools used the system’s default values for

Sender

Link 1

Link 2

Gbit

RouterReceiver

Figure 7: Topology for the multi-path evaluation. The capac-
ities of links 1 and 2 are varied.

TCP’s send and receive buffer size. gcp uses the fixed-

size chunker for these experiments. All displayed results

are the mean of 10 trials. All experiments were performed

on a Gigabit Ethernet network at Emulab [43] with a dum-

mynet [31] middlebox controlling network bandwidth and

latency. The machines were Emulab’s “pc3000” nodes

with 3GHz 64-bit Intel® Xeon® processors and 2GB of

DRAM.

For WAN conditions, gcp exhibits very little or no over-

head when compared to the other file transfer tools and its

performance is equivalent to scp both with and without

encryption. On the local Gigabit network, gcp begins to

show overhead. In this case, wget is the fastest. Unlike

both scp and gcp, the Apache HTTP server is always

running and wget does not pay the overhead of spawning

a remote process to accept the data transfer. gcp is only

slightly slower than scp. This overhead arises primarily

because the GTC on the sender side must hash the data

twice: once to compute the OID for the entire object and

once for the descriptors that describe parts of the object.

The hashing has two effects. First, the computation of the

whole data hash must occur before any data can be sent to

the receiver, stalling the network temporarily. Second, the

hashes are relatively expensive to compute.

This overhead can be reduced, and the network stall

eliminated, by caching OIDs (as noted earlier, some sys-

tems already provide this capability). While the computa-

tional overhead of computing the chunk hashes remains,

it can be overlapped with communication. The compu-

tational overhead could also be reduced by generating a

cheaper version of the OID, perhaps by hashing the de-

scriptors for the object. However, the latter approach sacri-

fices the uniqueness of the OID and removes its usefulness

as an end-to-end data validity check; we believe that re-

taining the whole-data OID semantics is worthwhile.

6.2 Plugin Effectiveness
This section examines the performance of the two transfer

plugins we created for DOT, the multi-path plugin and the

portable storage plugin.

6.2.1 Multi-Path Plugin

The multi-path plugin, described in Section 5.1, load bal-

ances between multiple GTC-GTC transfer plugins. We

evaluate its performance using the same Emulab nodes as



Link 1 Link 2 single multipath savings
100/0 3.59 1.90 47.08%

100/0
10/0 3.59 3.54 1.39%

100/33 21.46 11.15 48.04%

100/33 10/33 21.46 13.58 36.72%

1/33 21.46 20.44 4.75%

100/66 43.33 23.20 46.46%

100/66 10/66 43.33 22.97 46.99%

1/66 43.33 38.25 11.72%

10/66 48.39 23.42 51.60%

10/66 1/66 48.39 39.20 18.99%

0.1/66 48.39 44.14 8.78%

1/66 0.1/66 367.39 313.42 14.69%

Table 2: Multi-Path evaluation results. Links indicate band-
width in Mbit/s and latency in milliseconds. The single col-
umn shows the time for a gcp transfer using only the fastest
link of the pair.

above. The receiver is configured with two network inter-

faces of lower capacity, and the sender with one Gigabit

link, as shown in Figure 7.

Like the microbenchmarks, we examined the perfor-

mance of the multi-path plugin in transferring 40MB,

4MB, and 400KB files via gcp. For brevity, we present

only the 40MB results, but note that the performance on

400KB files was somewhat lower because they were not

sufficiently large to allow TCP to consume the available

capacity. All transfers were conducted using FreeBSD 5.4

with the TCP socket buffers increased to 128k and the ini-

tial slow-start flight size set to 4 packets.

Table 2 presents several combinations of link band-

widths and latencies, showing that the multi-path plugin

can substantially decrease transfer time. For example,

when load balancing between two directly connected 100

Mbit/s Ethernet links, the multi-path plugin reduced the

transfer time from 3.59 seconds on a single link to 1.90 sec-

onds. The best possible time to transfer a 40MB file over

100 Mbit/s Ethernet is 3.36 seconds, so this represents a

substantial improvement over what a single link could ac-

complish. We note that the multi-path plugin was created

and deployed with no modifications to gcp or the higher

layer DOT functions.

In high bandwidth×delay networks, such as the 100

Mbit/s link with 66ms latency (representing a high-speed

cross-country link), TCP does not saturate the link with

a relatively small 40MB transfer. In this case, the bene-

fits provided by the multi-path plugin are similar to those

achieved by multiple stream support in GridFTP and other

programs. Hence, using the multi-path plugin to bond a

100 Mbit/s and 10 Mbit/s link produces greater improve-

ments than one might otherwise expect.

Finally, in cases with saturated links with high asymme-

try between the link capacities (the second to last line in the

table, a 10 Mbit/s link combined with a 100 Kbit/s link),
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Figure 8: Portable Storage performance. The receiving ma-
chine completed the transfer from the USB flash device once
it was inserted after 300 seconds. Without the flash device,
the scp transfer took 1126 seconds to complete.

the multi-path plugin provides some benefits by adding a

second TCP stream, reducing the transfer time by roughly

9%. To understand the impact of request borrowing, we

disabled it and re-ran the same experiment. Without re-

quest borrowing, the multi-path plugin slowed the transfer

down by almost a factor of three, requiring 128 seconds to

complete a transfer that the single link gcp completed in

48 seconds. Without request borrowing, the queue for the

fast link empties, and the transfer is blocked at the speed

of the slowest link until its outstanding requests complete.

6.2.2 Portable Storage

We evaluate DOT’s use of portable storage using a work-

load drawn from Internet Suspend/Resume (ISR) [33]. ISR

is a thick-client mechanism that allows a user to suspend

work on one machine, travel to another location, and re-

sume work on another machine there. The user-visible

state at resume is exactly what it was at suspend. ISR is

implemented by layering a virtual machine (VM) on a dis-

tributed storage system.

A key ISR challenge is in dealing with the large VM

state, typically many tens of GB. When a user suspends

a ISR machine, the size of new data generated during the

session is in the order of hundreds of MBs. This includes

both the changes made to the virtual disk as well as the

serialized copy of the virtual memory image. Given the

prevalence of asymmetric links in residential areas, the

time taken to transfer this data to the server that holds VM

state can be substantial. However, if a user is willing to

carry a portable storage device, part of the VM state can be

copied to the device at suspend time.

To evaluate the benefit of DOT in such scenarios, we

simulate a fast residential cable Internet link with a maxi-

mum download and upload speed of 4 Mbit/s and 2 Mbit/s

respectively. An analysis of data collected from the ISR



test deployment on Carnegie Mellon’s campus [24] re-

vealed that the average size of the data transferred to the

server after compression is 255 MB. To model this sce-

nario, we use DOT to transfer a single 255 MB file repre-

senting the combined checkin state. A USB key chain is

inserted into the target machine3 approximately five min-

utes after the transfer is initiated. The test uses two USB

devices, a “fast” device (approx. 20MB/sec. read times)

and a “slow” device (approx. 8MB/sec).

The speed of the transfer and total time for competition

is presented in Figure 8. Immediately after the portable

storage is inserted, the system experiences a small reduc-

tion in throughput as it scans the USB device for data.4 As

it starts reading the data from the device, the transfer rate

increases substantially. Once the data has been read and

cached, the transfer completes almost instantly.

6.3 Case Study: Postfix

To evaluate the ease with which DOT integrates with exist-

ing, real networked systems, we modified the Postfix mail

program to use DOT, when possible, to send email mes-

sages between servers. Postfix is a popular, full-featured

mail server that is in wide use on the Internet, and repre-

sented a realistic integration challenge for DOT.

We chose to examine the benefits of running DOT on a

mail server for a number of reasons. First, mail is a border-

line case for a mechanism designed to facilitate large data

transfers. Unlike peer-to-peer or FTP downloads, most

mail messages are small. Mail provides an extremely prac-

tical scenario: the servers are complex, the protocol has

been around for years and was not designed with DOT in

mind, and any benefits DOT provides would be beneficial

to a wide array of users.

Postfix is a modular email server, with mail sending and

receiving decomposed into a number of separate programs

with relatively narrow functions. Outbound mail trans-

mission is handled by the smtp client program, and mail

receiving is handled by the smtpd server program. Post-

fix uses a “process per connection” architecture in which

the receiving demon forks a new process to handle each

inbound email message. These processes use a series of

blocking calls, with timeouts, to perform network opera-

tions. Error handling is controlled via a setjmp/longjmp

exception mechanism.

DOT was integrated into this architecture as an SMTP

protocol extension. All DOT-enabled SMTP servers, in ad-

dition to the other supported features, reply to the EHLO

greeting from the client with a “X-DOT-DATA” response.

Any SMTP client compliant with the RFC [19] can safely

ignore unrecognized SMTP options beginning with “X”.

3Both machines have 3.2GHz Intel® Pentium® 4 CPUs with 2GB of

SDRAM and run the 2.6.10-1.770-SMP Linux kernel.
4This slowdown could be avoided by spawning a helper process to

perform the disk I/O.

This allows non-DOT enable clients to use the standard

method of data transfer and allows the server to be back-

ward compatible.

On the presentation of X-DOT-DATA by the server, any

DOT-enabled client can use the X-DOT-DATA command

as a replacement for the “DATA” command. Clients, in-

stead of sending the data directly to the server, only send

the OID and hints to the server as the body of the X-DOT-

DATA command. Upon receipt of these, the server opens

a connection to its local GTC and requests the specified

data object. The server sends a positive completion reply

only after successfully fetching the object. In the event of

a GTC error, the server assumes that the error is tempo-

rary and a transient negative completion reply is sent to

the client. This will make sure that the client either retries

the DOT transfer or, after a certain number of retries, falls

back to normal DATA transmission.

6.3.1 Mail Server Trace Analysis

The first results in this section are analytical results from a

mail trace taken on a medium-volume research group mail

server. This analysis serves two purposes. First, we ex-

amine the benefits of DOT’s content-hash-based chunked

encoding and caching. Chunked encoding is well known

to benefit bulk peer-to-peer downloads [8] and Web trans-

fers [29]; we wished to demonstrate that these benefits ex-

tend to an even wider range of applications. The second

purpose is to generate a trace of email messages with which

to evaluate our modified Postfix server.

Each message in the trace records an actual SMTP con-

versation with the mail server, recorded by a Sendmail

mail filter. The traces are anonymized, reporting the keyed

hash (HMAC) of the sender, receiver, headers, and mes-

sage body. The anonymization also chunks the message

body using a static sized chunk and Rabin fingerprints and

records the hashes of each chunk, corresponding to the

ways in which DOT could chunk the message for trans-

mission. The subsequent analysis examines how many of

these chunks DOT would transmit, but does not include the

overhead of DOT’s protocol messages. These overheads

are approximately 100 bytes per 20KB of data, or 0.5%,

and are much smaller than the bandwidth savings or the

variance between days.

The email workload was an academic research group,

with no notable email features (such as large mailing lists).

We hypothesize that the messages in this workload are

somewhat smaller than they would be in a corporate envi-

ronment with larger email attachments, but we lack suffi-

cient data about these other environments. The mail server

handles approximately 2,500 messages per day. The traces

cover 458,861 messages over 159 days. The distribution

of email sizes, shown in Figure 9, appears heavy-tailed and

consistent with other findings about email distribution. The

sharp drop at 10-20MB represents common cut-off values
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Figure 9: Mail message size distribution follows a heavy-
tailed distribution until message size limits are reached.

for allowed message sizes. We eliminated one message

that was 239MB, which we believe was a test message sent

by the server administrator.

This section examines four different scenarios. SMTP
default examines the number of bytes sent when send-

ing entire, unmodified messages. With DOT body, the

mail server sends the headers of the message directly, and

uses DOT to transfer the message body. Only whole-file

caching is performed: either the OID has been received,

or not. With Rabin body, the mail server still sends the

headers separately, but uses Rabin fingerprinting to chunk

the DOT transfer. Finally, Rabin whole sends the entire

message, headers included, using DOT. Because the head-

ers change for each message, sending a statically-chunked

OID for the entire message is unlikely to result in signif-

icant savings. The Rabin whole method avoids this prob-

lem, at the cost of some redundancy in the first content

block. Allowing the GTC to chunk the entire message also

allows the simplest integration with Postfix by avoiding the

need for the mail program to parse the message content

when sending. Our analysis assumes that DOT is enabled

on both SMTP clients and servers. Table 3 shows the num-

ber of bytes sent by DOT in these scenarios.

In all, DOT saves approximately 20% of the total mes-

sage bytes transferred by the mail server. These benefits

arise in a few ways. As can be seen in Figure 10, a mod-

erate number of messages are duplicated exactly once, and

a small number of messages are duplicated many times—

nearly 100 copies of one message arrived at the mail server.

Second, as Table 3 showed, there is considerable partial re-

dundancy between email messages that can be exploited by

the Rabin chunking.

While our study did not include the number of large

email attachments that we believe are more common in

corporate environments, we did observe a few such ex-

amples. 1.5% of the bytes in our trace came from a 10

MByte email that was delivered eleven times to local users.

The administrator of the machine revealed that a non-local

Method Total Bytes Percent Bytes
SMTP default 6800 MB -

DOT body 5876 MB 86.41 %

Rabin body 5056 MB 74.35 %

Rabin whole 5496 MB 80.81 %

Table 3: Savings using different DOT integration methods.
This table does not include DOT overhead bytes.
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mailing list to which several users were subscribed had

received a message with a maximum-sized email attach-

ment. Such incidents occur with moderate frequency, and

are a common bane for email administrators. By alleviat-

ing the bandwidth, processing, and storage pain from such

incidents, we hope that DOT can help allow users to com-

municate in the way most convenient to them, instead of

following arbitrary decrees about application suitability.

6.3.2 System throughput

To evaluate DOT’s overhead, we generated 10,000 email

messages from beginning of the mail trace. Each message

is the same size as a message from the trace, and the mes-

sage’s content is generated from Rabin-fingerprint gener-

ated hash blocks in the trace message. Each unique hash

value is deterministically assigned a unique content chunk

by seeding a pseudo-random number generator with the

hash value. The generated emails preserve some of the

similarity between email messages, but because we can-

not regenerate the original content (or other content that

contains the same Rabin chunk boundaries), the generated

emails are somewhat less redundant than the originals.

We replayed the 10,000 generated messages through

Postfix running on the same machines used for the portable

storage evaluation, connected with 100 Mbit/s Ethernet.

Table 4 shows that the DOT-enabled Postfix required only



Program Seconds Bytes sent
Postfix 468 172 MB

Postfix-DOT 468 117 MB

Table 4: Postfix throughput for 10,000 email messages

Program Original LoC New LoC %
GTC Library - 421 -

Postfix 70,824 184 0.3%

smtpd 6,413 107 1.7%

smtp 3,378 71 2.1%

Table 5: Lines of Code Added or Modified in Postfix

68% of the total bandwidth, including all protocol over-

head, but both systems had identical throughput.

The Postfix workload is extremely disk-seek bound.

Neither the considerable bandwidth savings or the slight

CPU overhead provided by DOT was sufficient to change

this. We therefore believe that the widespread adoption of

DOT in mail servers would therefore have a positive effect

on bandwidth use without imposing noticeable overhead.

6.3.3 Integration Effort

Integrating DOT with Postfix took less than a week for a

graduate student with no knowledge of Postfix. This time

includes the time required to create the adapter library for

C applications that do not use libasync, discussed in Sec-

tion 5.4. Table 5 presents the number of lines of code

(LoC) needed to enable DOT within Postfix. The modi-

fications touched two Postfix subsystems, the smtpd mail

server program, and the smtp mail client program. While

we have only used two applications thus far with DOT

(Postfix and gcp), we are encouraged by the ease with

which DOT integrated with each.

7 Discussion
In previous sections, we presented the benefits we have

observed using our initial DOT implementation, and dis-

cussed some of the benefits we believe DOT can realize

from a transfer service in other scenarios. Our experience

with DOT thus far has revealed several lessons and remain-

ing challenges.

Efficiency. Our design of the DOT default transfer pro-

tocol assumes that its extra round trips can be amortized

across file transfers of sufficient length. While this design

is effective for DOT’s intended target of large transfers,

we would like to make the transfer service efficient for as

many applications as possible, even if their transfers are

small. For example, highly interactive Web services such

as Google go to considerable effort to reduce the number

of round-trips experienced by clients, and providers such

as Akamai tout such reduction as a major benefit of their

service. As the email study in Section 6.3 noted, email and

many other protocols have a heavy tailed distribution with

numerous small files being transferred.

There are two likely approaches that can reduce DOT’s

overhead for small transfers: either allow the application to

send small objects directly, or implement a transfer plugin

that passes small objects in-line as a hint over its control

channel to bypass the need for additional communication.

For reasons discussed below, we believe the former may be

a better approach.

Application resilience. The DOT-enabled Postfix falls

back to normal SMTP communication if either the remote

host does not support DOT or if it cannot contact the GTC

running on the local machine. This fallback to direct trans-

fer makes the resulting Postfix robust enough to run as the

primary mail program for one of our personal machines.

As Cappos and Hartman noted on Planetlab, applications

that depend on cutting-edge services are wise to fall back to

simpler and more reliable mechanisms [7]. We believe this

is sound advice for any application making use of DOT.

Security. In a system such as DOT, applications have

several choices that trade privacy for efficiency. The sim-

plest way for an application to ensure privacy is to encrypt

its data before sending it to the transfer service. Unfortu-

nately, this places restrictions on the transfer service’s abil-

ity to cache data and obtain data from independent sources.

Another simple (and common) choice is to not encrypt the

data at all, and trust in whatever host or network security

mechanisms are available. This approach allows the trans-

fer service the most opportunities to exploit features of the

data to improve transfers, but offers little security to the

user. A promising middle ground is to support convergent

encryption [11], in which data blocks are encrypted using

their own hash values as keys. Only recipients that know

the hashes of the desired data can decrypt the data blocks.

DOT must interact with many different applications,

each of which may have its own mechanisms and policies

for providing security and privacy. We feel strongly that a

transfer service must support a wide variety of application

requirements, and should not impose a particular security

model or flavor of cryptography or key management. How-

ever, an efficient implementation of convergent encryption

requires some support from the transfer service: The algo-

rithm that splits data into chunks must be consistent across

implementations, or the resulting encrypted blocks cannot

be effectively cached. We intend to support convergent en-

cryption in the near future.

Application preferences and negotiation. The cur-

rent implementation of DOT performs data transfers com-

pletely independently of the application. While this suf-

fices for a large and important class of applications, we

believe that DOT can also benefit applications that desire

more control over how their transfers are effected. Exam-

ples of such applications include those that have specific

encryption requirements or that wish to take advantage of



different sending rates or quality of service categories.

Providing convergent encryption illustrates some of the

problems that we must address. Applications that require

encryption must be able to inform the transfer layer of their

needs, and confirm that the data will be encrypted properly.

Furthermore, the sender and receiver GTCs must also ne-

gotiate the availability of specific capabilities in case they

are running different versions of DOT or have different plu-

gins. Finally, the convergent encryption plugins must com-

municate the encryption keys.

The design of capability discovery and negotiation is an

important part of our future work. As a first cut at support-

ing plugins that must negotiate specific capabilities, we are

adding two types of metadata to DOT: per-object metadata

that allows the receiving side to construct the plugin-chain

required to process the data; and per-chunk metadata that

allows the plugins to send information (such as encryption

keys) needed to process the chunks when they are received.

Selecting Plugins and Data Sources. A DOT receiver

may be able to obtain its desired data from multiple sources

using several different plugins. The DOT architecture uses

a hierarchy of plugins, some of which implement selec-

tion policies, to arbitrate between sources. If a variety of

plugins become available, DOT’s plugin configuration in-

terface may need to evolve to support more sophisticated

configurations that allow plugins to determine the capabil-

ities of their upstream and downstream plugins. For ex-

ample, it may be advantageous for a multi-path plugin to

know more about the capacities of attached links or storage

devices. While we believe such an interface could be use-

ful, its design would be purely speculative in the absence

of a wide variety of plugins from which to choose.

Several of our plugins represent promising starts more

than finished products. We plan to enhance the multi-path

plugin to support fetching data from mirror sites and multi-

homed servers as well as multi-homed receivers. We are

beginning the initial design for a “rendezvous” service that

allows portable storage to be plugged in to a third party

machine, instead of directly to the receiver.

Supporting dynamically generated objects. Our de-

sign calls for DOT to handle dynamically generated ob-

jects that cannot be fully hashed before transmission by

assigning them a random OID. This change requires a

small modification to the API to return the OID before

the put call has completed, and requires that the remote

get_descriptors call be able to return an indicator

that the receiver should continue checking for more de-

scriptors. A drawback is that random OIDs sever the tie

between the OID and the data contents, which prevents

per-object (but not per-chunk) caching.

Exploiting structure in data. A final issue in the design

of DOT is the division of labor between the application and

the transfer service in dividing data into chunks. In our de-

sign, the transfer service is solely responsible for chunk-

ing. As our evaluation of email traces showed, the use of

Rabin fingerprinting can remove the need for application-

specific chunking decisions in some cases, but there may

remain other cases in which application knowledge is help-

ful. For instance, many applications transfer structured

data. Databases, for example, may return data that has rep-

etitions at the row level, which may be much smaller than

DOT’s default chunk size. While our current techniques

work well for email and Web objects, we believe this issue

merits further exploration.

8 Conclusion
This paper presented the design and implementation of

an extensible data-oriented transfer service, DOT. DOT

decouples application-specific content negotiation from

the more general process of transferring data across the

network. Using such a transfer service reduces re-

implementation at the application layer and facilitates the

adoption of new technologies to improve data transfer.

Through a set of microbenchmarks and an examination

of a production mail server modified to use DOT, we

have shown that the DOT architecture imposes little over-

head. DOT provides significant benefits, reducing band-

width use and making new functionality such as multi-path

or portable storage-based transfers readily available.

While our design still faces several challenges, we be-

lieve that introducing data transfer as a system service is a

worthwhile goal. A widely deployed transfer service helps

in the evolution of new services: researchers could easily

try out new protocols using real, unmodified applications;

and a significant fraction of Internet traffic could make use

of new network-layer functions by simply adding a new

transfer plugin. We believe that DOT could provide signif-

icant benefits to applications, networks, and ultimately, to

users.
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