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Abstract

Embedded software today is pervasive: they can be found everywhere, from coffee makers and

medical devices, to cars and aircraft. Embedded software today is also open and connected to the

Internet, exposing them to external attacks that can cause its Control-Flow Integrity (CFI) to be

violated. Control-Flow Integrity is an important safety property of software, which ensures that the

behavior of the software is not inadvertently changed. The violation of CFI in software can cause

unintended behaviors, and can even lead to catastrophic incidents in safety-critical systems.

This dissertation develops a two-part approach for CFI: (i) prescribing source-code safety-

checks, that prevent the root-causes of CFI, that programmers can insert themselves, and (ii) for-

mally proving CFI for the machine-code of programs with source-code safety-checks. First, our

prescribed safety-checks, when applied, prevent the root-causes of CFI, thereby enabling software

to recover from CFI violations in a customizable way. In addition, our prescribed safety-checks are

visible to programmers, empowering them to ensure that the behavior of their software is not in-

advertently changed by the prescribed safety-checks. However, programmer-inserted safety-checks

may be incomplete. Thus, current techniques for proving CFI, which assume that safety-checks are

complete, may not work. Second, this dissertation develops a logic approach that automates formal

proofs of CFI for the machine-code of software containing both source-code CFI safety-checks and

system calls. We extend an existing trustworthy Hoare logic with new proof rules, proof tactics,

and a novel proof-search algorithm, which exploit the principle of local reasoning for safety prop-

erties to automatically generate CFI proofs for the machine-code of programs compiled with our

prescribed source-code safety-checks.

To the best of our knowledge, our approach to CFI is the first to combine programmer-visible

source-code enforcement mechanisms for CFI–enabling programmers to customize them and ob-

serve that their software is not inadvertently changed–with machine-code proofs of CFI that can be

automated, and that does not require a trusted or verified compiler to ensure its proven properties

hold in machine-code.

vii



We evaluate our CFI approach on realistic embedded software. We evaluate our approach on

the MiBench and WCET benchmarks, implementations of common file utilities, and programs in-

terfacing with hardware inputs and outputs on the Raspberry Pi single-board-computer. The variety

of our target programs, and our ability to support useful features such as file and hardware inputs

and outputs, demonstrate the wide applicability of our approach.
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Chapter 1

Introduction

Software is all around us today. With the rise of the Internet-of-Things (IoT) phenomenon [1],

everyday objects from household appliances to automobiles are equipped with microprocessors.

With this rise in the adoption of IoT devices, there is a growing amount of embedded software,

whose primary role is to interact with physical objects [2], in these IoT devices. While embedded

software is not new, the embedded software in today’s IoT devices is different in a number of ways.

First, embedded software today is more open and connected than before: not only do IoT devices

have networking capabilities, they are increasingly connected to the Internet. Gartner estimates that

there will be 6.4 billion “connected” IoT devices in 2016, representing an increase of 30% over 2015

[3]. Second, embedded software is becoming pervasive in our everyday lives: they are no longer

limited to specialized applications such as industrial control systems, and are now in application

domains such as medical devices, automotive systems, and household appliances [4]. Third, with

the rapidly increasing computational power and falling cost of microprocessors, the hardware that

embedded software runs on today is more sophisticated, enabling embedded software to run as

user-mode applications on full-fledged operating systems (OSes) [5].

The open, connected, and pervasive nature of embedded software today poses new challenges

for ensuring the security of embedded software. First, the open and connected nature of embedded

software in IoT devices increases the attack surface of these devices, as attackers can now remotely

compromise the embedded software in IoT devices. Security researchers have found and identified

numerous IoT devices that contain vulnerable software that can be remotely compromised [6, 7,

8]. This increases the need for embedded software to be secured against external inputs, which

can now be received over the Internet from unknown and potentially malicious sources. Second,

the pervasive nature of embedded software today has resulted in the introduction of embedded

1



CHAPTER 1. INTRODUCTION 2

software into new application domains, some of which are safety-critical, such as medical devices

and automotive systems. Thus, there is a need for programmers to use high-assurance techniques

to ensure the security of their embedded software for such safety-critical domains, where failures

can “result in loss of life, significant property damage, or damage to the environment” [9]. In

addition, the pervasive nature of embedded software has resulted in large amounts of embedded

software being written. This large amount of embedded software makes it helpful for high-assurance

techniques for security to be automated, and to not require a large amount of manual effort or expert

knowledge from programmers, so that programmers can cope with the large amount of code that

needs to be secured. Third, some of the high-assurance techniques for security are currently targeted

at embedded software that runs “bare-metal” directly on a processor without an OS. However, such

techniques will not apply to embedded software that runs as user-mode applications in a full-fledged

OS, and new techniques are required.

Many techniques have been developed to address the security challenges of embedded software

today. These range from ensuring that sensor inputs are trustworthy, to developing secure com-

munications protocols, and to developing cryptographic algorithms that are sufficiently lightweight

for executing on processors with limited computational capabilities [10, 11]. In addition, in high-

assurance embedded software development, particularly for safety-critical devices such as medi-

cal devices, techniques have been developed to ensure the functional correctness of their software

[12, 13].

However, the security guarantees established by these techniques can be undermined by

implementation-level bugs that give rise to software vulnerabilities. The open and connected na-

ture of today’s embedded software, particularly in IoT devices, exacerbates this risk of software

vulnerabilities being exploited by remote attackers. Attackers can then cause the software to crash,

or even hijack and modify the execution of the software, causing the software to behave in ways

other than it was intended to. Control-Flow Integrity (CFI) is an important security property for

software which can protect the software from vulnerabilities that can be exploited due to external

inputs. CFI ensures that the execution of software cannot be circumvented by external inputs, and

prevents the software’s behavior from being unexpectedly changed at run-time.

This dissertation has developed an approach to Control-Flow Integrity (CFI) to address the secu-

rity challenges faced by today’s open and connected embedded software, that is also amenable to the

pervasiveness of today’s embedded software. We develop an approach for programmers to attain the

security property of CFI in their embedded software, such that: (i) the enforcement mechanisms for
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Figure 1.1. Challenges for security in embedded software, and how our approach addresses each challenge.

achieving CFI are prescribed to programmers, making these mechanisms visible to programmers,

thus empowering programmers to take care to ensure that these mechanisms do not inadvertently

change the behavior of their programs, (ii) CFI is achieved in a preventative way that prevents CFI

violations from occurring, and (iii) the CFI achieved can be formally proved in an automatic man-

ner without manual or expert inputs. Our approach to CFI addresses the security challenges faced

by embedded software today in the following ways, as illustrated in Figure 1.1. First, CFI pro-

tects the execution and behavior of embedded software from being circumvented and modified by

inputs that may be malicious due to the open and connected nature of embedded software today.

Second, by prescribing mechanisms for enforcing CFI, and by ensuring that these mechanisms are

programmer-visible, we enable programmers to ensure that our prescribed CFI enforcement mech-

anisms do not interfere with the safety-critical functionality of their software, since programmers

are given the discretion to apply these prescriptions to their programs. Third, by preventing CFI vi-

olations from occurring before-the-fact, our approach to CFI enables programmers to recover their

software from potential (but prevented) CFI violations, which is important for the continued oper-

ation of safety-critical software that must not fail. Fourth, by providing formal proofs of CFI, our

approach provides CFI in a high-assurance manner, which is important for embedded software in

safety-critical applications. In addition, by automatically generating proofs of CFI without manual

inputs, programmers can easily utilize our approach to achieve CFI in a high-assurance manner

for their software without requiring onerously large amounts of effort (e.g., to annotate code) or

knowledge of formal methods.

Our approach to CFI for embedded software consists of two parts: (i) an enforcement ap-

proach, which prescribes mechanisms to enforce CFI in programs, and (ii) a logic approach,

which uses formal logic to prove that CFI holds in programs that use our enforcement approach.
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Our approach to CFI prescribes preventative enforcement for CFI at the source-code level, and pro-

vides automated formal proofs of CFI at the machine-code level. I argue that CFI violations are

best discerned at the machine-code level, where they manifest directly as unexpected changes to the

machine-code CFG (Control-Flow Graph, a directed graph in which the nodes represent basic blocks

(linear sequences of instructions) and the edges represent control- flow paths between basic blocks

[14]) of a program. While remedies to prevent CFI violations can be introduced at the machine-

code level, I argue that remedying CFI violations is ideally performed at the source-code level,

which is visible to programmers. This enables programmers to ensure that the CFI mechanisms do

not break the programmer-expected functionality of the program. Informally speaking, there are

two perspectives of the program and two places where we could seek to address the problem of CFI

violations: the machine-code level and the source-code level. We advocate for an approach where

we detect the problem at the place where it manifests (machine-code level), and where we fix the

problem through prescriptions at the place that affords programmers the opportunity to take their

program’s functionality into account (the source-code level). This allows programmers to ensure

the continued operation of any safety-critical software that must not be stopped, even in the face

of a CFI violation. Specifically, our approach translates into three aspects: (i) providing CFI en-

forcement at a programmer-visible level through prescriptions of CFI mechanisms in the program’s

source-code, while leaving it to programmers to apply these prescriptions to their source-code (so

that programmers can take care to ensure that the functionality of their programs is not inadvertently

changed), (ii) proving CFI at the machine-code level of a program, and (iii) enabling these proofs

to be generated automatically, without programmer intervention or manual inputs.

Previous techniques for providing CFI mechanisms and verifying CFI have done so either en-

tirely at the machine-code level, or entirely at the source-code level. Abadi et al. [15], XFI [16],

PittSFIeld [17] and ARMor [18] all provide CFI mechanisms at the machine-code level by using

binary-rewriters to insert machine-code CFI mechanisms into the binaries of programs. Hence, their

CFI enforcement mechanisms are not visible to programmers, and may change the functionality of

these rewritten programs. These techniques are able to automatically verify the CFI they provide at

the machine-code level as their inserted CFI mechanisms are designed to relieve their verification

from requiring manual inputs, e.g., loop invariants. While these techniques can automatically verify

the CFI they provide at the machine-code level, the use of machine-code-inserted CFI enforcement

mechanisms may introduce behaviors that are unexpected to programmers, which is undesirable for

software in safety-critical systems.



CHAPTER 1. INTRODUCTION 5

On the other hand, VCC [19] and VeriFast [20] are two software verifiers that can verify security

properties such as CFI in the source-code of C programs, and they leave it up to programmers to

ensure that the source-code of their programs is safe. While this allows programmers to insert CFI

enforcement mechanisms into their source-code and verify that CFI holds, this verification cannot

be done automatically. This is because these software verifiers (VCC, VeriFast) require specialized

programmer inputs such as loop invariants and pre- and post-conditions for functions. In addition,

the CompCert verified compiler [21] has been proved to correctly compile well-formed C programs.

While CompCert guarantees the memory safety of the machine-code compiled from well-formed C

programs with no undefined behavior, which implies Control-Flow Integrity, CompCert is unable to

identify when an input source program contains undefined behavior, and CompCert is unable to gen-

erate a certificate proof of memory safety of their compiled programs (even for safe programs). In

contrast, our approach automatically generates CFI proofs for machine-code programs (containing

safety-checks prescribed by our enforcement approach).

By facilitating CFI at a programmer-visible level through prescribed safety-checks in a pro-

gram’s source-code, and proving that CFI holds at the machine-code level of a program, my disser-

tation enables CFI mechanisms to be implemented by programmers in a way that takes into account

the functionality of their programs, while still enabling proofs of CFI to be generated automatically.

1.1 Control-Flow Integrity

Control-Flow Integrity (CFI) [15] is an important property to ensure in embedded software. CFI can

be defined as follows. Typical software execution, for any type of system, can be captured through

a Control-Flow Graph (CFG), which is a directed graph in which the nodes represent basic blocks

(linear sequences of instructions) and the edges represent control-flow paths between basic blocks

[14]. CFI implies that the dynamic execution of the system’s software follows only a predeter-

mined Control-Flow Graph; any deviation from this predetermined CFG is a violation of CFI [15].

Therefore, CFI violations can lead to unpredictable behavior in software, which can have highly

undesirable consequences in embedded and safety-critical systems.

As an example, the Baxter Colleague 3 drug infusion-pump, a safety-critical medical device,

was recalled because the infusion-pump unexpectedly ceased operation for actual patients. In one

incident in 2007, a patient’s death was directly attributed to the stoppage of drug delivery due to

a malfunctioning Baxter Colleague 3 infusion-pump [22]. The malfunction in the infusion-pump’s
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software was traced to a buffer overflow, which caused the software to incorrectly and unexpectedly

stop operating, effectively resulting in a CFI violation.

CFI violations in safety-critical systems have also been found to result in potentially-exploitable

security vulnerabilities that can lead to fatal accidents. Checkoway et al. found that the media-player

in a consumer automobile had vulnerabilities that could be exploited to compromise the CFI of the

media-player’s firmware [23]. While the media-player in an automobile is not typically considered

to be a safety-critical (sub)system, it is possible for non-safety-critical subsystems with vulnerabil-

ities to be exploited to gain access to other networked safety-critical subsystems. Thus, CFI is an

important safety and security property of software, and is needed to ensure that the execution of the

software is not subverted or modified in unexpected ways.

When ensuring the CFI of embedded software, it is also important to ensure that the software is

able to continue operating even when faced with potential CFI violations. This means that CFI must

be ensured in a preventative way that prevents the root-causes of CFI violations from occurring.

If CFI violations are detected only after they have occurred, the violation cannot be undone, and

the software must be stopped to prevent further unpredictable behavior. However, stopping embed-

ded software that is safety-critical can lead to catastrophic accidents. For example, the software in

a Baxter Colleague 3 drug-infusion pump, a safety-critical medical device, unexpectedly stopped

operating after a buffer-overflow was detected, resulting in the death of the patient [22]. Thus, tech-

niques for ensuring the CFI of embedded software must enable continued operation of the software

by preventing the root-causes of CFI from occurring.

In addition to preventing the root-causes of CFI violations, techniques for ensuring the CFI of

embedded software must also enable programmers to customize the recovery actions taken in re-

sponse to a potential CFI violation. This is because embedded software is used in many different

applications and domains, and the appropriate response to a potential CFI violation to ensure contin-

ued operation of the software is likely to be different for different application domains, and even for

different functions in the same application. Thus, the CFI enforcement mechanisms must be cus-

tomizable by programmers. This means that CFI enforcement mechanisms must be introduced at

a level of abstraction that is visible by programmers, so that they can easily customize the recovery

actions at the level of abstraction they work with.

Finally, to provide high-assurance of the CFI of embedded software (i.e., that its CFI will not be

violated), it is highly desirable to obtain a formal proof stating that the CFI of a piece of embedded

software holds. With the rapid growth in the number of embedded devices today [24], there will be
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a large amount of embedded software written. In addition, most programmers who write embedded

software are not likely to have in-depth knowledge of formal methods. Thus, it is not feasible to

manually construct proofs of CFI for software, due to the large amount of embedded software in

today’s rapidly growing number of IoT devices, and due to the difficulty of training programmers

to use formal methods tools to construct proofs of CFI. Hence, it is desirable for CFI to be achieved

in a way that CFI proofs can be obtained in a fully automated manner, without any manual effort or

specialized inputs from programmers.

1.2 Challenges for CFI for Embedded Software

At a high level, Control-Flow Integrity (CFI) violations occur in software when the software exe-

cutes in an unexpected way. The expected behavior of a program can be considered to be captured

by its source-code, which represents the original, statically-specified (in source-code) behavior of

the program. Hence, the Control-Flow Graph (CFG) of the source-code of the program represents

the original statically-specified behavior of the program, while the actual behavior of a program is

the sequence of machine-code instructions that are executed by the processor that the program runs

on. Then, CFI violations occur when the sequence of machine-code instructions executed by the

processor is not present in the Control-Flow Graph (CFG) of the source-code of the program.

To provide mechanisms in software to ensure that its CFI holds, the main challenge is to address

the gaps between the source-code and machine-code levels of abstraction, that allow CFI violations

to occur. If the machine-code of a program that has been loaded to memory cannot be modified,

then the execution of the machine-code can differ from the behavior specified in its source-code

only when the instruction being executed is an indirect jump, whose jump target (i.e., address of

its next instruction) is dynamically specified in memory. Thus, the main abstraction gap between

machine-code and source-code that needs to be addressed is the presence of dynamically-specified

jump targets that can affect the program’s execution.

The main approach for CFI in current techniques is to insert mechanisms such as safety-checks

in the target software to be protected. We explore some of the challenges that current proposed

mechanisms for CFI would pose for today’s open, connected, and pervasive embedded software.

1. Preventing CFI violations after-the-fact: Many of the current CFI techniques detect the

end-results of CFI violations by checking dynamic-jump targets for corruption [15, 16, 18,

25, 26]. Such techniques detect CFI violations after-the-fact: when dynamic-jump targets
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have been corrupted, the CFI violation has already occurred. Unfortunately, such after-the-

fact detection of CFI violations makes it impossible for the software to recover from the

CFI violation to continue operation, since the original dynamic-jump targets have already

been corrupted. In this dissertation, we would like to enable CFI violations to be detected

in a preventative way. This would make the recovery and continued operation of the target

software possible, which is highly desirable for embedded software.

2. Customizable recovery actions: Current CFI techniques [15, 16, 18, 25, 26] insert safety-

checks automatically in the machine-code of target programs by rewriting program binaries

after compilation. First, safety-checks are inserted at the machine-code level after compila-

tion. This makes it difficult for programmers to modify these safety-checks to specify ap-

propriate recovery actions when CFI violations are detected. This is because programmers

typically work with the source-code of programs before compiling the program, and program-

mers typically do not directly modify the machine-code of compiled programs. Second, the

automatic insertion of safety-checks also results in the same action being used for all parts of

the program in response to detected CFI violations. Current techniques all stop the target pro-

gram’s execution upon detection of a CFI violation, to prevent further unexpected behavior.

In this dissertation, we would like to enable programmers to customize the recovery actions

in their target programs that are taken when CFI violations are detected. This requires CFI

safety-checks (and hence recovery actions) to be inserted at a level of abstraction that is vis-

ible to programmers, and it requires programmers to be allowed to insert (prescribed) CFI

safety-checks at their own discretion.

3. Transparent to software development: Some current CFI techniques are not transparent

to the software development process, and require modified tools in the software compilation

process. These can range from additional tools such as binary-rewriters that manipulate post-

compilation program binaries [15, 16, 25, 18], to modified compilers that compile programs

with different behaviors such as shadow stacks [18]. The use of modified tools in the software

compilation process can present problems in certain application domains, such as in safety-

critical systems, which can have stringent software standards. For instance, the DO-178C

standard for software in flight-control systems requires that non-standard compilers and other

software tools undergo tool qualification to ensure that the generated software does not have

unexpected behavior [27]. In this dissertation, we would like to develop an approach that
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works together with existing software development tool-chains such as compilers, without

requiring any modification to existing tool-chains.

4. Support for automated proofs: Some CFI techniques currently perform some level of veri-

fication of the CFI of their target programs [16, 18, 17]. While some techniques are able to au-

tomatically verify the CFI of their target programs [16, 18], their automated verification relies

on automatically-inserted safety-checks being in machine-code. However, as we have argued,

automatically inserting safety-checks presents challenges for customizing safety-checks for

embedded systems. Hence, a different verification approach that does not assume the pres-

ence of automatically-inserted safety-checks is required for CFI achieved using safety-checks

that are customizable (e.g., at the source-code level).

5. Support for realistic features in embedded applications: Most current CFI techniques are

aimed at desktop applications [15, 17] and device drivers [16]. On the other hand, CFI tech-

niques for embedded software mainly support programs running bare-metal on processors

without an operating system (OS) [18]. However, increasingly, as embedded processors be-

come cheaper and more powerful, embedded systems are running full-fledged operating sys-

tems, with applications implemented as user-mode programs running in an OS (as described

in [5]). Hence, it is desirable for CFI to be achieved in a way that supports user-mode embed-

ded programs, which is also amenable to realistic programs features, such as the presence of

system-calls.

1.3 Thesis Statement

This dissertation explores the following hypothesis:

We can provide CFI in a provable, preventative, and programmer-visible manner

through a combination of automated prescriptions to enable programmers to remedy

potential CFI violations at the source-code level, along with automatic proofs of CFI

at the machine-code level.

Specifically, this dissertation presents a two-part approach to provide enforcement for Control-

Flow Integrity that is amenable to software in embedded systems. The first part of the approach,

the enforcement approach, involves prescribing CFI enforcement mechanisms that are amenable
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to embedded software, and allowing programmers to insert these enforcement mechanisms in their

programs at their own discretion. These CFI enforcement mechanisms: (i) prevent the root-causes

CFI violations from occurring, and (ii) enable programmers to customize the actions to take in the

event of a detected (and prevented) CFI violation. The second part of our approach, the logic ap-

proach, involves enabling fully-automated proofs of CFI in a trustworthy formal logic that does not

require any manual or specialized inputs (e.g., code annotations, loop invariants) from programmers.

The second part of our approach supports automated proofs of CFI in programs whose CFI enforce-

ment is provided using the first part of our approach. By separating our enforcement approach for

providing CFI enforcement mechanisms, and our logic approach for proving CFI, we provide pro-

grammers with the opportunity to inspect and modify our prescribed enforcement mechanisms to

provide customized recovery actions from prevented CFI violations, while still providing automati-

cally generated formal proofs of CFI for such programmer-customizable enforcement mechanisms.

Figure 1.2. Overview of approach to CFI in this dissertation. Numbered boxes represent the parts of our approach, and
we show the inputs and outputs of each step in our approach.

Figure 1.2 presents an overview of the approach in this dissertation, and we highlight the inputs

and outputs of our two-part approach to CFI enforcement.

The first part of our approach, the enforcement approach, helps programmers add CFI enforce-

ments to the source-code of their programs to ensure its CFI, while at the same time enabling the

CFI of the resulting program to be automatically provable using the second part of our approach,

the logic approach.

First, programmers compile their source-code to obtain the machine-code of their program, and
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they supply both the source-code and machine-code of their program as inputs. We then use the

machine-code of the program to locate sources of potential CFI violations. Next, we construct pre-

scriptions of safety-checks for programmers. Each prescription consists of source-code statements

to use as a safety-check, and the location of a potential CFI violation in the source-code of the pro-

gram. Programmers apply the prescription to their program by inserting the prescribed safety-check

at the prescribed source-code location in their program.

Our enforcement approach uses source-code statements for CFI safety-checks, so that program-

mers can customize the safety-checks to add recovery actions that are appropriate for their applica-

tion. We prescribe, rather than automatically insert, our source-code safety-checks, so as to leave

it to programmers to insert these safety-checks. This is to allow programmers to ensure that the

inserted safety-checks do not change the functionality of their programs, and to allow them to cus-

tomize the recovery actions in the safety-checks.

The second part of our approach, the logic approach, automatically generates formal proofs

of CFI for the machine-code of programs that contain source-code CFI safety-checks as prescribed

in our enforcement approach. The logic approach expects as its input the machine-code of the

target program for which programmers want a formal proof stating that the program’s CFI cannot

be violated. The logic approach does not need any further inputs (e.g., code annotations, loop

invariants) for its proof generation to work. In addition, the logic approach can work with machine-

code that has been compiled using standard, unmodified, off-the-shelf compilers, such as gcc. Then,

where possible, the logic approach automatically generates a formal proof stating that the target

program is indeed safe with respect to CFI. However, the logic approach may fail to automatically

generate a safety proof when safety-checks in the target program are insufficient.

Then, if the safety-checks in the target program are insufficient (e.g., inadequate or incorrect

safety-checks inserted by the programmer), the logic approach is able to terminate the proof attempt

(as opposed to the automated proof process running without termination). Then, the output from

the logic approach is supplied to the enforcement approach, and the enforcement approach provides

feedback to the programmer, in the form of prescriptions of CFI safety-checks, to help him/her

rectify the CFI safety-checks in his/her program.

Goals. The primary goals of this dissertation are:

• The prescription of source-code safety-checks for ensuring CFI in programs, that: (i) prevent

the root-causes of CFI violations, and (ii) are amenable to customization by programmers.
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• The automated generation of formal proofs of CFI for the machine-code of programs that: (i)

have been compiled using a standard, unmodified, off-the-shelf compiler (e.g., gcc), and (ii)

may contain system call invocations.

Scope. This dissertation carries out the above goals with respect to the following scope:

• Prescribed safety-checks: The enforcement approach supports prescribing safety-checks for

C programs.

• Formal proofs of CFI: The logic approach supports formal proofs of CFI in machine-code

targeted at the ARM architecture. Specifically, the logic approach supports ARM instructions

for the ARMv6 architecture in this dissertation.

• Program type: The logic approach supports user-mode programs running in a full-fledged

operating system, specifically Linux, in this dissertation.

Assumptions. This dissertation makes the following assumptions about our target programs:

• Target programs are statically compiled and linked.

• Target programs obey the ARM-Thumb Procedure Call Standard (ATPCS) [28] for function

call and return behavior.

• Target programs are compiled with well-known function prologues and epilogues, and the

function boundaries in machine-code are available.

• The Control-Flow Graph (CFG) of the machine-code of our target programs are correctly

computed.

• The underlying OS (Linux) “correctly” services system call invocations by correctly restoring

the context (program counter, register, and memory contents) of the user-process at the end

of every system call invocation, and providing its documented and specified (e.g., in Section

2 of the Linux Programmer’s Manual [29]) functionality.

• System calls are invoked via an assembly wrapper with a C function prototype that sets up

the arguments for the system call, and whose name identifies the invoked system call.

Non-goals. This dissertation does not address the following:

• The automatic insertion of safety-checks into the source-code of target programs.
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• The prescription of recovery actions for potential CFI violations for target programs.

• The automatic formal proofs of CFI for target programs containing safety-checks not pre-

scribed by our approach.

• The automatic generation of formal proofs for safety properties other than CFI.

• The application-level security and privacy of target programs.

• The functional correctness of target programs.

• The verification of the correctness of the underlying operating system in servicing system

calls.

• The indirect effects of system call invocations that are not visible to user-mode programs

(e.g., file descriptor mapping, user-space memory mappings in the mmap system call).

Threat model. The goal of this dissertation is to protect user-mode programs from external

inputs received from external sources, such as network inputs, file inputs, and user inputs. As

such, we assume that the underlying hardware, firmware (e.g., BIOS), virtual machine monitor (if

there is one), and operating system kernel are in our Trusted Computing Base (TCB), and are not

compromised. As such, we assume the following for our target programs:

• The physical security of the host running the target program is not compromised.

• Target programs run in an operating system which provides inter-process memory isolation,

i.e., no other process is allowed to modify the contents of the target program’s memory at

run-time.

We model our attacker as an external user who is able to supply arbitrary inputs to our target pro-

grams. We call this an “external input attacker”. Our attacker does not have physical access to the

hardware, and the attacker does not have the ability to do the following:

• Modify the OS kernel or run code in kernel space.

• Execute a process in parallel with the target program.

• Execute a thread in the process space of the target program.
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Note that our threat model differs from the typical CFI threat model [15] of allowing the attacker

to execute a thread in the process space of the target program, while being allowed to write only

to writable memory pages. While our “external input attacker” is weaker than the attacker in clas-

sical CFI [15], we believe our attacker model is realistic for a “defense-in-depth” system that has

deployed multiple complementary layers of security measures. We discuss some possible comple-

mentary measures in such a “defense-in-depth” approach to software security in §8.2.

Residual threats. The approach in this dissertation does not consider non-control-data attacks

[30], such as the overwriting of data items in the stack or heap of the target program. This may

allow attackers to overwrite data items in memory that may then have direct effects on the subse-

quent control-flow of the program (e.g., logic attacks), and may even allow attackers to overwrite

arguments passed to system calls. We discuss methods to mitigate such residual threats in §8.

1.4 Thesis Map

This dissertation explores the provision of CFI enforcement mechanisms in a preventative, cus-

tomizable, and provable manner, that is suitable for software in embedded systems that may be

safety-critical. We apply our approach for providing CFI to three classes of target programs: (i)

benchmark programs, to demonstrate that our approach works for a range of program behaviors; (ii)

system utilities, to demonstrate that our approach works for general file-based input/output behav-

iors; and (iii) programs with hardware inputs and outputs, to demonstrate that our approach works

for embedded systems that may interact with hardware.

We begin by surveying existing approaches to providing CFI for software to understand the

aspects where each approach may be unsuitable for use with software in embedded systems. Chapter

2 discusses related work in techniques for CFI, as well as related techniques in the verification of

safety and security properties for software, the verification of other properties such as functional

correctness for software, and more general techniques for developing programs that are safe.

Chapter 3 describes our enforcement approach for providing CFI enforcement mechanisms that

are preventative and customizable. We describe our approach to prescribing safety-checks for en-

forcing CFI for the source-code of our target programs by using heuristics to identify machine-code

locations where CFI may be violated. We also describe how to construct these CFI safety-checks,

and how the safety-checks can be customized.
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Chapter 4 presents our logic approach, and its novel program logic for automatically proving

CFI safety in the machine-code of programs whose CFI is enforced using the safety-checks pre-

scribed by our logic approach. We begin by describing the existing Hoare logic framework used to

reason about ARM machine-code [31, 32] in this dissertation. Then, we describe how we extend

this existing trustworthy Hoare logic for to enable automated reasoning and proof-construction for

CFI. Specifically, we develop new proof rules to enable “local reasoning” about safety-assertions

which ensure CFI safety. These proof rules specify CFI safety at the instruction-level, and extend

this to the basic block and function level, to enable automated reasoning about CFI safety at the

whole-program level.

Chapter 5 describes our proof-automation algorithms for constructing the proof of CFI of a

machine-code program in our logic approach. We describe our proof tactics which enable proof-

automation for machine-code programs containing source-code safety-checks, and our abstract

interpretation-based algorithm for automatically discovering and discharging CFI safety-proof obli-

gations. We also describe optimizations which improve the scalability of the proof-automation

process.

Chapter 6 describes extensions to our proof-construction and proof-automation algorithms in

our logic approach to support realistic features in embedded programs. Specifically, we describe

how we reason about system call invocations in Hoare logic for safety proofs, and we describe how

we automate safety-property proofs for machine-code containing system call invocations. We also

present optimizations to our proof-automation algorithms to support proof generation at scale for

larger and more complex programs, and we also evaluate the extent to which our proof-automation

algorithms support compiler-optimized machine-code programs.

Chapter 7 describes our experimental evaluation of our approach to CFI, and presents experi-

mental results. We describe the process of applying our prescribed source-code CFI safety-checks

to our target programs, and we evaluate our target programs for (i) the run-time overheads of our

prescribed CFI safety-checks, and (ii) the times taken by our approach to automatically generate

CFI safety-proofs.

Chapter 8 discusses some of the limitations of our approach in more detail. Finally, Chapter 9

discusses future directions for our work, and concludes this dissertation.
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1.5 Contributions

This dissertation presents two tools for providing Control-Flow Integrity enforcement for embedded

software in a way that is preventative, customizable, and provable. The enforcement approach is

realized in the PCFIRE-C tool that we have built, which provides prescriptions of CFI safety-checks

for C programs, and the logic approach is realized in the AUSPICE framework that we have built,

which automatically generates proofs of CFI for ARM machine-code programs in a formal logic.

The contributions of this dissertation are:

Control-Flow Integrity can be enforced in a preventative way by using safety-checks around

potentially dangerous memory-write source-code statements. The root-causes of CFI viola-

tions are writes to memory that may overwrite dynamic-jump targets in memory, such as saved

function-return addresses. Thus, to prevent the root-causes of CFI violations, safety-checks are

needed around memory-write statements. Some source-code statements which write to memory

can be statically determined to not violate CFI, such as writes to local variables. The remaining

source-code statements, whose memory-write targets are computed at run-time, will need to be sur-

rounded by safety-checks. In this dissertation, we describe how to identify such dangerous source-

code statements via a superficial inspection of the machine-code corresponding to the source-code.

We then describe how to construct prescriptions of safety-checks for such statements.

Control-Flow Integrity can be enforced in a customizable way when preventative safety-

checks are provided using source-code statements. Recovery from potential CFI violations

is possible only when the CFI violation has been prevented. In this dissertation, we show that when

CFI violations have been prevented, recovery actions can be made available to programmers to cus-

tomize by providing preventative CFI safety-checks using source-code statements. Our prescribed

CFI safety-checks are visible to programmers, as programmers are required to explicitly insert our

prescribed safety-checks into the source-code of their programs. This empowers programmers by

enabling them to ensure that the behavior of their software is not inadvertently changed by the in-

serted safety-checks. In addition, our prescribed CFI safety-checks are amenable to customized

recovery actions, and we show how programmers can modify our prescribed safety-checks to in-

troduce custom recovery actions for their applications. Like our work, ARMor [18] proposed SFI

safety-checks that, like our CFI safety-checks, are preventative in nature. ARMor inserts safety-

checks at memory-writes instead of at indirect jumps. However, as ARMor’s safety-checks are

inserted automatically at the machine-code level, they are not easily customizable by programmers
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since they are not visible to programmers at the level of abstraction that they work with (i.e., at the

source-code level).

Proofs of Control-Flow Integrity at the machine-code level can be automated using proof rules

for “local reasoning” to encode proof obligations to discharge for CFI to hold, and using an

Abstract Interpretation based analysis to discharge these proof obligations automatically. In

this dissertation, we develop proof rules that encode CFI safety in a way that is amenable to proof

automation. These proof rules use the “local reasoning” principle to build a bottom-up specification

of CFI safety. The proof rules begin by specifying CFI safety at the instruction level, and then

expand this specification to the basic block and whole-program levels. These proof rules specify

the CFI safety-assertions which must be proved for each instruction, and specify how these safety

assertions can be discharged. Then, we develop an abstract interpretation-based algorithm that

automatically discovers program properties that can discharge these safety assertions, or identifies

safety assertions that cannot be automatically discharged.

While prior work has automated safety proof generation for CFI and other similar safety prop-

erties, they have assumed the presence of sufficient safety-checks in their target programs, and their

analysis may not terminate for unsafe programs [18, 16]. Our analysis improves upon prior work

[18] by allowing for and detecting safety assertions that cannot be discharged, and terminating the

analysis. Our key advancements over prior work are in: (i) novel proof rules that build directly

on a trustworthy Hoare logic for ARM machine-code, and (ii) a novel Abstract Interpretation al-

gorithm which terminates on potentially-failing proofs, and which is more efficient, improving the

scalability of our proof-automation over prior work [18].

Proofs of Control-Flow Integrity at the machine-code level for programs containing system

calls can be automated through a combination of axiomatizing system call results from the

operating system, and instantiating system call arguments at invocation sites. In this disser-

tation, we develop an approach to automating safety-property proofs for machine-code containing

system call invocations. We enable reasoning about system call invocations in user-mode programs

by constructing axioms of the operating system’s behavior in servicing a system call, which we ex-

plicitly instantiate in our logic approach as undischarged hypotheses of our safety theorems. Then,

our proof automation accommodates the analysis of system calls by concretizing the arguments at

each system call invocation site by instantiating axioms with the arguments to the system call.

Demonstration of the effectiveness of our approach. We evaluate the effectiveness of our ap-

proach for providing preventative, customizable, and provable CFI for embedded software, using
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three corpora of software. First, we used benchmark programs from the MiBench [33] and WCET

Benchmarks [34] to demonstrate the applicability of our approach on generic software programs

with different types of control structures and programming language features. Second, we used

simple versions of common systems utilities that we implemented to demonstrate the applicabil-

ity of our approach to programs with file inputs/outputs. Third, we used programs written for the

Raspberry Pi single-board-computer that contain hardware inputs, such as light sensors and ac-

celerometers, and hardware outputs, such as LEDs and LCDs. We demonstrate the ability of our

approach to prescribe safety-checks for our target programs. We also evaluated our approach for: (i)

the time taken to generate a CFI safety-proof for each of our target programs, and (ii) the run-time

and space overheads introduced by the source-code safety-checks prescribed by our approach.

1.6 Novelty of Our Approach

To the best of our knowledge, our approach to Control-Flow Integrity (CFI) is the first that separates

the levels of abstraction at which we: (i) provide mechanisms for enforcing CFI, in the source-code

of our target programs, and (ii) prove that CFI holds, in the machine-code of our target programs. As

a result, our approach to CFI is the first that provides programmer-visible mechanisms for enforcing

CFI, that programmers can ensure do not inadvertently change the behavior of their programs, while

still providing automatically-generated CFI proofs that do not require manual user inputs, that do

not require a trusted compiler, and that are not affected by mis-compilation bugs, such as those

described by Yang et al. [35].

Most CFI techniques provide enforcement mechanisms that are automatically-inserted into the

machine-code of their target programs [15, 16, 18, 25, 26]. Such mechanisms are not programmer-

visible, and may inadvertently change the behavior of target programs. CFI techniques that provide

automatic proofs also make use of enforcement mechanisms inserted in machine-code [18, 16, 17].

Techniques that provide safe software behavior in the source-code of programs include Ivory [36],

which provides a domain-specific language from which safe C programs can be generated, and

CCured [37], which retrofits existing C/C++ programs to insert safety-checks to ensure memory

safety. Both Ivovy and CCured require either a trusted or a verified compiler to not be affected

by miscompilation bugs. In addition, Ivory requires programmers to learn a new programming

language and does not handle system calls, unlike our approach, while CCured inserts safety-checks

at scale, and may inadvertently change the behavior of their target programs. CompCert [21] is a
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verified compiler which has been proven to correctly compile well-formed C programs faithfully

to machine-code that behaves as programmers would expect from the behavior of the program’s

source-code. However, CompCert is unable to identify ill-defined programs, and programmers will

not be alerted to when an ill-defined C program is being compiled.

Thus, to the best of our knowledge, our approach to CFI is the first that combines the

programmer-visibility of source-code enforcement mechanisms for CFI, allowing programmers to

customize them and observe that the behavior of the software is not inadvertently changed, while

still providing machine-code proofs of CFI that can be automated, and that does not require a trusted

or verified compiler to ensure its proven properties hold in machine-code.

1.7 Limitations

Our approach to preventative, customizable, and provable CFI enforcement is aimed at addressing

the challenges of providing CFI enforcement for embedded software. As a result, we make a number

of design trade-offs in our CFI approach to address challenges specific to embedded software.

First, in our enforcement approach, we focus on the preventative and customizable nature of

CFI safety-checks, and we do not specifically focus on the run-time overhead of our prescribed

safety-checks. In particular, in Chapter 7, we show that preventative safety-checks intrinsically

incur higher overheads than current CFI techniques that detect CFI violations after-the-fact, and the

higher run-time overheads of preventative CFI safety-checks relative to current CFI techniques is

fundamental.

In addition, the proofs of CFI in our logic approach is built on a trustworthy formalization of the

ARM instruction set architecture (ISA) [31, 32] in the logic of the HOL4 proof assistant [38]. As a

result, our proofs are limited by the features of the ARM ISA that are modeled, and our approach

does not model the following features of program behavior in target programs due to limitations in

the underlying logic we use to formalize ARM instructions:

• Hardware interrupts, hardware exceptions, and page table operations,

• Multi-threaded, concurrent behavior,

• Floating point instructions.

Our logic approach also currently does not address the following features in our target programs:

• Conditionally-executed non-branching instructions,
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• Unstructured control-flow jumps, i.e., unstructured gotos (e.g., Duff’s Device), nor longjmp

statements,

• Recursive function calls,

• Explicit function pointers,

• Compiler optimizations (i.e., other than -O0 optimization level for gcc).

We currently do not address conditionally-executed non-branching instructions as they induce multi-

graphs in the Control-Flow Graphs of target programs, although this can be handled simply by

“unconditionalizing” programs, or by constructing a non-address-based CFG representation of the

program. We do not handle the unstructured use of gotos (i.e., when they result in unstructured

jumps) nor the use of longjmp statements in our target programs, although we do not believe this

is a significant limitation on the applicability of our approach to most embedded programs, as such

program features are discouraged for safety-critical software. We do not support recursive function

calls, as this would require the manual specification of inductive invariants by programmers, which

violates our goal of fully automating CFI proofs, or they would require the automatic inference of

inductive invariants, which is a challenging problem in itself. We currently also do not fully support

compiler-optimized programs, and we believe this is also not a significant limitation, especially for

safety-critical embedded software development, for which a number of safety standards (e.g., the

DO-178C [27] for avionics software) require additional tool qualification or validation activities for

using compiler optimizations.

Finally, we have focused on programs compiled using gcc 4.6.3 on the ARM platform in this

dissertation. We have not explored if our approach is able to work with programs compiled using

other compilers such as Clang, although we believe that our approach can be adapted to programs

compiled using other compilers with minor modifications, as long as the information required for

our safety property proofs (e.g., availability of the frame pointer register used to indicate the base

address of a function’s stack frame) is available in the compiled programs.



Chapter 2

Related Work

This dissertation develops an approach to Control-Flow Integrity (CFI) enforcement for software

that is preventative, customizable, and provable, especially for embedded software that may be

safety-critical. In this chapter, we will discuss the mechanisms used by other techniques to achieve

CFI and other similar safety and security properties, and how current techniques verify CFI and

other similar safety and security properties in software.

We begin by discussing early techniques for addressing security vulnerabilities such as buffer

overflows, which are one of the main ways that CFI can be violated in software (§2.1). Next, we

describe the context behind CFI, and a closely related safety property, Software Fault Isolation

(SFI) (§2.2), and we discuss prior techniques for ensuring CFI in software (§2.3). Then, we discuss

alternative approaches to achieving safety properties similar to CFI using safe languages, such as

safe dialects of existing languages such as C and type-safe assembly languages (§2.4). We compare

these approaches to the approach in this dissertation for the differences in their enforcement and

verification (if any) of their achieved properties, the security guarantees achieved, and the tradeoffs

made in achieving their properties. Next, we discuss techniques for verifying CFI in programs

using Interactive Theorem Proving, which are closest to the verification approach in this dissertation

(§2.5.1), before we discuss applications of Interactive Theorem Proving to the verification of other

properties (§2.5.2). We then discuss the use of Software Model Checking, an orthogonal approach

to verification, for verifying properties in the machine-code of programs (§2.5.4). We also review

another class of approaches to verification, of using verified analyses that have been built on top of

verified compilers (§2.5.5). Finally, we review recent work on attacks on existing techniques for

CFI, and we qualitatively discuss their applicability to our approach (§2.6).

21
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2.1 Buffer Overflow Attacks and Protection

Buffer overflow attacks [39] refer to the broad class of security vulnerabilities where attackers over-

write buffers in a program’s memory to gain control of the execution of the program. Attackers may

inject attack code, which they then execute, or they may simply change the sequence of instructions

that are executed in the program (as compared to the original, programmer-intended sequence of

instructions). Return-Oriented Programming (ROP) [40] is a more advanced variant of the basic

buffer overflow attack, in which an attacker changes a program’s behavior without injecting any

attack code. Buffer overflows are closely related to Control-Flow Integrity, because when a buffer

overflow attack succeeds, a CFI violation has occurred. As such, we examine some of the techniques

that have been introduced to protect against buffer overflow attacks, and we discuss the suitability

of such protections for embedded software.

Cowan et al. [39] identified two key ingredients needed for a successful buffer overflow attack:

(i) the attacker needs to introduce the attack code that he/she wishes to run in the context of the

target program, and (ii) the attacker needs to cause the program’s execution to jump to the intro-

duced attack code. Without the ability to directly overwrite code memory (i.e., the program’s code

memory is protected from being overwritten, e.g., through code page read-only flags), attackers can

only change the program’s execution by changing code pointers, which are present in: (i) function

activation records (i.e., the return address of each function, as saved to the function’s stack), (ii)

function pointers in C (e.g., “void (* f) ()” declares a function pointer variable f which points

to a function that takes no arguments and has a return type of void), and (iii) longjmp buffers in

C. Then, the basic workflow of a buffer overflow attack will involve: (i) injecting attack code to

memory, and (ii) overwriting the chosen code pointer to cause execution to jump to the injected

attack code. This requires: (i) the buffer being overflowed to be sufficiently close to the target code

pointer in memory, and (ii) the program to have weak or non-existent bounds checks on the chosen

buffer being overflowed, so that the buffer overflows onto the code pointer, allowing the attacker to

write arbitrary data into the code pointer.

The basic form of the buffer overflow attack is the stack smashing attack [41], in which func-

tion return addresses saved to the stack are overwritten. More advanced attacks include pointer

subterfuge attacks (overwriting of function pointers, data pointers that are aliases of function point-

ers, exception handler addresses, and C++ virtual function table entries) and heap smashing attacks

which corrupt the metadata in memory allocators to enable buffer overflows [42].
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Techniques to prevent or minimize the damage from buffer overflow attacks have addressed

one or both of the key ingredients for a buffer overflow attack, of preventing the execution of code

injected into data memory, and detecting overwritten code pointers.

2.1.1 Data Execution Prevention (DEP)

One way to prevent attackers from running code that has been injected, is to prevent the execution of

any instructions that are found in the data segment of a program’s address space. Modern processors

enable memory pages to be marked “no-execute”, such as using the XD (eXecute Disable) bit

on Intel processors, or the XN (eXecute Never) bit on ARM processors [43]. This then prevents

the processor’s execution from jumping to addresses in memory pages containing data (e.g., the

program’s stack or heap), where attackers may have introduced attack code. Operating systems can

then make use of such XN or XD bits to mark the memory pages holding a program’s heap and

stack as non-executable. However, this does not prevent ROP attacks where attackers change the

order of instructions executed in the program without injecting any attack code. DEP also does not

prevent code pointers from being overwritten and corrupted in the first place, and can still cause

programs to crash, e.g., when a code pointer is overwritten with an invalid address.

2.1.2 Canary-based Methods

Another way to mitigate buffer overflow attacks is to detect when code pointers have been overwrit-

ten by attackers. Canary-based methods, such as StackGuard [44], use instructions inserted into a

program at compile-time to place a secret “canary” value in memory adjacent to sensitive locations,

such as those containing code pointers. They assume that attackers write to memory in sequence, so

that they can overwrite code pointers only by overwriting the memory location immediately before

the location where the code pointer is located. Then, prior to the value in the code pointer being used

to perform a jump, the secret canary value is checked. If the canary value has been corrupted, the

code pointer is deemed to have also been overwritten, and the program is halted. However, canary-

based methods detect buffer overflows only after-the-fact, and do not allow for recovery after an

attack has occurred. In addition, canary-based methods can be overcome by directly overwriting

code pointers [45].
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2.2 Control-Flow Integrity and Software Fault Isolation

Control-Flow Integrity (CFI) was first introduced by Abadi et al. [15], and CFI is related to the

weaker safety property of Software Fault Isolation (SFI), which was proposed by Wahbe et al. [46].

While CFI and SFI have different goals, similar techniques have been used to enforce as well as

verify both CFI and SFI in software.

The main goal of SFI is to enable untrusted code to run in the same address space as trusted

code so as to improve the performance of software with untrusted modules, while still ensuring the

security of the trusted code. SFI implies that untrusted code, when executed in the same address

space as trusted code, cannot overwrite the data or modify the execution of trusted code. One

example where SFI is useful is when a trusted application wishes to host and run untrusted third-

party plugins, such as kernel modules in an operating system and third-party plugins and extensions

for web browsers.

On the other hand, the main goal of CFI is to protect a program’s execution from being modified

and hijacked by potentially malicious external inputs. CFI implies that the execution of a program

does not deviate from the programmer’s intentions, as captured in a predetermined CFG of the

program. CFI, when enforced, can rule out control-flow hijacking attacks, such as those caused by

buffer overflows.

While SFI and CFI are closely related, SFI’s threat model protects trusted code from untrusted

code that executes in the same address space, whereas CFI’s threat model protects all code of a

program from external inputs (e.g., user, network, or file inputs). CFI can be used to strengthen SFI

implementations by preventing SFI enforcement mechanisms from being circumvented [15].

2.3 Mechanisms for Control-Flow Integrity

Next, we discuss the different techniques that have been proposed for enforcing CFI in software,

and compare them to our approach. We begin by discussing mechanisms for CFI that are introduced

statically in software by modifying or rewriting programs before they are executed (§2.3.1). Then,

we discuss dynamic mechanisms for CFI that operate at runtime (§2.3.2), before we discuss other

techniques that have been proposed to specifically mitigate Return-Oriented Programming (ROP)

attacks against CFI defenses, and hardware mechanisms for enforcing CFI (§2.3.3).
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2.3.1 Statically-introduced Mechanisms for CFI

The main source of potential CFI violations is from indirect jumps, which arise in (i) function calls

using explicit function pointers, (ii) function returns, and (iii) the use of the longjmp statement in

C. Most contemporary static CFI techniques that adopt the threat model of Abadi et al. [15] focus

on the first two sources of CFI violations.

In this dissertation, as our focus is on preventative CFI that is also provable in a fully-automatic

manner, we have chosen to focus on CFI for function returns from directly-called functions, while

we leave CFI for explicit function pointers to future work. We discuss extensions to our approach

to support explicit function pointers in §9.1.1. Nonetheless, we discuss contemporary techniques

for enforcing CFI, most of which focus on enforcing CFI for indirect jumps made using explicit

function pointers, and contrast them to our approach.

Classic CFI

Next, we discuss the classic CFI enforcement developed by Abadi et al. in their seminal work [15].

First, they use static-analysis to compute a CFG for the program, which identifies allowed jump

targets for each instruction. Then, CFI requires that only jump targets present in this computed

CFG are allowed. For direct jumps (e.g., conditional branches, loops, function calls), a static verifier

is able to check that each jump is allowed. For indirect jumps, the program is instrumented with

runtime checks to ensure that only jumps present in the computed CFG are allowed. The program

is aborted on any other jump whose target is not present in the computed CFG.

The instrumentation for CFI enforcement is as follows. For indirect jumps with explicit func-

tion pointers, their jump targets are partitioned into equivalence classes: two target addresses are

equivalent if the CFG allows jumps from one indirect branch to the two addresses. Then, each

equivalence class is assigned a unique identifier, which the program is instrumented with at each

jump target. Next, each indirect jump is instrumented with a safety-check that allows the jump

only if its jump target contains the identifier associated with it. For indirect jumps that are function

returns, the check for validity of the return target is provided by using a shadow call stack that is

protected (using memory page permissions) from being overwritten.

The instrumentation in classic CFI [15] detects CFI violations when function pointers and func-

tion return addresses do not contain the unique identifiers that the program was instrumented with.

This precludes the possibility of preventing the CFI violation in the first place to enable recovery
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actions, as CFI violations are detected only after function pointers and function return addresses

have been modified, whereas our approach enables recovery by preventing the root-causes of CFI

violations.

Other CFI Techniques

Next, we review the other CFI techniques that have been proposed since classic CFI [15, 16, 17, 48,

49, 18, 50, 26, 51, 52, 53, 54, 25, 55, 56, 57, 58, 59, 60], and we summarize them in Table 2.1, and

contrast their approach to CFI to ours.

We briefly summarize the reviewed techniques. First, we include a number of related techniques

that provide CFI as a side-effect. SFI techniques [16, 17, 18] provide enforcement for SFI as well

as CFI, and they use CFI to protect the execution integrity of their introduced SFI mechanisms.

In earlier, more general work, Inlined Reference Monitors (IRM) [63] were proposed as a means

to enforce security policies using binary-rewriting to introduce instrumentation to enforce security

policies expressed as finite-state machines. WIT [48] provides memory safety by preventing dan-

gerous memory writes, while CPI [57] prevents dangerous writes to code pointers, both of which

are similar to our approach of preventing dangerous memory writes, although neither technique al-

lows for customizable recovery nor generation of safety proofs. NaCl [49] provides coarse-grained

sandboxing for untrusted browser plugins, and Zeng et al. [26] uses CFI to achieve a more efficient

data sandbox.

Second, many proposed CFI techniques tackle challenges such as improving performance, and

supporting separate compilation (independent compilation of different modules) and modularity

(e.g., use of dynamically loaded shared libraries). Control-Flow Locking [50] provides a lightweight

CFI enforcement scheme to improve performance. CCFIR [25] and bin-CFI [54] both provide prac-

tical CFI, with CCFIR providing a lightweight 3-ID scheme, with 3 equivalence classes for indirect

jump targets, and bin-CFI providing CFI for COTS binaries. Niu et al. provide various techniques

for facilitating CFI with separate compilation [53] and modularity [55]. Forward-edge CFI [58]

provides practical CFI that is implemented for LLVM and GCC. More recent CFI techniques have

focused on providing finer-grained CFI to thwart gadget construction in Return-Oriented Program-

ming (ROP) attacks [40]. PiCFI [61] provides per-input CFI, to constrain the allowed CFG in the

program to those made possible by inputs, to prevent attackers from using disused parts of code as

ROP gadgets. TypeArmor [62] has a similar goal, and prevents Counterfeit Object-Oriented Pro-
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gramming (COOP) attacks [64] which chain calls to existing functions through legitimate call-sites,

and they achieve this by matching call-site signatures to return-sites.

Third, specialized CFI techniques have been developed that use different enforcement schemes,

or support different platforms, such as smartphones. KCoFI provides CFI for OS kernels [56].

Cryptographic CFI [59] use message authentication codes to help detect illicitly modified indirect

jump targets. Opaque CFI [60] provides a randomized CFI enforcement scheme to defeat Return-

Oriented Programming (ROP) attacks. MoCFI [51] and Pewny et al. [52] provide CFI for smart-

phone apps on the Android and iOS platforms respectively and handle the limitations of working on

such platforms.

Comparison with other CFI techniques

We classify these CFI techniques by: (i) the location of their instrumentation, (ii) their enforcement

behavior when a CFI violation is detected, (iii) the granularity of their enforcement, (iv) how they

protect against function return hijacking, and (v) how (if any) their technique was verified. We first

focus on CFI techniques that use enforcement mechanisms that are entirely in the target program,

without the need for hardware or operating system assistance.

First, we found that all reviewed CFI techniques insert enforcement mechanisms in either

the machine-code, assembly code, or compiler intermediate representation (IR) of the program

[15, 16, 17, 48, 49, 18, 50, 26, 51, 52, 53, 54, 25, 55, 56, 57, 58, 59, 60, 61, 62]. These lev-

els of abstractions are not accessible to programmers, making it very challenging for program-

mers to modify the instrumentation to provide customized recovery actions appropriate for their

applications. Second, the reviewed CFI techniques either abort when CFI violations are detected

[15, 16, 48, 18, 26, 51, 52, 53, 54, 25, 55, 56, 57, 58, 59, 60, 61, 62], or they clobber illegal jump tar-

gets to force them to a legal address [17, 49, 50], both of which will give rise to undefined behavior,

and are undesirable for embedded software that may be safety-critical.

In contrast, our approach to CFI is preventative: in preventing root-causes of CFI violations,

our approach is not forced to abort when CFI is violated; in addition, our approach prescribes

enforcement mechanisms at the source-code level, which then allows programmers to add their own

recovery actions in our prescribed source-code mechanisms to provide recovery from prevented CFI

violations. This makes our approach amenable to embedded software that may be safety-critical,

for which aborting is unsafe.



CHAPTER 2. RELATED WORK 28

Third, the reviewed CFI techniques varied in their level of CFI granularity, which refers to the

number of equivalence classes of indirect jump targets supported for jumps using explicit function

pointers. As our approach does not support explicit function pointers, this metric is not applicable

to our approach.

The highest level of granularity is Fully-Precise Static CFI [30], which allows an indirect

control-flow transfer along an CFG edge only if “there is a non-malicious trace that follows that

edge” [30]. At the lowest level of precision, PittSFIeld [17] and NaCl [49] only require that indirect

jump targets have memory-aligned addresses, so as to prevent jumps into the middle of variable-

width x86 instructions. Abadi et al. [15] proposed that a coarse, “1-ID” CFI implementation can

be obtained by using a single identifier for all indirectly-called functions (and their return-sites).

This prevents attackers from hijacking execution to jump to the middle of a function, but still allows

attackers to change the order in which functions are executed. Other levels of precision include a

2-ID CFI implementation which uses one unique identifier for call-sites, and one unique identifier

for return-sites. CCFIR [25] uses a 3-ID CFI implementation to separate returns to sensitive and

non-sensitive functions. Then, Fully-Precise Static CFI is effectively an N-ID CFI implementation

for N distinct indirectly-called functions. However, precision is still lost when an indirectly-called

function is called from multiple call-sites, as a return to any of its return-sites (for each call-site)

will be valid behavior. Our approach to CFI is fully precise, mainly because we currently do not

allow explicit function pointers, which is where precision issues arise.

Fourth, most reviewed CFI techniques do not protect function returns, as they point to earlier

techniques such as StackGuard [44] that can protect against buffer-overflow-based attacks against

function-return pointers, and also due to the high performance overheads of maintaining a protected

shadow call stack to check that function return pointers have not been overwritten. The other tech-

niques that protect function returns using a protected shadow call stack [15, 16, 18, 55] require

modified compilers to introduce the shadow call stack, which can be problematic for safety-critical

software development which would require tool qualification for modified compilers (§1.2). In con-

trast, our approach focuses on protecting function returns, and does not require a shadow call stack,

as we prevent function return addresses from being overwritten in the first place, although this limits

allowed program behaviors (§8.1).

Finally, a small number of the reviewed CFI techniques provide verifiers to ensure that their

instrumented programs have sufficient CFI enforcement instrumentation [16, 49, 17, 26], and some

have machine-checked proofs of correctness of their verifiers [17]. The classic CFI technique [15]
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was formally proved to be safe [47], and the KCoFI and CPI techniques were partially formalized

and proved to be correct [56, 57]. ARMor [18] is the only technique that can generate a machine-

checkable proof in a theorem prover that states that its target program is safe. Our approach is similar

to ARMor, in that we are able to generate a machine-checkable proof in a theorem prover stating

that our target program is safe. The main difference is that ARMor’s proof generation assumes

the presence of automatically-inserted safety-checks, and may not terminate when safety-checks

are missing. In contrast, our proof generation can terminate if there are insufficient safety-checks,

which is necessary because our CFI approach requires programmers to insert prescribed safety-

checks, which may be subject to human error.

We note that while most CFI techniques choose to provide CFI enforcement for explicit function

pointers, and relegate the protection of function returns to the use of shadow call stacks, or even

point readers to earlier protections (e.g., StackGuard [44]), we have chosen to focus on protecting

function returns while disallowing the use of explicit function pointers. This was a deliberate design

decision to allow us to focus on providing CFI in a preventative way that is also automatically

provable formally, to yield CFI that is amenable to embedded, potentially safety-critical software.

We believe we will face the same design decisions for achieving fine-grained yet efficient CFI for

explicit function pointers in future work, and we discuss this in greater detail in §9.1.1.

2.3.2 Run-time and Other Mechanisms for CFI

A number of techniques have also been proposed to dynamically enforce CFI at runtime. Program

Shepherding [65], Vx32 [66] and Scott et al. [67] all dynamically insert safety-checks in the instruc-

tions of running programs to enforce safety properties such as memory safety [65], and to sandbox

untrusted code, all of which can imply CFI. PathArmor [68] also dynamically instruments pro-

grams to track program paths during execution to ensure a CFI safety policy, and to protect against

ROP attacks. PathArmor also makes use of hardware-accelerated features in modern processors for

branch recording to achieve efficient fine-grained CFI. SOFIA [69] is a hardware-based technique

for enforcing CFI in running programs, and to guard against code-reuse attacks such as ROP.

In general, run-time techniques for enforcing CFI incur high runtime penalties, and require ad-

ditional software to run, which is unsuitable for embedded systems. In addition, the presence of

additional run-time components increases the size of the Trusted Computing Base (TCB) of these

techniques, and users need to trust that the run-time components work correctly. While hardware-

assisted [68] and hardware-based techniques [69] for CFI may reduce the overheads of CFI en-
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forcement, it may not be possible to introduce the required hardware mechanisms on embedded

platforms.

2.3.3 Specific Defenses against Return-Oriented Programming

A number of techniques have also been proposed recently to specifically mitigate code-reuse attacks

(e.g., Return-Oriented Programming (ROP) [40]) that may be possible due to coarse-grained CFI

mechanisms, and due to difficulties in performing precise static-analysis for CFG construction.

Most of these techniques specifically address specific behavioral signatures of ROP and code-reuse

attacks and are orthogonal to contemporary CFI techniques.

Opaque CFI [60] is a CFI technique that randomizes its enforcement bounds to yield a coarse-

grained CFI enforcement mechanism that reduces the probability of code-reuse attacks. ROPGuard

[70] is a run-time tool for detecting ROP attacks, and it monitors the call-stack of another running

process to detect suspicious uses of the x86 RET function return instruction, which is a key ingredient

of an ROP attack. ROPecker [71] and kBouncer [72] both make use of the Last Branch Recording

(LBR) instruction in modern Intel processors to perform a sanity check on the call stack to detect

ROP attacks.

2.4 Safe Languages

CFI can also be achieved indirectly by writing programs in safe languages that provide CFI-like

guarantees. First, we review safe dialects of C that are designed to eliminate some of the dangerous

behaviors in C that give rise to possible CFI violations, while still retaining the low-level features of

C that make it suitable for systems programming (§2.4.1). Next, we discuss techniques to provide

memory safety for C that can rule out CFI violations (§2.4.2). Then, we discuss efforts to develop a

type-safe assembly language that can be statically proven to not have CFI violations, and to develop

domain-specific languages (DSLs) that have been designed to enable programmers to write safe

software (§2.4.3).

2.4.1 Safe Dialects of C

CFI and other safety properties can be achieved by using dialects, variants or subsets of the C

language, such as Control-C [73] and Cyclone [74]. Control-C formally specifies its static-analyses

of memory safety [75, 76], but it imposes a number of restrictions on allowed C behaviors, such as
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disallowing pointer arithmetic, and imposing restrictions on the types of array indices allowed for

array accesses inside loops, which our approach does not impose as we work directly with machine-

code. In addition, the static-analyses of C code in Control-C do not produce a concise safety proof,

unlike in our approach.

Cyclone statically analyzes a program’s source-code, and inserts run-time safety checks into

the compiled program. Cyclone’s safety checks are not visible to programmers as they modify

post-compilation code, unlike our approach, which uses customizable safety-checks that are left

to programmers to insert. In addition, C0 [77] is a safe subset of the C programming language,

augmented with contracts, developed for teaching an introductory Computer Science class.

2.4.2 Memory Safety for C

Next, we discuss techniques for achieving memory safety for C, which can provide CFI by ruling

out illegal memory writes that are necessary for overwriting sensitive memory locations that can

affect CFI.

CCured [37] uses type-inference to identify unsafe memory accesses in C programs that are

then protected with automatically-inserted C safety-checks. However, CCured is designed to au-

tomatically retrofit existing C code at a large scale, and this retrofitting can be considered to be

non-customizable although the safety-checks are in a program’s source-code, as it does not give

programmers the chance to customize the automatically-inserted safety-checks.

SoftBound [78] is a system for providing spatial memory safety for C programs. SoftBound

stores metadata about C pointers and arrays to record bounds information, and automatically inserts

safety-checks at the compiler intermediate representation level to ensure that writes to locations

addressed by pointers do not overflow and affect other sensitive locations. SoftBound’s safety-

checks prevent illegal overwrites to memory, just like in our approach. However, their safety checks

require additional metadata to be maintained in memory. SoftBound is not suitable for embedded

software, similarly to most of our reviewed CFI techniques. This is because the automatically

inserted instrumentation aborts the target program when an illegal memory write is detected, and

SoftBound’s safety-checks are not visible to programmers, and hence are not customizable.

Data-Flow Integrity (DFI) [79] extends the CFI idea to memory writes, to prevent attackers from

using buffer overflows to write to unintended locations in memory. In DFI, instead of computing

a control-flow graph, a data-flow graph is computed, and a reaching definitions analysis is carried

out to identify legal write locations for each location. Then, safety checks are inserted to check if
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each memory write is safe according to the computed reaching definitions. Like in our approach,

as well as SoftBound [78], DFI prevents illegal writes. However, like SoftBound, as well as most

of our reviewed CFI techniques, DFI’s instrumentation is inserted automatically in the compiler

intermediate representation level, which is not accessible to programmers for customizing recovery

actions, and its instrumentation aborts the program on illegal memory writes, which is unsuitable

for embedded software.

2.4.3 Other Safe Languages

Typed Assembly Language (TAL) [80, 81, 82] is an approach for obtaining provably safe software.

TAL is a type-safe assembly language, which is annotated with types, and the soundness proof

of TAL’s type system implies that a TAL assembly code program that can be type-checked suc-

cessfully has memory and control-flow safety, thus ensuring CFI of the resulting program. TAL was

conceived as an instantiation of Necula and Lee’s Proof Carrying Code [83] system, where untrusted

programs can be compiled to TAL, then the annotated types in the TAL program would constitute

“hints” to the “proof system”, and the validation of the program would involve type-checking the

program.

TALx86 [82] is a specific instantiation of the TAL vision for the x86 architecture, and TALx86

is an typed assembly language for the Intel IA-32 architecture. Morrisett et al. developed a type-safe

C-like language, Popcorn, which can be compiled to TALx86, and subsequently assembled with the

Microsoft Macro Assembler (MASM) to produce IA-32 binaries.

As compared to our approach, our approach works with commodity compilers, whereas TAL

requires specialized compilers which can preserve type information during compilation to produce

type-annotated assembly language programs. In addition, our approach does not impose a priori

restrictions on the syntax of C programs, whereas Popcorn in TAL [82] leaves out certain dangerous

features of C, such as pointer arithmetic, the address-of operator, and pointer casts. As such, our

approach is more easily adapted to existing development workflows for embedded software.

Ivory [36] is an embedded Domain-Specific Language (EDSL) that is embedded in the func-

tional programming language, Haskell. Ivory programs can be compiled to C programs, whose

memory-safety is guaranteed by the type-safety of the meta-language, Haskell, that Ivory is embed-

ded in. By embedding the language in Haskell, Ivory is able to leverage the type-safety of Haskell

to produce safe C programs. The main strength of Ivory is in the economy of its implementation (6

engineer-months and approximately 6000 lines of Haskell code). However one key weakness is that
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programmers need to learn a new language to program in, whereas our approach works with regular

C programs. Hickey et al. [36] also developed Tower, a separate EDSL that provides communica-

tion facilities for Ivory programs. Ivory and Tower have been demonstrated on generating software

for an embedded controller for an autopilot system.

2.5 Verification of Safety and Other Program Properties

Next, we discuss various verification techniques that are related to our approach. First, we discuss

recent techniques that have used Interactive Theorem Proving to prove the CFI of target programs

and to prove the correctness of CFI verifiers (§2.5.1). Then, we discuss applications of Interactive

Theorem Proving to other kinds of general program properties (§2.5.2), and applications of Software

Model Checking to verify safety properties for machine-code programs (§2.5.4) Finally, we discuss

new directions in applying verified compilation to produce verified analyses of various properties

about programs (§2.5.5).

2.5.1 Verification for CFI

Theorem Proving Approaches for CFI

ARMor [18, 84] and XFI [16] both verified that their target programs, which contain their added

SFI instrumentation, did indeed possess the SFI safety property [46]. XFI has been applied to

device drivers and multimedia codecs for x86 Windows binaries, while ARMor has been applied to

embedded ARM software running “bare metal” on ARM processors without an operating system.

XFI uses its own implementation of a Hoare logic model of the x86 ISA to perform its verification,

while ARMor’s verification is proof-producing, and like our approach, is able to produce a safety

proof for each target program it is applied to.

XFI developed their own abstraction of the x86 ISA, and is not based on foundational and val-

idated ISA abstractions; their verifier consisted of 3000 lines of C++ code. ARMor verified its SFI

isolation using the Cambridge ARM Model [32, 31] in the HOL4 theorem prover [38], which was

independently developed from the ARMor project and independently validated, thus increasing the

trustworthiness of ARMor’s verification. Like ARMor, our approach uses the Cambridge ARM

Model to verify safety properties for machine-code programs. However, ARMor’s verification re-

lies on a prior binary-rewriting step to insert safety checks and does not handle failures in safety



CHAPTER 2. RELATED WORK 34

proofs, whereas our approach, the verification does not require binary-rewriting, and can handle

proof failures.

In addition, ARMor developed its own Hoare Logic [84] based on the single-instruction se-

mantics provided by the Cambridge ARM Model [32, 31], whereas the logic used in our approach

directly builds on the Hoare Logic for single-entry, single-exit basic blocks in the Cambridge ARM

Logic. Thus, the logic used for verification in this dissertation builds on a larger fragment on the

Cambridge ARM Logic, and adds less new extensions than ARMor to the Cambridge ARM Model.

RockSalt [85] and PittSFIeld [17] both developed checkers that verify that a given target pro-

gram does indeed possess their SFI isolation properties after they have been instrumented. This

reduces the Trusted Computing Base of their checker, and removes the need to trust the part of

their toolchain that adds the instrumentation for isolation. PittSFIeld [17] developed their own for-

malization of the x86 ISA in the ACL2 theorem prover [86], while RockSalt developed their own

formalization of the x86 ISA in the Coq theorem prover [87], which they validated using simula-

tion. Both approaches subsequently proved that their checkers were correct. Unlike our approach,

RockSalt and PittSFIeld rely on the safety proof of their checkers to enable trust in their approach,

whereas our approach produces a safety proof about each target program.

2.5.2 Theorem Proving Approaches for Other Properties

Bedrock [88] provides “mostly-automated” verification for general program properties such as func-

tional correctness in an idealized machine language. Bedrock does not provide full automation of

proofs, but allows users to prove arbitrary properties about programs by allowing/requiring users to

provide some manual inputs to the proof process such as code annotations, whereas we provide full

proof automation for one class of properties (CFI) without requiring any user input. The Cambridge

ARM Model [89] was also originally designed to hide away low-level details about machine-code

programs while still allowing users to directly reason (albeit manually and interactively) about the

correctness of machine-code programs. The Foundational Proof Carrying Code project [90] uses a

richer Hoare Logic than in this dissertation, and hence can reason about unstructured control-flow

in machine-code programs. However, the FPCC project also requires the use of a special compiler

to emit type information in the compiled assembly programs, whereas our approach proves safety

properties for programs compiled using an unmodified commodity compiler.

Recent work has also extended the approach pioneered by Myreen et al. [89, 31, 32] for

partially-automating functional correctness proofs for machine-code programs to support system
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calls. Goel et al. [91] formalized the x86 Instruction Set Architecture in the ACL2 proof assis-

tant [86], and built an executable model of the x86 ISA. Their approach first models user-mode

machine-code behavior in their ACL2 model of the x86 ISA. They then provide two modes for

reasoning about the user-mode-observed end-result of system call processing. First, they support

simulation of the system call being serviced by the OS by supplying the underlying OS kernel with

concrete arguments to the system call, allowing the kernel to execute the system call, and collecting

the concrete results for reasoning about at the logical level. Second, they support logical reasoning

about the end-results of the system call being serviced by the OS kernel. They demonstrated their

approach using a manually constructed proof of correctness for a simple word count application. As

compared to our approach to reasoning about system calls, Goel et al.’s approach is more detailed,

and features an opaque external environment that captures details such as file descriptor mappings

and the underlying filesystem, which our approach does not model. However, our approach fully

automates proofs for a specific safety property (CFI) whereas Goel et al.’s construction requires

manual interaction with the proof assistant, but is more general.

In addition, CakeML [92] is a compiler for the ML programming language that has been me-

chanically verified using the Cambridge model [89, 93], and targets multiple architectures: x86-64,

ARMv6, ARMv8, MIPS-64, and RISC-V.

Certified Assembly Programming (CAP) [94, 95] used Hoare Logic and Separation Logic to

build certified libraries manually proven to be functionally correct. In addition, the CAP approach

has been extended to build CertiKOS (Certified Kit Operating System) [96, 97], a certified operating

system kernel. CertiKOS uses a Proof Carrying Code [83] approach to construct an OS kernel from

a clean-slate design, such that the kernel can be proved to have important security properties such

as Information-Flow Security [98], and such that important hardware-influenced behaviors such as

interrupt-handling [99, 100] can be incorporated into their proofs of functional correctness of the OS

kernel. CertiKOS has manually verified various security and functional correctness properties which

are important for an OS kernel, albeit generating machine-checkable proofs that can be utilized in a

Proof Carrying Code (PCC) framework [83]. Both CertiKOS and our approach make use of proof

assistants (Coq in CertiKOS vs. HOL4 in our work). In contrast, our approach focuses on a specific

safety property (Control-Flow Integrity) for user-mode code, and aims to automatically generate a

proof of CFI for a variety of target programs.

In addition, theorem proving approaches, in particular building on the Cambridge ARM Model

[89], have been applied to verify information-flow security for an ARM-based separation kernel
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[101], to prove instruction-level isolation properties for the ARMv7 Instruction Set Architecture

(ISA) [102], and to formally verify security properties for Direct Memory Access (DMA) at the

instruction set and processor implementation levels [103]. Dam et al. [101] formally verified the

information-flow security of their PROSPER separation kernel by proving that the observable ex-

ecution traces for each partition separated by the kernel are the same. Their effort consists of a

combination of verifying processor-level behavior, which they performed using HOL4, and kernel-

level behavior, which they performed using the BAP binary analysis platform [104] to verify that

specific contracts were met by the kernel code. Khakpour et al. [102] proved five information-flow

safety properties at the processor level, such as the non-infiltration of neighboring kernel-mode and

user-mode processes executing at the same time on a processor, and the non-exfiltration of machine

resources, in the ARMv7 ISA. They performed a machine-assisted proof using the HOL4 theorem

prover, and extended the Cambridge ARM Model with a formalization of the Memory Management

Unit (MMU) in the processor. Schwarz and Dam [103] proved various noninterference-oriented iso-

lation properties by extending the Cambridge ARM Model to support a general device framework

to enable reasoning about DMA operations with hardware devices.

A theorem proving approach, which is a form of deductive verification, has also been applied

to verify safety properties about physical phenomena for hybrid systems, such as in the KeYmaera

theorem prover for hybrid systems [105]. KeYmaera provides a foundation for deductive verifi-

cation, and supports verification using differential dynamic logic, which enables the specification

of and reasoning about physical properties for hybrid systems in a real-valued first-order dynamic

logic [106, 107]. KeYmaera is intended for reasoning about and verifying design-level proper-

ties about hybrid systems, whose behavior is represented using hybrid automata. In contrast, the

logic approach in this dissertation focuses on implementation-level safety properties of software.

Nonetheless, the use of deductive verification in KeYmaera to reason about the potentially un-

bounded state-space of hybrid systems validates our choice of using deductive verification in our

approach to verifying and automatically generating proofs of CFI safety properties. KeYmaeraX

has also been used in ModelPlex [108] to verify the correct run-time validation of models of cyber-

physical systems, where run-time enforcement mechanisms are used to enforce safety-properties,

and these enforcement mechanisms are verified in the dynamic logic deductively using KeYmaerax.

The enforcement mechanisms in our approach are effectively run-time enforcement mechanisms,

and the safety-properties verified in our logic approach can also be similarly achieved using an

approach such as in ModelPlex.
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2.5.3 Verification of Critical Systems Software

In addition to the CertiKOS [96, 97] and PROSPER [101, 102, 103] efforts, the XHMF project

has also developed a verified hypervisor. Vasudevan et al. [109] developed a modular hypervi-

sor, with the goal of enabling security properties to be verified for the hypervisor. They verify the

memory-integrity of their hypervisor using the CBMC model-checker for C code [110] to auto-

matically check that manually-inserted assertions for various safety properties are not violated. In

more recent work, Vasudevan et al. [111] developed the überSpark architecture for verifying ex-

tensible hypervisors written in both C and assembly code. The verification of their hypervisors is

achieved using the Frama-C [112] static-analysis tool for C99 programs, which they use to verify

assume-guarantee behavior specifications for their C programs. Vasudevan et al. then implemented

a C99 hardware model for the x86 hardware-virtualized platform to enable Frama-C to also verify

the assembly code embedded in their C programs. Finally, the überSpark project makes use of the

CompCert [21] certified compiler to ensure the properties they verify at the source-code level carry

over to their compiled machine-code.

The seL4 [113] project was the first to formally and mechanically verify that a realistic sepa-

ration kernel, seL4, was functionally correct, and that its implementation met its high-level specifi-

cations. seL4 was first prototyped in Haskell, and then automatically translated to its Isabelle/HOL

[114] specification, and this specification was proved to refine its abstract specification, and its C

implementation was proved to refine its Isabelle/HOL specification.

2.5.4 Software Model Checking for Machine-code Programs

Apart from Theorem Proving, other techniques have been used to check that safety properties hold in

machine-code programs. McVETO [115] uses software model-checking [116] to check if a stripped

machine-code program satisfies a safety property. McVETO resolves many soundness issues faced

by software model-checking when applied to machine-code programs, such as sound disassembly

and self-modifying code, which this dissertation does not address. Xu et al. [117] developed a

type-state-based static-analysis tool and defined a calculus for their analysis for checking if safety

predicates hold on machine-code programs, and they used the Induction Iteration Method to gen-

erate invariants for loops. In general, Theorem Proving approaches, such as in this dissertation,

can generate more concise theorems describing safety properties such as CFI, than with software

model-checking and static-analysis of machine-code.
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2.5.5 Verified Compilation and Analyses

Verified compilers, such as CompCert [21], have been proven to produce machine-code programs

that have memory safety, which implies CFI, when the source program has well-defined seman-

tics. However, CompCert is unable to produce a proof stating that the machine-code program has

memory safety nor CFI, whereas our approach is able to produce proofs for our target programs. In

addition, CompCert is currently not able to identify if a given C program that it is compiling does

indeed have well-defined semantics. However, recent work on tracking properties about memory

contents in the memory model used in CompCert can provide static analyses about memory safety

[118].

The Verified Software Toolchain (VST) [119], which is built on top of CompCert, is an approach

that enables proofs about programs to be carried out at the source-level, such that these proofs will

be preserved during compilation via the use of a verified compiler such as CompCert. However,

VST is designed for proofs to be carried out manually at the source-level, albeit for general program

properties, whereas our approach generates proofs automatically, but only for the single property of

CFI.

Verasco [120] is a static-analyzer for C programs that has been formally verified to be correct,

and whose analysis results carry over to compiled code due to its use of CompCert. Verasco can

check for the absence of run-time errors that can cause safety violations such as CFI violations that

we prove the absence of in our approach, but does not produce proofs for individual programs.

2.6 Attacks on Control-Flow Integrity

In recent work, attacks against CFI have been described that take advantage of the coarse granularity

of practical CFI techniques, as well as residual threats due to data attacks. We summarize these

attacks as well as whether our approach is vulnerable to each attack in Table 2.2.

The main attacks that have been described have been on the feasibility of gadget construction

to enable ROP attacks even for programs protected by CFI [122, 123]. However, such ROP attacks

require the use of explicit function pointers, which we disallow in our approach. Hence, such attacks

are not relevant to our approach. Carlini et al. [121] then described attacks that specifically target

weaknesses in the techniques designed to detect ROP attacks [71, 72].

Data attacks that can affect the control-flow of vulnerable programs have also been presented.

Carlini et al. [30] described Control-Flow Bending (CFB), a class of attacks that overwrite non-
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control-data that can have effects on control-flow, such as in the printf function when using the

“%n” format specifier. Our approach is not vulnerable to such attacks, as we require all jump targets

to be statically available for our safety proof, hence behavior such as in the “%n” format specifier

for the printf function would be disallowed by our approach. Stack Defiler [124] described at-

tacks that corrupt callee-saved registers and shadow call stacks to overcome protected shadow stack

enforcement of CFI for function returns. Our approach is not vulnerable to Stack Defiler’s attack,

as we explicitly prevent overwriting of callee-saved registers in order to maintain the integrity of

the activation records of all functions, and our protection of function return addresses relies on

preventing writes to function return addresses rather than bookkeeping via a protected shadow call

stack.

On the other hand, Control Jujutsu [125] described data attacks via overwriting of non-control-

data such as system call arguments (e.g., arguments to the execve system call), and to overwrite

data that affects dispatcher function selection. Our approach is not vulnerable to dispatcher function

selection modification, since we disallow explicit function pointers. However, our approach is vul-

nerable to the overwriting of system call arguments, as we currently do not protect such data items

in memory.
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Technique Location Enforcement Granularity Function-Return
Protection

Verification

Abadi et al. [15] Machine-code Abort on failure 1-ID Protected shadow
call stack

Formalization of
technique [47]

XFI [16] Machine-code Abort on failure N-ID (fine-
grained)

Protected call stack Hoare Logic verifier
(hint-driven)

PittSFIeld [17] Assembly
code

Clobber illegal
addresses

Aligned jump
targets

Clobber illegal ad-
dresses

Machine-checked
proof of verifier

WIT [48] Compiler IR Raise exception
on failure

N-ID (Precise) Provided by write-
integrity

None

NaCl [49] Assembly
code

Clobber illegal
addresses

Aligned jump
targets

Clobber illegal ad-
dresses

Proved correctness
of design

ARMor [18] Machine-code Abort on failure Fine-grained Protected shadow
stack

Generates safety
proof

Control-Flow Lock-
ing [50]

Assembly
code

Clobber ad-
dresses + Abort
on failure

2-ID (indirectly
vs. directly
called)

2-ID No formalization

Zeng et al. [26] Compiler IR Abort on failure 1-ID None Unvalidated verifier
MoCFI [51] Machine-code Abort on failure Fine-grained Protected shadow

stack
None

Pewny et al. [52] Machine-code Abort on failure Fine-grained None None
MIP [53] Assembly

code
Abort on failure Aligned jump

targets
None None

bin-CFI [54] Machine-code Abort on failure 2-ID (intra- vs.
inter-module)

None (Can return to
any valid return-site)

None

CCFIR [25] Machine-code Abort on failure 3-ID Partial (Order not en-
forced)

Unvalidated verifier

MCFI [55] Machine-code Abort on failure N-ID None Unvalidated verifier
KCoFI [56] Machine-code Not described 1-ID None Machine-checked

proof of correctness
of scheme

Code Pointer
Integrity [57]

Machine-code Abort on failure N-ID (Precise) Provided by write-
integrity

Formally mod-
eled semantics of
scheme

Forward-edge CFI
[58]

Compiler IR Abort on failure Variable (con-
figurable)

None None

CCFI [59] Machine-code Abort on failure N-ID (fine-
grained)

Write-integrity (En-
cryption of return ad-
dress)

None

Opaque CFI [60] Machine-code Abort on failure Coarse-grained None None
PiCFI [61] Compiler IR Abort on failure Per-input Partial None
TypeArmor [62] Machine-code Abort on failure Call/Return

type matching
Partial None

Our Approach Source-code Customizable
recovery actions

Not Applicable Protect stack Generates safety
proof

Table 2.1. Comparison of CFI techniques.
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Attack Description Vulnerable?
History hiding and
evasion attacks
[121]

Evade ROP detection tech-
niques

Not vulnerable (function pointers not allowed; function re-
turn pointers protected from overwriting)

Out of Control
[122]

Call-site and Entry-point gad-
get construction for ROP

Not vulnerable (function pointers not allowed; function re-
turn pointers protected from overwriting)

Davi et al. [123] Construct ROP gadgets Not vulnerable (function pointers not allowed; function re-
turn pointers protected from overwriting)

Control-Flow
Bending (CFB)
[30]

Attack non-control data in
printf, and write pointers

Not vulnerable (function pointers not allowed; function re-
turn pointers protected from overwriting)

Stack Defiler [124] Corrupt callee-saved registers
and shadow call stacks

Not vulnerable (callee-saved registers, function return ad-
dresses protected from overwriting)

Control Jujutsu
[125]

Attack system call argu-
ments, affect dispatcher
function-pointer selection

Vulnerable to system call argument attacks (data attacks)

Table 2.2. Summary of attacks on CFI and vulnerability of our approach to such attacks.



Chapter 3

Preventative Control-Flow Integrity

In this chapter, we describe our approach for providing enforcement mechanisms for Control-Flow

Integrity (CFI). Our approach uses source-code mechanisms to prevent the root-causes of CFI vi-

olations. Our approach generates prescriptions of source-code locations where CFI enforcement

mechanisms are required, and generates source-code enforcement mechanisms to be used for en-

forcing CFI. Programmers then apply these prescriptions to the source-code of their programs to

insert CFI enforcement mechanisms. This enables programmers to consider the original functional-

ity of their program when adding CFI enforcement mechanisms, and to ensure that the inserted CFI

enforcement mechanisms do not change the functionality of their program in unintended ways.

We begin by concisely defining the Control-Flow Integrity (CFI) safety and security property,

and we provide a concrete example of CFI for ARM executables. Then, we explore the root-causes

of CFI violations (§3.1), and we describe how CFI can be enforced using source-code mechanisms

in a preventative manner by preventing the root-causes of CFI violations (§3.2). Next, we describe

the design and implementation of our PCFIRE-C tool [126] for prescribing source-code CFI en-

forcement mechanisms for programmers (§3.3). Finally, we describe the source-code constructs

that are supported by PCFIRE-C’s safety-check prescriptions (§3.4).

3.1 Control-Flow Integrity

3.1.1 Illustration of CFI

Control-Flow Integrity (CFI) is a safety property that states that the execution of software follows a

path in a Control-Flow Graph (CFG) that is “determined ahead of time” [15]. While programmers

reason about software behaviors in the programming language they use (e.g., C), software execu-

42
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tion manifests as the actual (machine-code) instructions that are executed by the processor. Hence,

there are two views of a program’s execution: one at the source-code level (which captures the pro-

grammer’s intentions), and one at the machine-code level (which represents the actual instructions

executed). Then, the execution of software with CFI follows the CFG that captures the source-

code-specified behavior of the software. CFI violations occur when the sequence of machine-code

instructions executed is not present in the CFG of the software’s source-code, and this can lead to

the introduction of unexpected behavior into the program, which can enable attacks on the software.

While CFI is a general safety property, the CFI of a given program is specific to the target architec-

ture of its machine-code. Thus, CFI techniques are also architecture-specific, although they can be

adapted to different architectures.

Low-level programming languages, such as C, give programmers direct access to memory. This

can give rise to CFI violations in the actual instructions executed. We present a simple example,

which we will also use to illustrate our approach later. Consider the piece of C code below in Figure

3.1.

void arraycopy (int *src, int *dst, int n) {
int i;
for (i = 0; i < n; i++) { dst[i] = src[i]; }

}

Figure 3.1. Example C function with a potential CFI violation.

At first glance, arraycopy is designed to copy the array src to the array dst. A common

dangerous class of bugs in functions that write to arrays is buffer overflows, which SANS ranks

as the third most dangerous bug [127], as they can give rise to CFI violations. From its C source,

arraycopy superficially appears to not have any buffer overflows (which can give rise to CFI vi-

olations), as the caller supplies n, limiting the number of array elements copied. However, the

compiled machine-code of arraycopy exposes the low-level behavior of the function, where we

can see there are potential CFI violations. Consider this fragment of ARM machine-code for the

statements “dst[i] = src[i]”, “i++”, and “i < n”, as shown in Figure 3.2.

CFI violations can occur when function return addresses saved to the stack are overwritten. At

the machine-code level, an instruction must write to memory for this to occur. In this fragment of

machine-code, there are two str instructions which write to memory, at addresses 0x8174 (str

r2, [r3]), and 0x8180 (str r3, [fp, #-8]). Then, from the function prologue (addresses

0x8094, 0x8098), we can see that the link register, lr, which stores the return address of the
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0x8094: e92d0810 push {fp, lr}
0x8098: e28db004 add fp, sp, #4
0x809c: e24dd018 sub sp, sp, #24
...
0x8150: e51b3008 ldr r3, [fp, #-8]
0x8154: e1a03103 lsl r3, r3, #2
0x8158: e51b2014 ldr r2, [fp, #-20]
0x815c: e0823003 add r3, r2, r3
0x8160: e51b2008 ldr r2, [fp, #-8]
0x8164: e1a02102 lsl r2, r2, #2
0x8168: e51b1010 ldr r1, [fp, #-16]
0x816c: e0812002 add r2, r1, r2
0x8170: e5922000 ldr r2, [r2]
0x8174: e5832000 str r2, [r3]
0x8178: e51b3008 ldr r3, [fp, #-8]
0x817c: e2833001 add r3, r3, #1
0x8180: e50b3008 str r3, [fp, #-8]
0x8184: e51b2018 ldr r2, [fp, #-24]
0x8188: e51b3008 ldr r3, [fp, #-8]
0x818c: e1520003 cmp r2, r3
...

Figure 3.2. Selection of compiled ARM machine-code for C code in Figure 3.1. Some of the instructions include: Addition
(add); Compare (cmp); Load Register (ldr); Logical Shift Left (lsl); Push to Stack (push); Store (str); Subtraction
(sub).

function calling arraycopy, is saved to the stack, and the frame pointer, fp, is advanced past the

address where the link register is saved to the stack. Hence, any writes to memory addresses smaller

than fp, will not overwrite the saved lr value on arraycopy’s stack, for a descending stack. Thus,

we know that the second memory write, “str r3, [fp, #-8]”, will not overwrite the saved lr

value, and cause a CFI violation, since its target address (fp− 8) < fp (for fp > 8). However,

the first memory write, “str r2, [r3]”, is to a dynamically computed address. This instruction

potentially overwrites the saved lr value, since it is hard to determine statically from the machine-

code alone what the address “[r3]” is. In fact, “[r3]” is computed from arguments dst and n, and

a buffer-overflow can occur, if (i) dst does not point to an array of integers, or if (ii) n is larger than

the size of the array at dst.

3.1.2 Definition of CFI

Next, we define safety properties for a machine-code program, such that for a machine-code pro-

gram for which our safety properties hold, the CFI for the program cannot be violated, and the
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program possesses CFI. These safety properties are fundamental to our approach in this dissertation

for enforcing and proving CFI. Later in this dissertation, we will discuss how these safety properties

are formally specified and proved in §4 and §5. We first define these safety properties, then we

explain how these safety properties are sufficient to ensure CFI holds, and we explain how these

safety properties ensure CFI for a machine-code program targeted at the ARM architecture.

The safety policy of our enforcement approach comprises the following safety properties that we

wish to enforce and prove for machine-code programs to ensure CFI. Our safety policy comprises

the following safety properties:

Property 1. The instructions in the program’s text section loaded to memory cannot be modified,

Property 2. Function-return addresses saved to the stack cannot be modified, and

Property 3. Only initially-loaded instructions are executed.

Together, these properties eliminate the root-causes of CFI violations. We explain how these prop-

erties are sufficient to ensure that CFI holds for a machine-code program. The execution of a

machine-code program possesses CFI when the control-flow of its machine-code obeys (i.e., is con-

tained within) the CFG captured by its source-code. Supposing the program has not been modified

since compilation (which implies that the loaded instructions obey the source-code CFG of the pro-

gram), then the program’s CFI will be violated when its CFG is changed at run-time. The CFG

of the program comprises vertices representing basic blocks of instructions, and edges representing

control transfers between instructions. Then, our three safety properties prevent CFI violations by

implying that the program’s CFG cannot be changed at run-time (in the absence of unstructured

jumps such as goto and longjmp statements, as stated in §1.3).

Table 3.1 summarizes the ways in which a (machine-code) program’s CFG can be changed at

run-time, resulting in a CFI violation. Each way in which the program’s CFG can be changed

represents a possible root-cause of a CFI violation. Then, we describe how the program’s CFG is

affected by each root-cause of a CFI violation, and we describe which of our three safety properties

prevents each root-cause of a CFI violation. Note that arbitrary edges cannot be simply added to the

CFG of a machine-code program, because adding an edge to the CFG corresponds to adding a jump

target, which requires an instruction, i.e., a vertex in the CFG, to be changed.
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Change to CFG Effect on CFG Protected by
Modify loaded instructions Change CFG vertices Property 1 prevents changing

loaded instructions
Change function return address Modify CFG edges Property 2 prevents changing

callee-saved registers
Inject and run instructions Add CFG vertices Property 3 prevents executing in-

jected instructions

Table 3.1. CFI via AUSPICE’s Safety Theorem
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(b) Activation Record for Function Calls

Figure 3.3. CFI safety as provided by PCFIRE-C’s enforcement (diagram from [128]).

3.1.3 Control-Flow Integrity for the ARM Architecture

Next, we concretely describe the behaviors that a Linux user-mode program executing on the ARM

architecture must have for it to meet our three safety properties. First, consider the memory layout

for a user-mode process in Linux for an architecture with a 32-bit address space (Figure 3.3(a)).

To prevent overwriting of loaded program instructions (Property 1), all memory writes must be

restricted to addresses from 0xBF000000, the largest user-mode addressable address, to the location

A in Figure 3.3(a), the largest address where a program instruction has been loaded.

Second, consider the memory layout of the stack activation record for function calls as specified

by the ATPCS [28] (Figure 3.3(b)). In a function call, the prologue of a function saves the values

of callee-save registers to the stack. Based on the ATPCS, these callee-saved registers include the

link register (r14), stack pointer (r13) and frame pointer (r11). The link register stores the function

return address of the caller function, and must not be overwritten, for Property 2 to hold. Also,

the stack and frame pointers, which point to the end and start of the stack respectively, must not
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be overwritten, as they indicate where the link register is saved in memory. Hence, for Property 2

to hold, all saved link register, stack, and frame pointer values from all function calls prior to the

current function must not be overwritten in memory. Hence, all memory writes must be to addresses

smaller than the current value of the frame pointer.

Third, Property 3 states that only loaded program instructions can be run. This means that the

value of the program counter must always be in the range of addresses where program instructions

have been loaded, and for a statically-linked program, this range of addresses can be determined

statically.

3.2 Design: Source-code Enforcement of CFI

Safety-checks are needed before any potentially dangerous C statement (which we will call suspect

statements). First, we explain how safety-checks can be constructed using purely source-code mech-

anisms in C programs to ensure that our 3 CFI safety properties (§3.1.2) hold. This prevents the

root-causes of CFI from occurring, thus enforcing CFI in a preventative manner. Later, in §3.3, we

explain how suspect statements are identified, and how we construct prescriptions of source-code

safety-checks that are specific to each suspect statement. The C statements in our safety-checks

presented here are not verified at the C level; instead, in our logic approach, the machine-code com-

piled from our check-and-branch statements can be verified to possess the safety properties that we

defined (§3.1.2) to ensure that CFI holds.

Suspect statements may cause CFI violations, and hence need to be surrounded with safety-

checks. Each safety-check is a check-and-branch statement in C: the safety-check checks if the

suspect statement will cause a CFI violation when run: if so, it branches to an alternative statement

(which could be a recovery action); if not, it allows the suspect statement to run. By running safety-

checks before suspect statements, it is possible to recover before a CFI violation occurs.

First, we consider the kinds of C statements where our safety properties may be violated. Prop-

erties 1 and 2 can be violated only when an instruction writes to memory, hence we focus on

source-code statements that write to memory. In a program without unstructured control-flow jumps

(i.e., no goto and longjmp statements, explicit function pointers, or direct writing to the program

counter), Property 3 can be violated only at function returns, since all other jump targets will be

statically fixed (as long as the loaded program text and program counter are not overwritten, and no

injected instructions are executed, i.e., Property 3 holds). Then, since function return addresses are
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saved to the stack, ensuring Property 2 holds will ensure that Property 3 holds. Thus, we only need

to ensure that C statements that write to memory obey Properties 1 and 2, for all three properties to

hold.

Second, we consider the check-and-branch C statements needed to ensure Properties 1 and

2. Both Properties 1 and 2 require memory addresses being written to, to be within safe ranges.

Hence, the check-and-branch statements need to (i) extract the addresses being written to by the C

statement, and (ii) ensure that these addresses are within the required safe ranges. The safe address

range for Property 1 can be statically obtained from the machine-code (e.g., using GNU readelf

to extract the address and size of the text section), while the safe range for Property 2 requires the

frame pointer value (in the link register, r11) to be extracted at run-time.

3.2.1 Check-and-Branch Statements for C Programs

We briefly describe how safety-checks comprising check-and-branch C statements can be con-

structed to prevent the root-causes of CFI from occurring.

The key idea of the safety-checks in our enforcement approach is to provide a guard that ensures

that suspect statements with memory writes (which cannot be automatically proved to be safe in our

logic approach) will execute only if the target address being written to is safe with respect to our

safety policy (§3.1.2). We need to ensure that the safety guards, which are C statements, will

compile to machine-code that can automatically be proved to be safe by our logic approach (which

we will describe in §4).

Each safety-check, or guard, is an if-statement that surrounds a suspect statement. Then, the

guard checks if the memory address(es) being written to by the suspect statement will violate our

safety properties. Effectively, the guard checks if the memory address being written to by the suspect

statement might modify loaded instructions, or if it might modify function return addresses saved

to the stack. Each clause in the if-statement of the guard comprises two parts: (i) the address being

written to by the suspect statement in the left-hand-side (LHS) of the clause, and (ii) the upper or

lower bound allowed for the memory address being written to in the right-hand-side (RHS) of the

clause. Then, the full guard comprises a conjunction of these safety-check clauses.

Extracting Memory Addresses Written To

The LHS of each clause in a guard contains the memory address being written to by a suspect

statement. Table 3.2 shows what the LHS of each clause in a guard would be for extracting the
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memory addresses written to by a suspect statement, for some examples of expressions that write

to memory in a suspect statement. For large or complex memory-write expressions in suspect

statements, it is possible to use a pointer to extract the address being written to (e.g. for “<lhs

expr> = <expr>;”, we can use “tmp_ptr = &(<lhs expr>); (*tmp_ptr) = <expr>;”).

Statement type Original expression Expression for safety check
(i.e., L-Value of safety-
check)

Prefix operation *++s = <expr>; (s+1)
Postfix operation *s++ = <expr>; s
Memory write *s = <expr>; s
Memory write *(s <binop> t) = <expr>; (s <binop> t)
Array access s[i] = <expr>; (s + i)

Table 3.2. LHS expressions for safety guards.

Safe Address Bounds

Next, each clause in a guard requires an upper-bound or a lower-bound for allowed memory-write

addresses. Table 3.3 lists the memory-write bounds required for each guard to enforce our safety

properties, describes the value of each upper-bound or lower-bound on allowed memory-write ad-

dresses, and describes where the concrete value for the bound can be obtained. These bounds are

constructed to enable our logic approach (§4) to automatically prove that our safety properties for

CFI hold.

Name Bound Value Origin
text_hi Lower-bound Highest-address of text section Program text
stack_lo Upper-bound Highest-allowed address of program

stack
Constant
(0xBF000000)

fp Upper-bound Current frame pointer Dynamically ob-
tained (r11)

Table 3.3. RHS values for safety guards.

Finally, additional code is required to dynamically extract the current value of the frame pointer

from register r11 before each guard. The value of the frame pointer must be stored in a register

rather than a local variable stored on the stack to ensure that our logic approach is able to use the

value in its comparison. Figure 3.4 shows the macro used to extract the current value of the frame

pointer to a temporary register for checking against in the guard, and the C variable declaration

required for a local variable stored in a register to store the frame pointer value. Unfortunately,



CHAPTER 3. PREVENTATIVE CONTROL-FLOW INTEGRITY 50

our method for extracting the value of the current frame pointer requires the ability to execute

arbitrary assembly code fragments to directly read register values; to apply our approach to another

programming language, we would need to be able to directly read the contents of a specified register.

#define GET_FRAME_POINTER(dest_var) \
asm ( "mov r4,r11" \

: "=r" (dest_var) \
: /* no inputs */ \
: /* no clobber */)
register unsigned int r11_val asm ("r4");

Figure 3.4. Macro to extract frame pointer value, and local register variable to hold frame pointer value.

GET_FRAME_POINTER(r11_val);
if (((unsigned int)(s+i) <= STACK_LO)

&& ((unsigned int)(s+i) >= TEXT_HI)
&& ((unsigned int)(s+i) < (r11_val - (3*WORD_SIZE)))
&& (r11_val >= (3*WORD_SIZE))) {

s[i] = <expr>;
} else { /* recovery here */ }

Figure 3.5. Full safety-check for statement, “s[i] = <expr>;” in a function with 3 callee-saved registers.

Figure 3.5 puts together the full guard for a suspect statement, which writes to memory, “s[i]

= <expr>;”. The guard also allows programmers to specify their own recovery actions in the else

branch of the safety guard, although we do not discuss recovery actions in this dissertation. In addi-

tion, “WORD_SIZE” stores the number of bytes used to represent a machine-address (e.g. 4 in a 32-bit

architecture), and there is an additional guard conjunct, “(r11_val >= (N * WORD_SIZE))”. This

guard is used to ensure that there is no arithmetic underflow of the computed address “(s+i)”, and

the lower bound “(N * WORD_SIZE)” is needed if there are N callee-saved register values on the

current function’s stack. This ensures that no memory writes can overwrite the current function’s

callee-saved register values.

3.3 Implementation: Prescriptions of CFI Safety-checks

Next, we describe the implementation of the PCFIRE-C tool, which realizes the enforcement ap-

proach in this dissertation. Figure 3.6 shows the workflow of PCFIRE-C. PCFIRE-C can operate

in two modes: (i) heuristic mode, where it takes as input the machine-code of a program without

safety-checks, and (ii) proof-failure mode, where it takes as input the locations of proof failures
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Figure 3.6. Overview of approach for prescribing CFI safety-checks.

in the machine-code of the program, where the logic approach of this dissertation failed in its at-

tempted safety proof. Then, PCFIRE-C produces a list of safety-check prescriptions, where each

prescription consists of the location of a suspect statement, and a safety-check C statement for the

suspect statement.

First, PCFIRE-C needs a list of addresses of suspect machine-code instructions, whose corre-

sponding source-code statements are suspect statements, and are in need of prescriptions of safety-

checks. In the heuristic mode, PCFIRE-C identifies such suspect instructions using a heuristic about

the targets of store instructions, which we describe later. In the proof-failure mode, PCFIRE-C re-

ceives a list of addresses of suspect machine-code instructions, which are the addresses of instruc-

tions that our logic approach fails to prove are safe. The key difference between the two modes, is

that in the heuristic mode, PCFIRE-C is unable to identify if the machine-code already contains suf-

ficient safety-checks for proving that a given suspect instruction is safe, whereas in the proof-failure

mode, our logic approach will identify only suspect instructions that could not be proved to be safe.

In other words, the heuristic mode of PCFIRE-C is an unsound (i.e., false-positives are possible,

meaning that safety-checks could be prescribed even if a valid safety-check is already present) way

to identify suspect statements, but is significantly faster than the proof-failure mode, since our logic

approach utilizes a heavyweight proof assistant.

In both modes, PCFIRE-C then proceeds to identify the source-code location corresponding

to each machine-code instruction by parsing the debug information using an off-the-shelf parser

for ELF (Executable Link Format) and its DWARF debug information format. Then, PCFIRE-C
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constructs check-and-branch statements for the suspect statements in each identified source-code

location.

The identification of suspect instructions in PCFIRE-C’s heuristic mode is implemented as a

Python script which parses the assembly-text output from the objdump disassembler, while the con-

struction of the check-and-branch safety-check prescriptions are implemented on top of the Clang

[129] compiler front-end for C programs.

Next, we describe PCFIRE-C’s heuristics for identifying suspect instructions in a machine-code

program, and we describe PCFIRE-C’s construction of its prescribed safety-checks for each suspect

statement.

3.3.1 Identifying Enforcement Locations for CFI

PCFIRE-C identifies suspect statements by analyzing the (disassembled text from “objdump -d”

of) compiled machine-code of target programs. PCFIRE-C first identifies the addresses of instruc-

tions that are suspects. This analysis is implemented using Python. We describe the analysis to

identify instructions that would cause the CFI proof in our logic approach to fail. The main goal

of this analysis is to identify dangerous memory-write instructions for which additional run-time

source-code safety-checks are needed. Note that the analysis identifies potentially dangerous in-

structions, but is unable to check if the necessary safety-checks are already present.

First, we identify store instructions, which write to memory, i.e., str, strb, strh. Then, we

consider the addresses in memory that are written to by the instruction. As described in §3.1.1, our

main heuristic is that memory-write instructions writing to a constant offset from the current frame

pointer fp (e.g., “str r3, [fp, #-8]”) can generally be automatically proved to be safe, while

memory-write instructions writing to an arbitrary computed address cannot be automatically proved

to be safe, and will need additional run-time safety-checks, which PCFIRE-C will prescribe.

Informally, at a high-level, instructions writing to a constant offset from the frame pointer can

be automatically proved to be safe. From §3.1.3, based on our safety properties, we need to ensure

that the memory addresses written to do not overwrite loaded program instructions, and that they do

not overwrite function return addresses saved to the program’s stack. Then, since the ATPCS [28]

specifies the locations in memory where function return addresses are saved to in terms of the frame

pointer, fp, memory addresses written to that are a constant offset from fp can be statically proved

to not overwrite the saved function return addresses. Also, to prove that the memory addresses

written to will not overwrite loaded program instructions, since the value of fp typically does not
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change within the body of a function, we only need to prove that the value of fp is in a particular

range such that the constant offsets are not able to overwrite loaded program instructions. This safe

range of addresses for fp can then be added as a hypothesis to the safety proof for the function that

the current instruction is in.

On the other hand, instructions that write to computed addresses (e.g., “str r2 [r3]”) cannot

always be automatically proved to be safe in the general case. This is because the computed address,

e.g., the value held in register r3, is arbitrary in the general case, and could point to any location.

Also, the computed address r3 may depend on other values that either (i) depend on external inputs

to the current function, e.g., arguments supplied to the function, or (ii) change in a loop prior to

being used, which will then require manually-specified loop invariants for our logic approach to

reason about, thus making them impossible to reason about automatically.

Thus, the analysis ignores writes to a constant offset from the frame pointer, as they can be

automatically proved in our logic approach to not violate our CFI safety properties. Then, the

analysis reports the address of any other store instruction. The analysis ignores the push instruction,

as we observed that gcc-emitted code only uses push in function prologues. (In the event that the

push instruction is used outside of the function prologue, or the frame pointer is modified outside

of the function prologue, the proof attempt in our logic approach will fail to generate a CFI safety

proof.) The analysis also extracts the number of callee-saved registers for each function from push

instructions in function prologues to construct check-and-branch statements (§3.2.1).

To summarize, the analysis to identify suspect locations in a machine-code program is imple-

mented as a regular expression search over the disassembled text of the machine-code program in

Python, and is implemented in approximately 150 lines of Python script.

3.3.2 Construction of Safety-Check Prescriptions for C Programs

Next, we describe how PCFIRE-C constructs prescriptions of safety-checks for a C program. The

input to PCFIRE-C’s prescription-construction is a list of suspect statement locations, which com-

prise: (i) source file name, (ii) source line number, and (iii) type of suspect statement (which can be

a safety-assertion failure, or an invocation of a system call wrapper, see §6.1 for more details). The

algorithm, based on our heuristics, and its details are captured in Algorithms 3.1, 3.2 3.3, 3.4, 3.5

and 3.6.

The prescription of safety-checks in PCFIRE-C is implemented in C++ using the Tooling inter-

face provided by the Clang [129] C compiler front-end, which parses each C source-code file and
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provides an Abstract Syntax Tree (AST) for each source-code statement. Algorithm 3.1 summarizes

the overall workflow in PCFIRE-C for constructing prescriptions for safety-checks. For each input

source-code file, PCFIRE-C goes through the ASTs for the statements in the source-code. Then,

PCFIRE-C retrieves the AST for each statement in the source-code file corresponding to each input

suspect location. PCFIRE-C then constructs the safety-check prescription for each suspect location

based on the retrieved AST for the source-code statement.

Algorithm 3.1 PCFIRE-C algorithm for generating safety-check prescriptions.
1: function PRESCRIBESAFETYCHECKS(suspect_locations, src_files)
2: for curr_src_file ∈ src_files do
3: suspect_stmts← /0
4: for stmt ∈ curr_src_file do . Collect AST of suspect statements
5: stmt_loc← COMPUTELOCATION(stmt)
6: if stmt_loc ∈ suspect_locations then
7: suspect_stmts← suspect_stmts∪ stmt
8: end if
9: end for

10: for curr_suspect ∈ suspect_stmts do
11: CONSTRUCTPRESCRIPTION(curr_suspect)
12: end for
13: end for
14: end function

Next, PCFIRE-C constructs the safety-check prescription for each suspect location, given the

(Clang-generated) AST of the C statement at that location. Algorithm 3.2 summarizes the con-

struction of the safety-check prescription for each suspect location. There are two types of CFI

safety failures for which safety-check prescriptions are constructed: (i) those for safety assertion

failures, which occur when a suspect statement writes to memory (i.e., the C statement is compiled

to machine-code instructions that include any one of the str, strb, or strh instructions), and (ii)

those for invocations of system call wrappers, whose invoked system call results in user-mode mem-

ory being modified (e.g., the read() system call) (see §6.1 for more details about our handling of

system calls). PCFIRE-C handles these two cases separately.

For each suspect statement, the prescription-construction (Line 32) selects the appropriate han-

dler function (Lines 13, 20, 24) to handle the suspect statement based on whether the suspect state-

ment contains a safety assertion failure or a system call wrapper invocation. Each of these functions

performs two tasks: (i) they extract the expression for the LHS of the safety-check, which represents

the memory address(es) that are written to by the statement, and (ii) they invoke a helper function

(Line 1) to assemble the text of the prescription and print it out.
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For safety assertion failures, PCFIRE-C handles only: (i) statements that contain an assignment

(Line 14), whose memory-write effect applies to the left-hand-side of the assignment statement, and

(ii) statements that contain a unary operation (i.e., prefix or postfix increment or decrement) (Line

20). System call wrapper invocations are handled in Line 24.

Next, each of the handler functions for safety assertion failures and system call wrapper failures

invokes a single handler function, HandleLHS, which extracts the expression for the LHS of the

safety-check. The HandleLHS handler function is described in Algorithm 3.4. HandleLHS takes as

input the AST of the suspect statement, and it calls the appropriate traversal function to traverse the

AST to obtain the LHS expression for the safety-check prescription. Before traversing the AST, the

AST is first converted to a queue representation by a pre-order traversal of the tree, as described in

Algorithm 3.3.

Then, Algorithm 3.5 describes the AST traversal to construct the LHS expression for the safety-

check prescription for safety assert failures. The traversal for safety assert failures recursively tra-

verses the AST (using the queue), and handles the different possible syntactic constructs to recon-

struct the source-code expression for the memory address(es) that are written to by the suspect

statement. To maximize the flexibility of our approach, we reconstruct the expression of the address

written to, and use the C address-of operator (&) to obtain the address written to, and we suggest to

the programmer to use a pointer to write to the location (Line 9 in Algorithm 3.2).

Algorithm 3.6 describes the AST traversal for system call wrappers. We currently support gen-

erating safety-check prescriptions only for our wrapper to the read() system call (as this is the

only user-mode-effect-ful system call that we current support in our approach that results in writes

to user-mode memory). Hence, in TraverseQueueNode_SYSCALL_BUF, we currently only iden-

tify buffers and have a simplified AST traversal (Line 2), although it is straightforward to extend

the traversal in a similar way to Algorithm 3.5. Also, our logic approach supports only safety

proofs where a concrete-sized buffer is written to (see §6.1), hence we only handle integer literals

in TraverseQueueNode_SYSCALL_LEN (Line 24).

To summarize, PCFIRE-C constructs safety-check prescriptions given the source-code of a pro-

gram, and a list of suspect locations (i.e., source file names and line numbers) in the source-code

of the program. PCFIRE-C constructs these prescriptions on a per-suspect basis for two types of

suspect statements (safety assertion failures and invocations of effect-ful system call wrappers), and

extracts a source-code expression for the memory address written to, to be used in the construction

of the prescription. PCFIRE-C then uses Clang’s DiagnosticsEngine to print and highlight the
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source-code expressions requiring safety-checks, and the prescribed safety-check for each suspect

statement. The full implementation of PCFIRE-C comprises approximately 1500 lines of C++ code,

and is built as a Clang tool using the Tooling interface.

3.4 Scope of Safety Check Prescriptions

Next, we discuss the C syntactic constructs which are supported, and those which are unsupported,

by the PCFIRE-C tool, for which safety-check prescriptions can and cannot be generated respec-

tively by our tool.

We refer to the C syntax for the C99 standard as described in Appendix B of [130]. A C

program is comprised of one or more functions, whose bodies comprise one or more statements.

Each C statement can be one of the following types:

• Expression statement: one or more assignment expressions separated by a comma (May be

effect-ful)

• Labeled statement

• Compound statement: one or more declarations separated by “;”s (May be effect-ful)

• Conditional statement: if or if-else statement

• Iterative statement: while, do, or for loop

• Switch statement

• Break statement

• Continue statement

• Return statement

• Goto statement

• Null statement (single “;”)

PCFIRE-C needs to generate safety-checks for “effect-ful C operations” that result in writes to

memory that cannot be automatically proved to be safe. From the above list of syntactic constructs,

effect-ful C behaviors (that alter memory) can occur in expression statements containing assign-

ments (including effect-ful unary prefix and postfix operators such as “++” and “––”), in compound
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Algorithm 3.2 Construction of Safety-Check Prescription for each Suspect Statement.
1: function CONSTRUCTPRESCRIPTIONTEXT(lhs, num_stack_saved, ty_expr)
2: remedy := “register unsigned int r11_val asm ("r4");\n”
3: remedy += ty_expr + “ tmp_ptr = &(“ + lhs + ”);\n”
4: remedy += “GET_FRAME_POINTER(r11_val);\n”
5: remedy += “if ( ( (unsigned int) (tmp_ptr) >= MIN_SAFE_MEM) && \n”
6: remedy += “ ( ( (unsigned int) (tmp_ptr)) <= MAX_SAFE_MEM) && \n”
7: remedy += “ ( ( (unsigned int) (tmp_ptr)) < (r11_val - (” + num_stack_saved + “ * WORD_SIZE))) && \n”
8: remedy += “(r11_val >= (” + num_stack_saved + “ * WORD_SIZE))) {”
9: remedy += “*tmp_ptr = ...<RHS expression>... \n”

10: remedy += “}”
11: PRINTREMEDY(remedy)
12: end function
13: function HANDLESAFETYASSERTFAIL_BINOP(binop, num_stack_saved)
14: if binop→GETOPCODE( ) == BO_Assign then
15: lhs := binop→GETLHS( )
16: (safety_check_lhs, ty_expr) := HANDLELHS(lhs, SAFETY_ASSERT_BINARY)
17: CONSTRUCTPRESCRIPTIONTEXT(safety_check_lhs, num_stack_saved, ty_expr, ty_expr)
18: end if
19: end function
20: function HANDLESAFETYASSERTFAIL_UNOP(unop, num_stack_saved)
21: (safety_check_lhs, ty_expr) := HANDLELHS(unop, SAFETY_ASSERT_UNARY)
22: CONSTRUCTPRESCRIPTIONTEXT(safety_check_lhs, num_stack_saved, ty_expr)
23: end function
24: function HANDLESYSCALLWRAPPERFAIL(callexpr, num_stack_saved)
25: syscall_args := callexpr→GETARGS( )
26: if callexpr→GETCALLEE( ) == “c_read” then
27: (buf_name,ty_expr1) := HANDLELHS(syscall_args[1], SYSCALL_WRAPPER_BUF)
28: (buf_len,ty_expr2) := HANDLELHS(syscall_args[2], SYSCALL_WRAPPER_LEN)
29: CONSTRUCTPRESCRIPTIONTEXT(buf_name+“+”+buf_len, num_stack_saved, ty_expr1)
30: end if
31: end function
32: function CONSTRUCTPRESCRIPTION(stmt)
33: num_stack_saved := FAILSTMTFUNCTIONSTACKSAVED(stmt) . Look up number of stack-saved registers in

function for given statement.
34: if FAILTYPE(stmt) == SafetyAssertFail then
35: if isa<BinaryOperator>(*stmt) then
36: HANDLESAFETYASSERTFAIL_BINOP((BinaryOperator *) stmt, num_stack_saved)
37: else if isa<UnaryOperator>(*stmt) then
38: HANDLESAFETYASSERTFAIL_UNOP((UnaryOperator *) stmt, num_stack_saved)
39: end if
40: else if FAILTYPE(stmt) == SyscallWrapperFail then
41: if isa<CallExpr>(*stmt) then
42: HANDLESYSCALLWRAPPERFAIL((CallExpr *) stmt, num_stack_saved)
43: end if
44: end if
45: end function
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Algorithm 3.3 AST to Queue Conversion
1: function AST2QUEUE(stmt, parent, ast_q, parent_q)
2: ast_q.push_back(stmt)
3: parent_q.push_back(parent)
4: curr_idx := ast_q.size() −1
5: for child ∈ stmt.children() do
6: (ast_q, parent_q) := AST2QUEUE(child, curr_idx, ast_q, parent_q)
7: end for
8: return (ast_q, parent_q)
9: end function

10: function ASTQUEUECOMPUTECHILDREN(parent_q)
11: child_q := /0; i := 0
12: while i < parent_q.size() do
13: j := 0
14: curr_children := /0
15: while j < parent_q.size() do
16: if j 6= i∧parent_q [j] == i then
17: curr_children := curr_children ∪ j
18: end if
19: end while
20: i++
21: end while
22: return child_q
23: end function

Algorithm 3.4 Construction of memory-write address expression (i.e., LHS of safety-check).
1: function HANDLELHS(stmt, stmt_type) . stmt is AST for memory-write expression
2: ast_q := /0; parent_q := /0
3: (ast_q, parent_q) := AST2QUEUE(stmt, -1, ast_q, parent_q)
4: child_q := ASTQUEUECOMPUTECHILDREN(parent_q)
5: if stmt_type == SAFETY_ASSERT_BINARY then
6: TRAVERSEQUEUENODE_ASSERT(0, ast_q, parent_q, child_q, false)
7: else if stmt_type == SAFETY_ASSERT_UNARY then
8: TRAVERSEQUEUENODE_ASSERT(0, ast_q, parent_q, child_q, true)
9: else if stmt_type == SYSCALL_WRAPPER_BUF then

10: TRAVERSEQUEUENODE_SYSCALL_BUF(0, ast_q, parent_q, child_q)
11: else if stmt_type == SYSCALL_WRAPPER_LEN then
12: TRAVERSEQUEUENODE_SYSCALL_LEN(0, ast_q, parent_q, child_q)
13: end if
14: end function
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Algorithm 3.5 Construction of LHS expression for safety assertion failures.
1: result_q := [] . Global queue for accumulating results
2: type_q := []
3: function TRAVERSEQUEUENODE_ASSERT(idx, ast_q, parent_q, child_q, is_unary)
4: for child ∈ child_q [idx] do
5: TRAVERSEQUEUENODE_ASSERT(child, ast_q, parent_q, child_q, is_unary)
6: end for
7: curr_children := child_q[idx]
8: if isa<DeclRefExpr>(ast_q[idx]) then
9: result_q[idx] := (ast_q[idx])→getFoundDecl()→getNameAsString()

10: type_q[idx] := ast_q[idx]→getType()
11: else if isa<CastExpr>(ast_q[idx]) then
12: result_q[idx] := result_q[curr_children[0]]
13: type_q[idx] := ast_q[idx]→getType()
14: else if isa<BinaryOperator>(ast_q[idx]) then
15: curr_op := ast_q[idx]→getOpCodeStr()
16: result_q[idx] := result_q[curr_children[0]] + curr_op + result_q[curr_children[1]]
17: else if isa<UnaryOperator>(ast_q[idx]) then
18: curr_op := ast_q[idx]→getOpcode()
19: if curr_op == UO_Deref then
20: result_q[idx] := “(”+result_q[curr_children[0]]+“)”
21: else if curr_op == UO_PreInc ∧ not is_unary then
22: result_q[idx] := “(”+result_q[curr_children[0]]+“ + 1)”
23: else if curr_op == UO_PreDec ∧ not is_unary then
24: result_q[idx] := “(”+result_q[curr_children[0]]+“ - 1)”
25: else result_q[idx] := “(”+result_q[curr_children[0]]+“)”
26: end if
27: else if isa<IntegerLiteral>(ast_q[idx]) then
28: result_q[idx] := ast_q[idx]→APIntStorage::getValue().toString()
29: else if isa<ArraySubscriptExpr>(ast_q[idx]) then
30: result_q[idx] := curr_children[0] + “[” + curr_children[1] + “]”
31: else if isa<MemberExpr>(ast_q[idx]) then
32: if ast_q[idx]→MemberExpr::isArrow() then
33: result_q[idx] := curr_children[0] + “->” + curr_children[1]
34: else
35: result_q[idx] := curr_children[0] + “.” + curr_children[1]
36: end if
37: type_q[idx] := “(” + ast_q[idx]→getType() + “ *)”
38: else if isa<ParenExpr>(ast_q[idx]) then
39: result_q[idx] := “(” + curr_children[0] + “)”
40: end if
41: if idx == 0 then
42: i := 0; type_str := “”
43: while i < ast_q.size() do
44: if type_q[i] != “” then
45: type_str := type_q[i]; break;
46: end if
47: i++
48: end while
49: return (result_q[0], type_str)
50: end if
51: end function
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Algorithm 3.6 Construction of LHS expression for syscall wrapper failures.
1: result_q1 := []; type_q1 := []; . Global queue for accumulating results
2: function TRAVERSEQUEUENODE_SYSCALL_BUF(idx, ast_q, parent_q, child_q)
3: for child ∈ child_q [idx] do
4: TRAVERSEQUEUENODE_SYSCALL_BUF(child, ast_q, parent_q, child_q)
5: end for
6: if isa<DeclRefExpr>(ast_q[idx]) then
7: result_q1[idx] := ast_q[idx]→getFoundDecl()→getNameAsString()
8: type_q[idx] := ast_q[idx]→getType()
9: end if

10: for curr_child ∈ child_q[idx] do
11: result_q1[idx] := result_q1[idx] + result_q1[curr_child]
12: end for
13: if idx == 0 then
14: i := 0; type_str := “”
15: while i < ast_q.size() do
16: if type_q1[i] != “” then type_str := type_q1[i]; break;
17: end if
18: i++
19: end while
20: return (result_q1[0], type_str)
21: end if
22: end function
23: result_q2 := []; . Global queue for accumulating results
24: function TRAVERSEQUEUENODE_SYSCALL_LEN(idx, ast_q, parent_q, child_q)
25: for child ∈ child_q [idx] do
26: TRAVERSEQUEUENODE_SYSCALL_LEN(child, ast_q, parent_q, child_q)
27: end for
28: if isa<IntegerLiteral>(ast_q[idx]) then
29: result_q2 := ast_q[idx]→getValue().toString()
30: end if
31: for curr_child ∈ child_q[idx] do
32: result_q2[idx] := result_q2[idx] + result_q2[curr_child]
33: end for
34: if idx == 0 then
35: return (result_q2[0], “”)
36: end if
37: end function
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statements where a declaration is followed by an effect-ful assignment, or in the sub-expressions of

conditional and iterative statements that contain assignment expressions.

Labeled statements in themselves do not result in memory being written to during program

execution, and only affect the generation of jump targets during compilation and linking.

Break, Continue, Return, and Goto statements do not typically result in memory being written

to (except for returns of structs, which we will discuss in §8.1, and our logic approach does not

support proving CFI safety for struct returns from functions).

Based on PCFIRE-C’s algorithm for constructing safety-check prescriptions for each suspect

statement (Algorithm 3.2), PCFIRE-C currently supports generating safety-check prescriptions for

expression statements that contain a single assignment expression.

PCFIRE-C does not support effect-ful C operations that occur in compound statements. This is

because the identification of suspect instructions (Figure 3.6) will associate each suspect instruction

with a single source-code line, but in the case of compound statements occurring on the same

source-code line, it is challenging to identify which of the compound statements corresponds to

the particular suspect instruction.

Similarly, in the case of Switch, Conditional and Iterative statements whose conditional or loop-

ing expressions contain effect-ful operations, PCFIRE-C is unable to support generating a safety-

check prescription. This is because PCFIRE-C’s prescribed safety-check will require adding addi-

tional statements to perform the safety-check, but it will be challenging to insert a safety-check into

the conditional or loop expression. In addition, we believe this will not be a significant problem

for programmers, as any effect-ful operation (e.g., using a global variable as a loop counter) can

be modified to use a local variable instead, and to perhaps save the value of the loop variable in a

variable in a separate individual statement.

To summarize, PCFIRE-C supports the generation of safety-check prescriptions for C opera-

tions that are effect-ful on memory that occur in statements with a single assignment expression,

because it is unable to associate a suspect instruction compiled from a line of C source-code with

multiple possible effect-ful expressions. Also, PCFIRE-C does not support generating safety-check

prescriptions for effect-ful C operations that occur in the conditional or looping expressions of

Switch, Conditional, and Iterative statements because of the difficulty of constructing a safety-check

prescription that can fit in the C syntax of Switch, Conditional, and Iterative statements.
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3.5 Summary

This chapter described the enforcement approach for Control-Flow Integrity (CFI) in this disser-

tation, which is realized by the PCFIRE-C tool [126] that we developed. We concretely defined

Control-Flow Integrity (CFI), and the safety properties that are verified in our logic approach in

order to ensure CFI, as described later in §4.

Our approach to CFI enforces CFI by using source-code safety-checks that prevent the root

causes of CFI violations. To enable programmers to ensure that these source-code safety-checks do

not inadvertently change the functionality of their programs, our approach prescribes source-code

safety-checks, and leaves it up to programmers to apply these prescriptions to their source-code.

To that end, we have developed the PCFIRE-C tool for prescribing source-code safety-checks

for CFI, given the source-code and (initially compiled) machine-code of a program. The PCFIRE-

C tool supports generating prescriptions of safety-checks in two modes: (i) by using heuristics to

identify suspect machine-code instructions and their corresponding source-code statements that may

result in CFI violations, and (ii) by using information about proof failures from our logic approach

(which we will describe in later chapters). We also described the scope of C program constructs that

are supported by the PCFIRE-C tool, and the limitations of the tool.



Chapter 4

Program Logic for Machine-code Safety-Property Proofs

In this chapter, and the next two chapters (§5, §6), we describe the various parts of the logic approach

in this dissertation, as realized by the AUSPICE framework. AUSPICE automatically generates

safety proofs for ARM machine-code programs [128], and supports machine-code programs with

system calls [126].

This chapter describes the LLR program logic, that we developed, which forms the foundation

of AUSPICE. “LR” stands for “Local Reasoning”, which is the principle we use to automate our

safety property proofs. The LLR program logic is designed for automatically reasoning about safety

properties in machine-code programs, and it extends the program logic introduced by Myreen et

al. [31, 32] by adding proof rules for reasoning locally about safety properties specified at a per-

instruction level for machine-code programs. In the following two chapters (§5, 6), we describe

how to automatically generate proofs of safety properties for machine-code programs in LLR (§5)

using AUSPICE, and we describe how to extend LLR to support proofs for machine-code programs

containing system calls, and how the proof automation process can be optimized (§6).

In this chapter, we begin by briefly introducing the “Cambridge ARM model” [131, 31, 32]

in §4.1, which is a trustworthy formalization of the ARM Instruction Set Architecture (ISA) in

Higher Order Logic (HOL). The Cambridge ARM model has been mechanized in the logic of

the HOL4 proof assistant [38]. The Cambridge ARM model provides semantics for individual

ARM machine-code instructions, and it provides a Hoare logic [132] for reasoning about ARM

machine-code programs. In our logic approach, we leverage the Cambridge ARM model to provide

us with a trustworthy semantics for reasoning about machine-code behavior. We illustrate how

the semantics of ARM machine-code instructions are represented, and we describe the proof rules

provided in the Hoare logic of the Cambridge ARM model. In §4.2, we present the proof rules for

63
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LLR, which encode the “local reasoning” principle for reasoning about safety properties in machine-

code programs in a way that is amenable to automated proof generation. In §4.3, we describe

how PCFIRE-C’s prescribed source-code safety-checks (§3.2) give rise to compiled machine-code

programs for which our safety properties can be automatically proved in LLR. In §4.4, we present

arguments for the soundness and correctness of the proof rules in LLR.

4.1 Hoare Logic for ARM Machine-code

In the logic approach in this dissertation, we use the HOL4 theorem prover [38], and the Hoare

logic [31] for ARM machine-code programs [32] developed at Cambridge University, to prove

safety theorems. The Cambridge ARM model has been extensively tested and validated [131],

providing us with a strong, trustworthy foundation for our logic. The Cambridge ARM model uses

Hoare triple theorems and separation logic [133] to describe the behavior of each instruction, and

the model captures realistic details of ARM instructions, which we illustrate briefly. We begin by

describing the semantics of ARM instructions provided by the Cambridge ARM model through its

Hoare logic for realistically-modeled ARM instructions, and the Hoare logic rules provided by the

Cambridge ARM model which we make use of in the logic approach in this dissertation.

4.1.1 Semantics and Hoare Logic for Realistically Modeled Instructions

The Cambridge ARM model decompiles each ARM instruction to a Hoare triple theorem of the

form (p) c (q), where p and q are predicates describing the state of the processor before and after

executing code c respectively. Informally, the theorem reads: if assertion p holds for the current

processor state, and instruction c is executed, then q will hold for the resulting processor state. We

refer to p and q as the pre-state and post-state assertions of instruction c1.

Then, the theorem (p) c (q) informally means that for a processor in a state satisfying p be-

fore running c, after running c, the processor will have state satisfying q. Processor state assertions

p and q either assert the value of a given resource (e.g., value in a register), or they can be pure

boolean assertions that capture the relationships between variables. Pure boolean assertions can be

pre-conditions (labelled precond(·)), which are predicates known to hold before an instruction ex-

ecutes (e.g., statements in the body of “if (i == 0) { ... }” have the pre-condition “i = 0”),

or they can be assumptions (labelled cond(·)). While assumptions (i.e., cond) and pre-conditions
1In Hoare logic, p, q are named pre-, post-condition, but we use the terms pre-, post-state as we call the boolean

conditions imposed by a branch a pre-condition.
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(i.e., precond) are logically equivalent in the Hoare logic of the Cambridge model, we differentiate

between the two: when we use cond(r) to indicate predicate r is a safety assertion in a Hoare triple

theorem, we also add r to the hypotheses of the theorem.

` SPEC ARM_MODEL

(aR 3w r3 ∗ aR 2w r2 ∗ aPC p ∗ aMEMORY df f ∗ cond((r3 && 3w = 0w)∧ (r3 ∈ d f )))

{(p,0xE5832000w “str r2, [r3]”)}
(aR 3w r3 ∗ aR 2w r2 ∗ aPC (p+4w) ∗ aMEMORY df ((r37→r2) f ))

Figure 4.1. Example of a Hoare triple theorem, for the ARM instruction 0xE5832000 with mnemonic “str r2 [r3]”.

` ∀ a b · (a7→b) = (λ f c · if a = c then b else f c)

Figure 4.2. Definition of the “7→” update operator in the HOL4 Update Theory.

As an example, consider the theorem for the ARM instruction 0xE5832000 (mnemonic “str

r2 [r3]”), as shown in Figure 4.1. SPEC indicates that the theorem is a Hoare triple, while

ARM_MODEL records the ARM-specific instruction semantics for the triple [32].

“aR 2w” and “aR 3w” are expressions that assert that a specified register stores the specified

value, where “2w” and “3w” indicate the number of the specified register whose value is being

asserted, and the suffix w indicates the register number is a fixed-width word. Then, the pre-state

shows that: (i) the registers r2 and r3 contain the (symbolic) values r2 and r3 respectively, which

each represent a fixed-width 32-bit word, (ii) the main memory contains the map f with domain df ,

and (iii) the program counter has some address p before running the instruction. After running the

instruction, the values of registers r2, r3 remain unchanged, and the program counter advances to

p+4 . Also, “7→” is the map-update operator, as defined in Figure 4.2, hence “r3 7→ r2” indicates

that the memory has been updated to store the value that was in register r2 at the address given

by the value that was in register r3. The expression “cond((r3 && 3w = 0w)∧ (r3 ∈ d f ))” is an

assertion that specifies our memory alignment requirement for writes to the address r3 , and that r3

is in the domain of the memory map f .

“*” is the separating conjunction in Separation Logic [133] which asserts all other resources are

unchanged. Note that * in the Cambridge ARM model prevents assertions about repeated processor

resources (e.g., the same register cannot be asserted about twice), but memory is asserted only once
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because it is treated as a single map from memory addresses to stored values. Memory is represented

as a map from 32-bit addresses to the byte stored at each address.

4.1.2 Composition rule in Hoare logic

SPEC x p c1 q SPEC x q c2 r
SPEC x p (c1;c2) r

COMPOSE

SPEC x p c q
SPEC x (p ∗ r) c (q ∗ r)

FRAME

Figure 4.3. Hoare logic’s Compose and Frame rules in the Cambridge ARM model.

The Compose rule of Hoare logic [132] is shown above in Figure 4.3, which extends single

instruction Hoare triple theorems to describe multiple instructions. Here, in “SPEC x p c q”, “SPEC”

is a relation indicating the presence of a Hoare triple, “x” indicates the parametrizable processor

semantics that allows the Cambridge Hoare logic to support different machine architectures (but

is always set to ARM_MODEL for our purposes) , and “p”, “c”, and “q” are the pre-state, code, and

post-state of the Hoare triple respectively.

One detail of this rule critical to our analysis is that for code c1 and c2 such that c2 runs immedi-

ately after c1, the post-state of the theorem for c1, q, must match the pre-state of the theorem for c2,

before the two single instruction theorems can be composed to form a single theorem describing the

effects of the sequential execution of both instructions. One critical detail of this rule is that to apply

the Compose rule to compose two Hoare triple theorems, the pre-state of the second theorem must

be equal to the post-state of the first theorem. Conceptually, when instruction i1 executes, followed

by instruction i2, as i2 is executing immediately after i1, the processor state just before i2 executes

is exactly the processor state after i1 executes.

4.1.3 Pre-composition Tactic

A typical proof tactic for composing Hoare triple theorems for sequential instructions, i1, i2, with i1

running immediately before i2, into a single Hoare triple theorem, is given by the following steps:

1. Using the Frame rule (Figure 4.3), add machine state assertions in i1’s theorem, but not in i2’s

theorem, to i2’s theorem;
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2. Using the Frame rule, add machine state assertions in i2’s theorem, but not in i1’s theorem, to

i1’s theorem;

3. Instantiate free variables in i2 with the post-state machine resource values from i1.

We call these steps the pre-composition tactic. This is similar to the “shift” operation described

by Myreen et al. [32]. After carrying out the above theorem manipulation steps, the manipulated

theorems i′1 and i′2 for both instructions will now have the post-state of i′1 matching the pre-state of

i′2, allowing us to directly apply the Compose rule in Hoare logic.

For instance, consider the two instructions, i1 (“mov r3,r4”), followed by i2 (“sub r2, r3,

#16”). We illustrate the use of the Compose rule to obtain a theorem describing the behavior of a

program (or its fragment), i1i2. The Hoare triple theorems for each of the two instructions are shown

respectively in Figure 4.4.

` SPEC ARM_MODEL

(aR 3w r3 ∗ aR 4w r4 ∗ aPC p) {(p,0xE1A03004w “mov r3, r4”)}
(aR 3w r4 ∗ aR 4w r4 ∗ aPC (p+4w))

` SPEC ARM_MODEL

(aR 2w r2 ∗ aR 3w r3 ∗ aPC p) {(p,0xE2432010w “sub r2, r3, #16”)}
(aR 2w (r3−16w) ∗ aR 3w r3 ∗ aPC (p+4w))

Figure 4.4. Hoare triples for individual instructions before applying Compose rule.

Thus, in composing the two theorems i1, i2 in our above example, our pre-composition tactic

will carry out the following steps on the theorems i1, i2:

1. Use the Frame rule to add aR 2w r2 to the Hoare triple theorem i1 to get the Hoare triple

theorem i′1 (as shown in Figure 4.5);

2. Use the Frame rule to add aR 4w r4 to the Hoare triple theorem i2 to get the Hoare triple

theorem i′2 (as shown in Figure 4.5);

3. Instantiate the value of p to p+ 4w, and r3 to r4 in the Hoare triple theorem i′2 to get the

Hoare triple theorem i′′2;

4. Apply Compose rule to Hoare triple theorems i′1, i′′2 to obtain the Hoare triple theorem in

Figure 4.6.
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` SPEC ARM_MODEL

(aR 2w r2 ∗ aR 3w r3 ∗ aR 4w r4 ∗ aPC p) {(p,0xE1A03004w “mov r3, r4”)}
(aR 2w r2 ∗ aR 3w r4 ∗ aR 4w r4 ∗ aPC (p+4w))

` SPEC ARM_MODEL

(aR 2w r2 ∗ aR 3w r3 ∗ aR 4w r4 ∗ aPC p) {(p,0xE2432010w “sub r2, r3, #16”)}
(aR 2w (r3−16w) ∗ aR 3w r3 ∗ aR 4w r4 ∗ aPC (p+4w))

Figure 4.5. Hoare triples for individual instructions after applying Frame rule, but before applying Compose rule.

` SPEC ARM_MODEL

(aR 3w r3 ∗ aR 4w r4 ∗ aPC p ∗ aR 2w r2)

{(p,0xE1A03004w “mov r3, r4”);(p+4w,0xE2432010w “sub r2, r3, #16”)}
(aR 2w (r4−16w) ∗ aR 3w r4 ∗ aPC (p+8w) ∗ aR 4w r4)

Figure 4.6. Composed Hoare triple theorem.

The pre-composition tactic prepares two suitable Hoare triples for reasoning about the effects

of code on the same pre-state (i.e. pre-state of the first Hoare triple) by placing them in the same

context (i.e. describing the effects of the code in both triples in terms of the pre-state variables of

the first Hoare triple). Later, in §5.3, we will explain (i) how our local reasoning process for proving

safety assertions is based on the pre-composition tactic described above, and (ii) how we can use

global information in the pre-composition tactic to introduce global context to a Hoare triple for

proving safety assertions.

4.1.4 Other Hoare Logic Rules

g⇒ SPEC x p c r
SPEC x (p ∗ cond g) c q

SPEC_MOVE_COND

SPEC x (p ∗ cond g) c q
SPEC x (p ∗ cond g) c (q ∗ cond g)

SPEC_DUPLICATE_COND

Figure 4.7. Additional rules that have been proved in the Hoare logic in the Cambridge ARM model for manipulating
pure boolean conditions.
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Next, we describe some of the additional Hoare logic rules in the Cambridge ARM model that

are relevant to our logic approach, as shown in Figure 4.7.

The first rule, SPEC_MOVE_COND, illustrates the relationship between pure boolean assertions

(i.e., that mention only variables, but do not directly mention any machine state) in the pre-state of

a Hoare triple, as marked by the “cond” syntactic label, and the hypotheses of the theorem. The

SPEC_MOVE_COND rule makes explicit that pure boolean assertions “g” enclosed by the syntactic

label “cond” in a Hoare triple are hypotheses of the Hoare triple.

The second rule, SPEC_DUPLICATE_COND, shows that pure boolean assertions that have been

assumed to hold in the pre-state of the Hoare triple will still be assumed to hold in the post-state

of the Hoare triple, because pure boolean assertions mention only variables but do not mention

any machine state. The SPEC_DUPLICATE_COND rule appears counter-intuitive compared to typical

Hoare logics, which use symbolic variables to directly represent the values of machine resources

that are asserted. For instance, in a typical Hoare logic, the symbolic variable “r2” would represent

the value held in register r2, and an instruction (with mnemonic) such as “add r2,r2,#1” would

result in a post-state of “r2 := r2 + 1”. However, in the Hoare logic of the Cambridge ARM model

[31], the values held in machine resources are asserted using an assertion relation, such as “aR”

for registers, “aMEMORY” for memory, and “aS” for status registers. Then, for the “add r2,r2,#1”

instruction, the pre-state assertion for the value of register r2 would be “ar 2w r2”, while the post-

state assertion would be “ar 2w (r2 + 1w)”. Hence, symbolic variables in Hoare triples in the

Cambridge ARM model are implicitly single static assignment (SSA) variables that are effectively

initialized in the pre-state of each Hoare triple theorem. This is the key intuition that enables the

SPEC_DUPLICATE_COND rule to work.

4.2 Design: The LLR Program Logic

Next, we describe the design of the LLR logic for reasoning about safety properties in ARM

machine-code programs, that enables the automated generation of proofs, and we discuss the ra-

tionale behind our design decisions. Our program logic needs to fulfill three tasks:

1. Specify safety assertions for each instruction: A safety assertion of an instruction specifies

the conditions that must be true before the instruction is executed for our safety properties to

hold.
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2. Ensure that the Hoare triple theorems for every instruction contain safety assertions, as intro-

duced using pure boolean assertions in “cond” in the pre-state of the theorem.

3. Define, formally, the requirements for a program to possess our desired safety properties.

SPEC x (cond(ms∧ cfi1∧ cfi2)∗p){(offset, ins)}q
MEMCFISAFE x ((MCSAt offset ms cfi1 cfi2)∗ p) {(offset, ins)} q

MEM_CFI_SAFE

MEMCFISAFE x p c1 q MEMCFISAFE x q c2 r
MEMCFISAFE x p (c1;c2) r

MEM_CFI_SAFE_COMPOSE

MEMCFISAFE x p c q
MEMCFISAFE x (p∗ r) c (q∗ r)

MEMCFISAFE_FRAME

Figure 4.8. Logic rules for LLR. ms,cfi1,cfi2,cfi3 are safety assertions for memory and control-flow isolation respectively.
MCSAt is a syntactic label to group safety assertions.

4.2.1 Individual Instructions: Safety Assertion Specification

Figure 4.8 shows the MEM_CFI_SAFE rule for augmenting the Hoare triple theorem of a single in-

struction with its safety assertion (i.e., predicates ms, c f i1, c f i2 that capture our CFI safety proper-

ties as presented in §3.1.2) by including it as an assumption in the pre-state of the theorem using

the “cond” relation. This rule overcomes the challenge of reasoning about safety properties at ev-

ery instruction using Hoare logic. We add our safety assertions as a pure boolean condition to the

pre-state of an instruction’s Hoare triple. Then, when the Compose rule (§4.1.2) is applied to com-

pose theorems of multiple instructions, the pre-states of successor instructions (q in the Compose

rule) will be hidden, thus hiding our augmented safety assertions. Also, safety assertions that hold

can be simplified to true and eliminated from the Hoare triple. Thus, for a Hoare triple describ-

ing a sequence of instructions, we cannot tell if the theorem contains safety assertions for every

instruction.

The MEM_CFI_SAFE rule overcomes this challenge by ensuring that the Hoare triple for ev-

ery instruction has been augmented with its safety assertions. This rule has two features. First,

MEM_CFI_SAFE can be instantiated only from single instruction Hoare SPEC theorems, because code

c in the SPEC theorem in the rule antecedent admits only a single instruction with the machine word

ins located at address offset. The second rule, which generates the safe MEMCFISAFE theorem,

MEM_CFI_SAFE_COMPOSE, does not admit Hoare triple SPEC theorems, and only allows the compo-

sition of MEMCFISAFE theorems. Second, the MEM_CFI_SAFE rule can be instantiated only when the
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pre-state is augmented with our safety assertion (as given by the safety properties for CFI presented

in §3.1.2), the pure boolean conjunction, ms∧ c f i1 ∧ c f i2, in its pre-state. Thus, the MEMCFISAFE

relation indicates the resulting Hoare triple has been augmented with our safety assertion in its in-

struction pre-state. MCSAt is a syntactic relation that associates our safety assertion, ms∧c f i1∧c f i2,

with the address offset which the assertion applies to. We also add the safety assertions ms, c f i1,

c f i2 to the hypotheses of the theorem, to indicate that they are undischarged.

Safe instruction semantics are sound. Our safe instruction semantics, in the form of MEMCFISAFE

theorems, are a special form of Hoare triple theorems. They are augmented to ensure that every

instruction described in an MEMCFISAFE theorem has an associated safety assertion, added to it as

a pure boolean condition in the pre-state of the instruction’s theorem. We proved the following

theorem: ` ∀x p c q · MEMCFISAFE x p c q ⇒ SPEC x p c q. Informally, this theorem means

that our safety-augmented Hoare triple theorems retain a direct correspondence to the Hoare triple

theorems proven by the Cambridge ARM model. Hence, our safe instruction semantics inherits the

soundness of the Cambridge ARM model.

4.2.2 Sequential Code Blocks

Next, we describe how we obtain safety-augmented Hoare triple theorems for basic blocks of

sequential code (which we refer to as safe basic block theorems). A basic block is a se-

quence of instructions which execute sequentially, with a single entry instruction and a single

exit instruction. The two rules (Fig. 4.8) we need for building safe basic block theorems are

MEM_CFI_SAFE_COMPOSE, and MEMCFISAFE_FRAME (proved using the Frame rule in separation

logic). These two rules allow us to inductively build up a safe basic block theorem from safety

theorems for individual instructions. The process of building up a safety theorem for a basic block

of sequential code is the same as that of composing Hoare triple theorems (§4.1.2), except that only

safety-augmented Hoare triple theorems can be composed. This process is repeated recursively for

every instruction in a basic block to obtain a single safe theorem for the basic block. Our safe basic

block theorems have the same semantics as Cambridge ARM Hoare triples, as proved in §4.2.1.
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` FUN_SAFE(addr,NODES,FUNCS,CFGpred,CFGsucc, ICFGcallpred, ICFGcallsucc,

ICFGretpred, ICFGretsucc,assnsentry,postcondexit,prestate,poststate)⇔
( (∀node ·node ∈ NODES⇒ (min(node,addr) = addr))

∧ (∀min ·min ∈ NODES⇒ (CFGpred(min) = /0∧ ICFGcallpred(min) = /0∧ ICFGretpred(min) = /0)

⇒ (∀node · (node ∈ NODES⇒ node 6= min)⇒ (min(node,min) = min))

⇒∃pd1,x,c1,p1,q1 ·HOARE_WITH_ASSERT(pd1,assnsentry,min,node,x,c1,p1,q1)∧
(prestate = aPC min∗p1))

∧ (∀out ·out ∈ NODES⇒ (CFGsucc(out) = /0)

⇒ (∀funcnode · (funcnode ∈ FUNCS⇒ out 6∈ ICFGcallsucc(funcnode)))

⇒∃pd1,assn1,node,x,c1,p1,q1 ·HOARE_WITH_ASSERT(pd1,assn1,out,node,x,c1,p1,q1)∧
(poststate = q1)∧ (pd1⇒ postcondexit))

∧ (∀node,pred,succ ·
(node ∈ NODES)⇒
(pred ∈ CFGpred(node))⇒
((succ ∈ CFGsucc(node))∨ (succ ∈ ICFGcallpred(node)))⇒

∃pd1,assn1,x,c1,p,q,pd2,assn2,c2,r ·
HOARE_WITH_ASSERT(pd1,assn1,pred,node,x,c1,p,q)∧
HOARE_WITH_ASSERT(pd2,assn2,node,succ,x,c2,q,r)∧ (pd1⇒ assn2))

∧ (∀node,succ ·node ∈ ICFGcallsucc(succ)⇒ succ ∈ ICFGcallpred(node)⇒
∃pd1,assn1,x,c1,p,q,nodes, funcs,cfg1,cfg2,cfg3,cfg4,cfg5,cfg6,assn2,pd2,r ·
HOARE_WITH_ASSERT(pd1,assn1,node,succ,x,c1,p,q)∧
FUN_SAFE(succ,nodes, funcs,cfg1,cfg2,cfg3,cfg4,cfg5,cfg6,assn2,pd2,q,r)∧ (pd1⇒ assn2))

∧ (∀node,pred,succ ·
(node ∈ ICFGretsucc(pred))⇒
(pred ∈ ICFGretpred(node))⇒
((succ ∈ CFGsucc(node))∨ (succ ∈ ICFGcallpred(node)))⇒

∃pd1,assn1,x,c2,p,q,pd2,assn2,r,nodes, funcs,cfg1,cfg2,cfg3,cfg4,cfg5,cfg6 ·
FUN_SAFE(pred,nodes, f uncs,cfg1,cfg2,cfg3,cfg4,cfg5,cfg6,assn1,pd1,p,q)∧
HOARE_WITH_ASSERT(pd2,assn2,node,succ,x,c2,q,r)∧ (pd1⇒ assn2)) )

Figure 4.9. FSI rule: Judgment for Interprocedural Function Safety

4.2.3 Function Judgment for Local Reasoning

Global vs. Local Reasoning

In a typical correctness proof for a program using Hoare logic, we would repeatedly apply the

Compose rule to the Hoare triple for every instruction in the program to obtain a single Hoare

triple describing the entire program. This is a “global reasoning” process which identifies the final

values of all registers, main memory, etc. at the end of the program’s execution. In the presence of

loops and function calls, loop invariants and pre- and post-conditions for functions will need to be

manually provided.
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For safety assertions to hold in a program, we only need to ensure that the safety assertions for

each instruction hold locally at that instruction. For the safety assertions at instruction i2 to hold,

we consider every instruction i1 that can execute immediately before i2. The machine-resource

values in the post-state of each i1 must satisfy the safety assertions at i2. This is analogous to

the pre-composition process (§4.1.2). As long as the machine-resource values in the post-states

of predecessor instructions i1 enable the safety assertion at i2 to be true, the safety assertion holds.

Also, any pure boolean condition from the post-state of predecessor instructions i1 will also apply to

the pre-state of instruction i2. Hence, safety properties hold on a per-instruction basis. To check if a

safety assertion holds for an instruction i1, we only need to perform “local reasoning” by considering

the post-state and boolean conditions of all predecessor instructions of the instruction i1.

Safe Function Judgment

We define the FUN_SAFE rule (Fig. 4.9). The purpose of this rule is to encode the requirements for

our safety properties that imply CFI to hold at every instruction in a machine-code program. Note

that while the FUN_SAFE rule states that our safety properties for CFI hold for every instruction

of a program, it does not directly prove that the program possesses CFI. To formally prove that a

program possesses CFI, in addition to proving the FUN_SAFE theorem for the program, we need to

prove that our safety properties imply CFI, although it is not in the scope of this dissertation.

Informally speaking, the FUN_SAFE rule encodes what it means for a function to be safe. This

rule encodes our “local reasoning” process for verifying that safety assertions hold. Thus, proving

that the machine-code of a given function is safe involves proving that the FUN_SAFE theorem holds

for the function.

First, we rearrange MEMCFISAFE theorems to form HOARE_WITH_ASSERT theorems, which make

explicit the hypotheses (i.e., undischarged safety assertions) of the theorems, and rearrange machine

resource expressions into tuples for pattern-matching.

` HOARE_WITH_ASSERT(pd,assn, pcpre, pcpost ,x,c, p,q)⇔
(assn⇒ (MEMCFISAFE x (aPC pcpre ∗ p ∗ precond pd) c (aPC pcpost ∗ q)))

Figure 4.10. HOARE_WITH_ASSERT rule for rearranging MEMCFISAFE safety-augmented Hoare triples into a form that
can be pattern-matched against.
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A function is comprised of basic blocks of instructions in the function. In a function’s intra-

procedural control-flow graph (CFG), nodes are basic blocks of the function’s instructions, while

edges are control transfers within the function. In a function’s inter-procedural CFG, the nodes are

(i) basic blocks that call other functions, (ii) basic blocks that are return-sites from callee functions,

and (iii) callee functions, while edges are function calls or returns. To formally specify the require-

ments for a function to be safe, we consider the safety assertions that must be discharged at each

edge in both the intra- and inter-procedural CFGs. We walk through each of the 6 conjunct clauses

in the FSI rule in Figure 4.9.

Arguments to the FUN_SAFE relation

The FUN_SAFE relation is parameterized by the function address addr, a set of addresses of ba-

sic blocks in the function NODES, a set of addresses of callee functions FUNCS, and 6 maps

CFG and ICFG specifying the predecessors and successors of edges in the function’s intra- and

inter-procedural CFGs. FUN_SAFE also records, for a function, the safety assertions assnsentry, the

conditions that hold at its exit postcondexit , and the machine resource pre-state prestate and post-

state poststate. These maps of CFG predecessors and successors are explicitly stated in the final

FUN_SAFE theorem proved, and can be directly inspected to ensure they correspond to the input

program.

Function entry and exit specifications

The first clause states that the address of the function is the lowest basic block address for the

function. While this may not be true in general, we assume that this is the case for our input

programs, and our assumption has been borne out by our gcc-generated machine-code programs.

The second clause states that the safety assertions assnsentry and pre-state prestate of the function

are specified by the entry basic-block of the function. The third clause states that the function’s

guaranteed exit condition postcondexit and post-state poststate are specified by the exit basic-block

of the function.

Intra-procedural safety requirements

The fourth clause specifies that for each intra-procedural CFG edge, the safety assertions of the in-

struction at the destination of each edge must be discharged by the post-condition of the instruction
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at the source of the edge, i.e., (pd1⇒ assn2), where pd1 represents the pre-condition of the prede-

cessor CFG node along some CFG edge, and assn2 represents the safety assertion of the successor

CFG node along the same CFG edge. Also, in the spirit of the Hoare Compose rule, we require that

the post-state of the predecessor instruction q, is equal to the pre-state of the successor instruction.

This ensures that when we reason about two CFG nodes that are connected by a single edge in the

CFG, the post-state of the predecessor node exactly matches the pre-state of the successor node, and

is line with typical Compose rules in Hoare logics [132, 31], enabling us to describe sequentially

executed pieces of code (albeit without actually producing a final “composed” theorem for the two

composed code fragments).

Inter-procedural safety requirements

The fifth and sixth clauses specify the requirements for inter-procedural CFG edges. The fifth

clause specifies that for call edges, the safety assertions of the called function must be discharged

by the post-condition of the calling basic block (pd1⇒ assn2). The sixth clause specifies that for

return edges, the safety assertions of the basic block which is the return site for the function must

be discharged by the post-condition of the returning function (pd1 ⇒ assn2). In both clauses, we

require that the post-state of the predecessor node must be equal to the pre-state of the successor

node.

Compositional reasoning for functions

Although the FSI rule appears to be recursively defined without a base case, this rule actually

collapses to include only the first four clauses for functions that do not call any other functions.

This implies that our safety property proofs require the CFG of the program to have no cycles, i.e.

we are unable to analyze programs that have recursive function calls.

4.2.4 Safety Theorem for a Program

Thus, a safety proof for a program consists of a FUN_SAFE theorem for the entry function of the

program, as constructed from the FUN_SAFE rule. The FUN_SAFE theorem for each function then

requires MEMCFISAFE theorems for each of its basic blocks, as constructed using the MEM_CFI_SAFE

rule for individual instructions, and the MEM_CFI_SAFE_COMPOSE rule for basic blocks. The con-

struction of the FUN_SAFE theorem for each function F also requires FUN_SAFE theorems to be

available for each callee function called in the function F .
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While the top-level safety proof for a program consists of just the FUN_SAFE theorem for its

entry function, the safety proof comprises safety theorems for all the functions reachable from the

program’s entry function, as well as safety theorems for all the instructions and basic blocks (i.e.,

MEMCFISAFE theorems) in the program that are reachable from the entry function of the program.

4.3 Provability of CFI in Machine-code for Source-code-Enforced CFI
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Figure 4.11. How PCFIRE-C’s prescribed source-code safety-checks yield machine-code programs whose CFI can be
proved using LLR. BB1 and BB2 represent basic block addresses.

Next, we describe how the source-code safety-checks prescribed by our PCFIRE-C tool (§3.2)

result in CFI that can be automatically proved at the machine-code level using the LLR program

logic presented in this chapter.

First, in our logic approach, the CFI safety properties to be proved at each instruction (as defined

in §3.1.2) are instantiated at each instruction’s Hoare triple theorem as assertions to be proved. Then,

a proof search is carried out at the intra- and inter-procedural level (described later in §5.1): for each

basic block, the proof automation algorithm in AUSPICE checks if the CFI safety assertions at every
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instruction in each basic block can be discharged given the pre-conditions of all its predecessor basic

blocks, as illustrated in Figure 4.11(a).

Second, for C statements (and their corresponding compiled instructions) with potentially un-

safe operations, in the absence of our safety-checks as prescribed by PCFIRE-C, the Hoare triples

for these instructions and their basic blocks will have safety assertions that cannot be automatically

discharged by its predecessor blocks, leading to a failure in the safety proof, as illustrated in Figure

4.11(b).

With the prescribed safety-checks from PCFIRE-C inserted, the (recompiled) machine-code at

the predecessor blocks of each potentially unsafe instruction will now have the post-conditions (or

equivalently, preconds, by using the SPEC_DUPLICATE_COND rule as described in §4.1.4) sufficient

to imply that the safety assertions at each unsafe instructions’ Hoare triples hold. This is because:

(A) the memory-address checks in PCFIRE-C’s prescribed safety-checks have bounds values that

match the bounds that are instantiated in Properties 1 and 2 of the LLR-instantiated safety assertions,

and (B) the logic expressions for the checked and written addresses in (i) the safety-check, and (ii)

the suspect C statement, are the same in the machine-code Hoare triples, as our construction uses

the same C expression in (i) the LHS of each safety-check, and in (ii) the LHS of the memory

address written to in each suspect statement. This in turn enables the CFI safety proof to succeed.

This is illustrated in Figure 4.11(c). Note that our prescribed safety-checks at the C level must

be carefully constructed to enable our machine-code safety proof to succeed, and we discuss these

considerations in our prescribed safety-checks in §8.3.

To recap, the safety-checks prescribed by PCFIRE-C are constructed based on the CFI safety

properties that are: (i) defined in §3.1.2, and (ii) instantiated as safety assertions at each instruction

in LLR. Hence, we construct the source-code safety-checks in PCFIRE-C such that when compiled

to machine-code, the Hoare triples of the machine-code of the source-code safety-checks provide

exactly the logic post-conditions (or equivalently, preconds, as explained above) needed to dis-

charge the safety assertions at unsafe instructions (as compiled from suspect statements).

4.4 Discussion: Soundness and Correctness of Proof Rules

4.4.1 Soundness of Proof Rules

The proof rules in LLR for single instruction (§4.2.1) and basic block (§4.2.2) safety are sound,

because we derive our MEM_CFI_SAFE, MEM_CFI_SAFE_COMPOSE, and MEMCFISAFE_FRAME proof



CHAPTER 4. PROGRAM LOGIC FOR MACHINE-CODE SAFETY-PROPERTY PROOFS 78

rules from the proof rules in the Cambridge ARM model, which Myreen et al. have shown to

be sound [31]. Also, using the HOL4 proof assistant to define our proof rules further ensures

they are sound, as our proof rules are proved and admitted as theorems in HOL4. In addition,

we proved (§4.2.1) that safe single instruction and basic block theorems in LLR derived from our

proof rules have the same instruction semantics as the ARM machine-code semantics defined by the

trustworthy, validated Cambridge ARM model [131, 32].

4.4.2 Correctness of Safety Rule

Next, we give a brief, informal argument of the correctness of our proof rule for safe programs.

The FUN_SAFE theorem (Figure 4.9) can be proven for a program if and only if safety assertions

are specified for every instruction, and if these safety assertions hold before that instruction begins

executing (except for the first instruction, which relies on the OS to correctly initialize the processor

state for the program). We argue this by Structural Induction on the Control-Flow Graph (CFG) of

a program. The CFG of a function in a program consists of nodes and edges. Each node represents

either (i) a basic block of a linear sequence of instructions (whose control can transfer out of the

basic block only at the end of the basic block) in the function at a given address, or (ii) a callee

function that is invoked in the function. Then, an edge in the CFG represents a transfer of control

from one node in the CFG (which can be a basic block in the function, or a callee function), to

another node in the CFG. A callee function node is associated with a single FUN_SAFE theorem

which specifies the safety of the callee function. A basic block node (in the function) is associated

with one HOARE_WITH_ASSERT triple for each possible target that control can transfer to after the

basic block has been executed. Thus, for safety to hold at each CFG node, the safety-assertions at

all associated FUN_SAFE or HOARE_WITH_ASSERT theorems for that node must be discharged by the

pre-conditions of all the associated FUN_SAFE or HOARE_WITH_ASSERT theorems for all predecessor

nodes of the node.

Base Case. The MEM_CFI_SAFE rule (§3.1 in [128]) ensures every instruction’s theorem contains

our safety assertions (§2.2 in [128]). The MEM_CFI_SAFE_COMPOSE rule ensures every basic block’s

theorem is built up only from single-instruction theorems with added safety assertions. The require-

ment that post-states of predecessor theorems and pre-states of successor theorems must be equal

in MEM_CFI_SAFE_COMPOSE ensures every basic block’s theorem accumulates the safety assertions

for every composed safe instruction theorem. Then, for a program with only a single instruction or
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basic-block, if the OS correctly initializes the processor state, the safety assertions will hold for the

single instruction or single basic block.

Inductive Case. We take the CFG of a function, G, and partition its vertices into a single vertex, g,

and all other vertices, G′. By the Inductive Hypothesis, the FUN_SAFE theorem holds for G′. Then,

consider the edges E connecting G′ to g. In the absence of function pointers and unstructured jumps

(longjmp), the edges E are either (i) intra-procedural control-flow transfers between basic blocks

in the function, (ii) function calls from a basic block in the function to a callee function, or (iii)

function returns from a callee function to a basic block in the function.

Then, for FUN_SAFE to be true, the fourth to sixth conjunct clauses of the FUN_SAFE rule must

be true. We will see how the 4th to 6th conjuncts cover all possible types of control-flows to and

from the node g, so that the pre-conditions of the theorems of all predecessor vertices to g in the

CFG discharge the safety assertions at g, making the safety assertions at g hold, for any type of

possible control-flow transfer to g for all FUN_SAFE or HOARE_WITH_ASSERT theorems associated

with g.

In the case of intra-procedural control-flow transfers to g, where g is a basic block within the

function being analyzed, g is associated with one HOARE_WITH_ASSERT triple for each possible

control-transfer target from node g. These targets can either be intra-procedural targets (i.e., the

successor node to g is a basic block within the function), or inter-procedural targets (i.e, the suc-

cessor node to g is a callee function outside the function). The 2nd precedent of the 4th conjunct,

∀pred · pred ∈ CFGpred(node) ensures all predecessors to g are considered. The 1st disjunct of

the 3rd precedent, ∀succ · succ ∈ CFG_succ(node) ensures all possible intra-procedural successor

nodes to g are considered. The 2nd disjunct of the 3rd precedent, ∀succ · succ ∈ ICFGcallpred(node)

ensures all possible inter-procedural successor nodes to g (i.e., callee functions jumped to after g)

are considered. Thus, all possible predecessors to the CFG node g are considered, and all possible

control-transfer targets from CFG node g are considered.

In the case of inter-procedural control-flow function-calls to g (i.e., g is a callee function, as in

the 5th conjunct), FUN_SAFE theorems for callee functions g are indexed only by the address of the

function, but not by the address of the return-site from the function. Hence, we only need to consider

all call-sites of the function. The two precedents in the 5th conjunct (i.e., ∀node,succ · node ∈

ICFGcallsucc(succ)⇒ succ ∈ ICFGcallpred(node)) ensure that all call-sites within the function to the

callee function are considered.

In the case of inter-procedural control-flow function-returns to g (i.e., g is a basic block within
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the function, as in the 6th conjunct, and its predecessor is a callee function), the first two precedents

of the 6th conjunct, ∀node,pred ·node ∈ ICFGretsucc(pred)⇒ pred ∈ ICFGretpred(node), ensure that

the function from which control is returned to node g is considered. Then, the two disjuncts in

the 3rd precedent, succ ∈ CFGsucc(node)∨ succ ∈ ICFGcallpred(node), ensure respectively that the

HOARE_WITH_ASSERT triples for (i) all possible intra-procedural successor nodes to g, and that (ii)

all possible inter-procedural successor nodes to g, are considered.

Thus, our FUN_SAFE rule ensures that we have captured all the possible control-flow transfers

in a machine-code program. For FUN_SAFE to be correct, we require correct CFG predecessor and

successor maps, which are straightforward to compute without function pointers and unstructured

jumps.

4.5 Summary

This chapter described the LLR program logic that we developed in this dissertation [128] for rea-

soning about safety-properties in machine-code programs. The LLR program logic is formalized in

Higher Order Logic, and mechanized in the HOL4 proof assistant. It forms the foundation of the

logic approach in this dissertation, and has been designed to enable the proof automation techniques

that we will discuss next in §5.

We began by describing the Cambridge ARM model [131, 32, 31], which LLR builds on. First,

we make use of the semantics of individual instructions from the Cambridge model. Then, we

described the logic rules in LLR for single-instruction (MEM_CFI_SAFE) and basic block safety

(MEM_CFI_SAFE_COMPOSE) for ensuring that desired safety properties are asserted at every instruc-

tion. Next, we described the logic rule for whole-program safety at the function level (FUN_SAFE)

that enables “local-reasoning” for safety properties at each program point, without requiring a

whole-program proof that would require (manually specified) loop invariants and other inputs. The

FUN_SAFE rule is the key building block of our proof automation in the AUSPICE framework (§5).

Then, we described how we can use the LLR program logic that we developed to automat-

ically prove safety properties for machine-code programs, whose safety-checks were inserted at

the source-code level based on the prescriptions generated by our PCFIRE-C tool (§3.2). This is

because both the construction of the source-code safety-checks and the instantiation of the machine-

code safety assertions are based on the same set of safety properties as defined in §3.1. In addition,

the same source-code expressions are used for the memory address being checked in each safety-
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check, and for the memory address being written to. Also, the bounds values for each safety-check

match the safe address ranges as specified by our safety properties.

We also discussed the soundness and correctness of the FUN_SAFE rule for ensuring that the

safety properties we defined in §3 hold. We gave a brief argument of the soundness of our proof rules

based on the soundness of the Cambridge ARM model and the HOL4 prover, and we constructed a

sketch of the proof of correctness of the FUN_SAFE rule for ensuring that our safety properties hold.

This in turn ensures that our safety proofs imply that CFI holds, based on our argument in §3.



Chapter 5

Automation of Safety-Property Proofs

This chapter describes how safety-property proofs in the LLR program logic can be automated in

our AUSPICE framework [128], which provides the logic approach in this dissertation. We first

describe the overall proof automation workflow in AUSPICE (§5.1). Next, we describe how safety

properties can be automatically specified at the single-instruction level (§5.2). Then, we describe

the Selective Composition proof tactic, which is an important building block for the automated

proof generation in AUSPICE (§5.3). Next, we describe the process by which safety property proof

obligations are automatically discharged in AUSPICE using abstract interpretation (§5.4). Finally,

we discuss a number of auxiliary challenges with automating our safety-property proofs, and how

we overcame these challenges (§5.5).

5.1 Proof Automation Framework

We begin by describing the overall implementation of our automatic safety property proof gener-

ation workflow in our AUSPICE framework. AUSPICE consists of 128 lines of HOL4 definitions

and 11.8 KLOC of proof scripts in ML. Algorithm 5.1 summarizes the overall workflow of the AUS-

PICE safety property proof process. First, AUSPICE constructs basic blocks and extracts function

boundaries from the machine-code of the program (Line 12). Next, AUSPICE obtains the Hoare

triple theorems from the Cambridge ARM model for each machine-code instruction (Line 13), adds

safety assertions to the Hoare triple theorem for each instruction (§5.2), and composes the individ-

ual instructions’ theorems into a single Safe Basic Block theorem for each basic block (Line 15)

using the MEM_CFI_SAFE_COMPOSE rule (§4.2.2).

AUSPICE’s proof process takes place on a per-function basis beginning from the entry-function

of the program. For each function, all callee functions called by that function are analyzed before the

82
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function itself is analyzed (Line 3). Next, AUSPICE applies the Selective Composition tactic (§5.3)

to the safe basic block theorems to propagate branch conditions and function prologue information

to the appropriate theorems for the function (Lines 4 and 5). The main process for discharging

safety proof obligations is the SafetyAssertionAnalysis function (Line 6), which implements

the proof search process using abstract interpretation [134] (§5.4). Then, the results of this analysis

are applied to each of the basic blocks’ theorems, and the FSI_rule function (Line 8) generates the

FUN_SAFE safety theorem for the target function being proved to be safe.

We discuss a number of auxiliary challenges encountered in the workflow of AUSPICE as well. In

§5.5.1, we discuss how we support reasoning for machine-code compiled from switch statements,

as handled in CambridgeARM_GetInstrModel (Line 13). In §5.5.2, we discuss how the FSI_rule

(Line 8) for generating safe function theorems performs “memory reconciliation” to support our

local use of global information (§5.3.2).

Algorithm 5.1 Overall AUSPICE Workflow
1: function SAFEFUNCTIONANALYSIS(function_name,bb_safe_thms list)
2: (cfg, func)←∀i ∈ bb_safe_thms · COMPUTECFGANDCALLEES(i) . Compute

Control-Flow Graph for function_name
3: func_safe←∀callee ∈ func · SAFEFUNCTIONANALYSIS(callee,bb_safe_thms)
4: bb_safe_thms← SC-FWDPROPAGATE-BRANCHCONDS(bb_safe_thms, cfg)
5: bb_safe_thms← SC-FWDPROPAGATE-FUNCPROLOGUE(bb_safe_thms, cfg)
6: assertion_info← SAFETYASSERTIONANALYSIS(bb_safe_thms, func_safe, cfg)
7: bb_safe_thms← AUGMENTTHEOREMS(bb_safe_thms, func_safe, assertion_info)
8: safety_theorem← FSI_RULE(bb_safe_thms, func_safe, cfg)
9: return safety_theorem

10: end function
11: function AUSPICE((addr, instr) list) . List of machine-code instructions
12: (bb list)← COMPUTEBASICBLOCKS(instr) . Compute basic blocks in program
13: (bb_instr_thms list)←∀instr · CAMBRIDGEARM_GETINSTRMODEL(instr) . Obtain

Hoare triple theorem for each instr in each bb
14: (bb_safe_instr_thms list)← map (λx.ADDSAFETYASSERTIONS(x)) bb_instr_thms
15: bb_safe_thms← map (λx.COMPOSESAFEINSTRS(x)) bb_safe_instr_thms
16: return SAFEFUNCTIONANALYSIS(main,bb_safe_thms)
17: end function
18: AUSPICE(program)

5.2 Automatic Safety Property Specification

To illustrate the safety assertions we augment instructions with, consider the instruction word

0xE5832000 (“str r2 [r3]”) located at address 0x81E0. We first obtain the following Hoare
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logic theorem from the decompiler as shown in Figure 5.1.

` SPEC ARM_MODEL

(aR 3w r3 ∗ aR 2w r2 ∗ aPC (0x81E0) ∗aMEMORY df f ∗
cond((r3 && 3w= 0w)∧ (r3 ∈ d f )))

{(0x81E0,0xE5832000w)}
(aR 3w r3 ∗ aR 2w r2 ∗ aPC (0x81E4) ∗ aMEMORY df ((r37→r2) f ))

Figure 5.1. Hoare triple theorem for instruction in proof automation example.

Suppose the text section of this program lies in the range [0x80B4,0x85F4]. This instruction

writes to the byte locations r3,r3+ 1,r3+ 2,r3+ 3. Thus, we set the first conjunct in the safety

assertion ms to {r3+3;r3+2;r3+1;r3} ⊆ {addr | 0x85F8≤ addr∧addr ≤ 0xBF000000}

which asserts that the memory locations written to are in our allowed safe region.

Then, the first control-flow safety conjunct, c f i1 is set to ∃pc.pc = 0x81E4 ∧ pc ∈

{addr | 0x80B4≤ addr∧addr ≤ 0x85F4}, which asserts that the address of the next instruction

to be executed lies in the text section of the binary. Next, the second control-flow safety conjunct,

c f i2 is set to {r3+3;r3+2;r3+1;r3} ⊆ {addr | addr < r11}, which asserts that the memory

locations written to cannot overwrite the saved link register (lr, stored in register r11) value on the

stack.

5.3 Selective Composition Proof Tactic

blk1

blk2

...

str r2, [r3]

...

blk3

blk4

blk5

blk6

blk7

r3 <= MAX_SAFE_MEM

r3 >= MIN_SAFE_MEM

r11 >= 0

r3 < r11

Figure 5.2. Possible structure for program with safe “str r2 [r3]”.
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Next, we discuss the steps for automatically proving that safety properties hold using LLR.

After augmenting single instruction theorems with safety assertions (§4.2.1) and obtaining safe

basic block theorems (§4.2.2), we need to prove that the antecedents in the FSI rule (Figure 4.9)

hold. Each of the top-level conjuncts of FSI requires either a HOARE_WITH_ASSERT theorem for safe

basic blocks or a FUN_SAFE theorem for safe functions. We also need to prove that the pre-condition

pd1 of each predecessor CFG node discharges the safety assertion assn2 in the successor CFG node.

The Selective Composition proof tactic prepares our HOARE_WITH_ASSERT and FUN_SAFE the-

orems for our proof automation process. This proof tactic is used in two modes: (i) to carry out

forward propagation of branch-conditions from compound if-statements whose if conditions con-

tain a conjunction of multiple simple logical conditions, and (ii) to make global information avail-

able from function prologues available at local nodes in the CFG of a function (and its Hoare triple

theorems). The propagation of information for both branch-conditions and for information from

function prologues needs to be “selective” so as to avoid needing to perform “global” reasoning,

which would impede our proof automation due to the requirement of manually-specified informa-

tion such as loop invariants (§4.2.3).

5.3.1 Forward propagation of branch conditions

From §5.2, we can see that the safety assertion at each instruction contains three conjuncts. In a

safe program, for the theorem of a given instruction i2, its predecessor (safe basic block or function)

theorem i1 should have a pre-condition that implies that the safety assertion of i2 holds. Observe

that the safety assertion for each instruction has three conjuncts, and each of the range conjuncts

(ms and c f i1 in §5.2) is specified by two conjuncts: one each for the lower and upper bounds of the

valid memory locations written to. Thus, the safety assertion at each instruction comprises multiple

conjuncts. However, in a machine-code program, each basic block can only carry out one of the

“elementary” arithmetic comparison operations (one of <, >, ≤, ≥, etc.), because each cmp* in-

struction is a branch and will mark the end of the basic block it belongs to. Hence, information from

multiple predecessor basic blocks is required to discharge the safety assertion at each instruction.

In §4.2.3, we noted that we must use a local reasoning process to ensure our proof process

is automatic, because global reasoning would require manually-specified information. However,

our safety assertions contain multiple conjuncts, whereas each basic block in machine-code can

provide only one conjunct in its pre-condition. This is because given a compound condition in

an if-statement (i.e., the if condition comprises multiple conditions that are combined with a



CHAPTER 5. AUTOMATION OF SAFETY-PROPERTY PROOFS 86

Algorithm 5.2 Selective Composition: Branch-condition Forward Propagation
1: function SC-FWDPROPAGATE-BRANCHCONDS(bb_safe_thms list)
2: info map← /0 . Conditions to propagate to each CFG node
3: procedure PROPAGATEONESTEP(info map, last_info map, cfg)
4: for all node ∈ cfg do
5: curr_node_preds← FINDPREDS(cfg,node)
6: pred_preconds← (map (λx.GETTHMPRECONDS(x)) curr_node_preds)
7: last_info_preconds← (map (λx.last_info[x]) curr_node_preds)
8: if length(curr_node_preds) == 1 then
9: info[node] = pred_preconds

⋃
last_info_preconds

10: end if
11: end for
12: end procedure
13: repeat
14: last_info← info
15: info← PROPAGATEONESTEP(info, last_info, cfg)
16: until last_info == info
17: bb_safe_thms′← AUGMENTTHEOREMS(bb_safe_thms,info)
18: return bb_safe_thms′

19: end function

logical operator such as “&&”), each condition is checked using a branching instruction (such as cmp

followed by bhi or bls). As a result, the basic block for that condition is effectively terminated by

the branching instruction. This is as illustrated in Figure 5.2.

To enable our proof process to use pre-conditions from predecessors that are more than one

edge away from a given basic block in the program’s CFG, we selectively “propagate” the pre-

conditions of basic blocks forward. We call this process “selective composition”, where we apply

the pre-composition tactic (§4.1.3) forward to successor theorems under certain conditions.

To illustrate the process of selective composition, consider, for example, the store instruction

“str r2 [r3]”. Figure 5.2 shows the CFG of the possible structure of the basic blocks in a pro-

gram with safety checks to ensure that the store instruction is safe. Then, we need the pre-conditions

from basic blocks blk2,blk3,blk4,blk5 to be available at blk5 to discharge the safety assertion at blk6.

At each of the nodes blk2,blk3,blk4,blk5, there are two Hoare triple theorems: one where each blki

executes blki+1 next (for i∈ {2,3,4,5}), and one where the safety check fails, and each blki goes on

to execute blk7. However, we do not compose blk2,blk3,blk4,blk5 to form a single Hoare triple the-

orem, because the resulting block of code will have multiple exits, which is not captured by our safe

basic block theorem (the MEM_CFI_SAFE_COMPOSE rule), which only admits single-exit blocks. In-

stead, we iteratively apply the pre-composition tactic (§4.1.3) for basic blocks blk2,blk3,blk4,blk5.
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This lets us place the analysis of the machine-code in blocks blk2,blk3,blk4,blk5,blk6 in the con-

text of the pre-state values of machine resources in blk2. This then allows us to discharge the safety

assertion at blk6 with the combined pre-conditions of blk2,blk3,blk4,blk5 at blk5. We call this pro-

cess “selective composition” because we carry out the pre-composition process without applying

the composition rule. Note that this selective composition process succeeds only when the target

basic block which the pre-conditions are being propagated forward to have only one predecessor

basic block. Only then is the pre-condition from the predecessor block blki the only pre-condition

that will apply at the successor block blki+1. Note, also, that this process is enabled by the fact

that symbolic variables in the Hoare logic in the Cambridge ARM model, which LLR builds on, are

effectively single-static assignment (SSA) variables.

Algorithm 5.2 describes the Selective Composition tactic for the forward propagation of branch-

conditions in pseudocode. The tactic uses a fixed-point intra-procedural static-analysis over the

Hoare triple theorems of a function. The static-analysis identifies branch conditions to propagate

forward from each theorem to its successor theorems (Lines 3 to 16; FindPreds returns the pre-

decessors for a given node in the CFG of the function, while GetThmPreconds returns the pre-

conditions for a given Hoare triple theorem). The analysis also ensures that branch-conditions are

propagated forward only when the target node has only one predecessor in the CFG (Line 8). Then,

the tactic uses the results of the static-analysis and adds the required branch conditions to each

theorem using the Frame Rule (Line 17), and returns the augmented theorems.

5.3.2 Local use of global information

Next, we describe the second instance of selective composition. Recall that we require the address

of each instruction executed to be within the text section of the program. The address of the next

instruction to be executed can be statically determined at every point of the program except where

a function returns to its caller. Consider a typical machine-code instruction for returning from a

function call “pop {pc}”. Control is being returned from the function by restoring the saved link

register value from the stack to the program counter. The instruction will be specified by the Hoare

triple theorem shown in Figure 5.3.

Here, “aMEMORY df f” is an assertion that the main memory is represented by the map f which

when applied to an address addr, returns the word stored at addr, and d f is a set specifying the

address domain of f . Thus, in the post-state of this instruction, we can see that the next instruction

to be executed is at address f r13. However, the memory map f does not contain any information
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` SPEC ARM_MODEL

(aPC p ∗ aR 13w r13 ∗ aMEMORY df f )

{(p,0xE8BD8000w “pop {pc}”)}
(aPC (f r13) ∗ aR 13w (r13+4w)∗aMEMORY df f )

Figure 5.3. Hoare triple theorem for instruction that restores saved link register value to the program counter.

that enables us to determine the value of f r13. The return address for a (non-leaf) function is saved

to the stack in the function prologue before any instructions in the function. An example of such an

instruction is “push {lr}”, with the following Hoare triple in Figure 5.4.

` SPEC ARM_MODEL

(aR 14w r14 ∗ aR 13w r13 ∗ aPC p ∗ aMEMORY df f )

{(p,0xE92D4000w “push {lr}”)}
(aR 14w r14 ∗ aR 13w (r13−4w)∗ aPC (p+4w) ∗ aMEMORY df ((r13−4w 7→r14) f ))

Figure 5.4. Hoare triple theorem for instruction in function prologue.

The memory in the post-state of the function prologue is “((r13 - 4w 7→ r14) f)”, which

contains the value of the link register, r14, at the top of the stack, at the address r13 - 4.

Hence, the information we need to discharge the safety assertion at the function exit is the mem-

ory expression at the post-state of the function prologue, and the new value of register r13. Af-

ter substituting the post-state memory and register r13 values of the function prologue into the

return instruction, the program counter in the return instruction post-state will contain ((r13

- 4w 7→ r14) f) (r13 - 4w) which simplifies to r14, and the safety assertion simplifies to

r14 ∈ {addr | 0x85F8≤ addr∧addr≤ 0x85F4}, which can be discharged by any caller of the

function that supplies a concrete value of r14. As long as the prologue precedes every instruc-

tion in the function, and the function does not alter the callee-saved registers until its epilogue, this

substitution is valid. Again, we can use the pre-composition tactic to substitute the value of the

memory (and registers) at the post-state of the function prologue into every subsequent basic block

in the function. Unlike the forward-propagation of branch-conditions, a fixed-point analysis is not

required, and we directly substitute the information from the function prologue into every subse-

quent basic block in the function, before the safety proof obligations are automatically discharged

in AUSPICE’s abstract interpretation.
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5.4 Automatic Discharge of Proof Obligations

There are two ways to discharge the safety assertions of a theorem. First, for a given safety theorem,

the pure boolean conditions of the pre-state of the theorem preceding it may imply that the safety

assertion holds for the current theorem. Second, if the former does not hold, then the safety assertion

is added to the hypotheses of the preceding instruction, and the Frame rule in Hoare logic is used

to add the undischarged assertion to the theorems of the preceding instructions. We use abstract

interpretation [134] to identify safety assertions that cannot be discharged. At each instruction, our

analysis records the safety assertions that need to be framed to the safe instruction theorem for that

instruction.

Algorithm 5.3 Safety Assertion Analysis
1: function SAFETYASSERTIONANALYSIS(bb_safe_thms map, cfg)
2: info map← /0
3: procedure ASSERTIONANALYSISSTEP(info map, last_info map, cfg)
4: for all node ∈ cfg do
5: for all pred ∈ FINDPREDS(cfg, node) do
6: pred_preconds← GETTHMPRECONDS(pred)

⋃
last_info[pred]

7: node_asserts← GETTHMASSERTS(node)
⋃

last_info[node]
8: for all assert ∈ node_asserts do
9: if PROVE(pred_preconds, assert) == False then

10: info.term[pred]← info.term[pred]
⋃

assert
11: a_path← FINDASSERTPATH(last_info.path[node], assert)
12: info.path[pred]← info.path[pred]

⋃
a_path

13: ABORTIFASSERTPATHISCYCLE(a_path)
14: end if
15: end for
16: end for
17: end for
18: end procedure
19: repeat
20: last_info← info; info← ASSERTIONANALYSISSTEP(info, last_info, cfg)
21: until last_info == info
22: return info
23: end function

We use a flow-sensitive backwards fixed-point analysis. Our analysis proceeds across all nodes

in the CFG of a function in reverse topological order in each iteration. Each CFG node is a basic

block in the function, and each node is associated with a safe basic block theorem (§4.2.2). At

each node, the analysis checks that for each predecessor node, the instruction theorem for that node

has pure boolean conditions that can discharge the safety assertions at the current node’s theorem.
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For safety assertions that the predecessor node’s theorem cannot discharge, our analysis adds the

assertion to the predecessor node’s theorem, propagating the assertion backwards up the CFG. Our

analysis is also inter-procedural, and context-sensitive. Each function is summarized at its call-site

by a FUN_SAFE theorem for that particular call-site.

In the general case, this analysis may not terminate. If there are safety assertions being prop-

agated that have values that change with a loop, the analysis will not terminate: the free variable

instantiation at loop boundaries will generate new safety assertions to be framed whenever the asser-

tion is propagated across the back-edge of the loop. We prevent the assertion analysis from running

forever by (i) recording the propagation path of safety assertions, and (ii) aborting the analysis if

a cycle is detected on this path. Then, we inform the user that we are unable to prove our safety

properties for the program.

Algorithm 5.3 describes our static-analysis algorithm. GetThmPreconds (Line 6) and

GetThmAsserts (Line 7) return the pure boolean conditions in the pre-state and the safety as-

sertion at a node’s theorem respectively. PROVE tries to discharge the given safety assertion, assert,

using the given conditions pred_preconds from the predecessor theorem, and returns true if it can

discharge the safety assertion, and false otherwise (Line 9). If the safety assertion cannot be dis-

charged, it is added to the analysis information for the node’s predecessor node (Line 10), so that it

will be framed to the predecessor node’s theorem after the analysis. The analysis information also

records the path along which each assertion is propagated in info.path (Line 12). Then, the analy-

sis checks if there is a cycle along the propagation path of the assertion (Line 13) in the function

AbortIfAssertPathIsCycle, and terminates the AUSPICE proof process if a cycle is found. This

is because if a cycle is found along which the pre-composition tactic causes the safety assertion term

to change with each iteration, the analysis is likely to not terminate as it will keep adding new safety

assertion terms to the analysis information on each successive iteration of the analysis.

5.5 Other Challenges in Proof Automation

5.5.1 Support for Switch Statements

Next, we describe how AUSPICE generates safety proofs for machine-code programs containing

indirect jump tables compiled from switch statements in C. Additional steps are required in Line

13 in Algorithm 5.1 to prepare machine-code compiled from switch statements for safety proof

generation.
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Proving safety properties for machine-code compiled from C switch statements requires spe-

cial handling in AUSPICE. This is because C switch statements are compiled to indirect jump

tables in machine-code by a typical compiler. As a result, the value of the program counter after

executing the jump table is a symbolic value that is computed from the input value supplied to the

switch statement. However, recall that our definition of CFI safety (§3.1.2) requires the value of

the program counter to always be within the range of addresses that program instructions are loaded

to. Hence, to discharge the control-flow safety conjunct that asserts the safe address range for the

program counter value (§5.2), the program counter value needs to be concrete.

Typical Structure for a Jump Table Compiled from a Switch Statement

int curr_char;
switch(c) {
case 0: curr_char = ’0’; break;
case 2: curr_char = ’2’; break;
case 4: curr_char = ’4’; break;
case 5: curr_char = ’5’; break;
case 6: curr_char = ’6’; break;
case 7: curr_char = ’7’; break;
case 8: curr_char = ’8’; break;
case 9: curr_char = ’9’; break;
}

Figure 5.5. Example of a C switch statement.

808c: e3530009 cmp r3, #9
8090: 979ff103 ldrls pc, [pc, r3, lsl #2]
8094: ea000021 b 8120 <main+0xac>
8098: 000080c0
809c: 00008120
...
80bc: 00008114
...
8120: e55b3005 ldrb r3, [fp, #-5]

Figure 5.6. Example compiled ARM machine-code for a
switch table.

Typically, a switch statement with a small, finite number of possible switch target values is

compiled to a jump table with four components:

1. A comparison instruction (cmp on ARM), that checks if the input value to the switch state-

ment falls within the values for the jump table,

2. A jump table compute instruction (typically a conditional load ldrls which loads the jump

table entry into the program counter), which performs the jump target computation,

3. An exit branch instruction if none of the switch cases are to be executed, and

4. The jump table itself, containing target addresses as constants within the program text.

Figure 5.5 shows an example of a C switch statement, and Figure 5.6 shows the ARM machine-

code compiled from the C program. Then, the instruction at 0x808C is the initial comparison in-

struction, the instruction at 0x8090 performs the jump table computation, the instruction at 0x8094
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jumps out of the jump table for non-matching inputs, and the instruction words at the addresses

from 0x8098 to 0x80BC are jump table entries that contain the program counter values for the valid

input values stored in register r3.

` SPEC ARM_MODEL

(aPC 32912w ∗ aR 3w r3 ∗ aS1 psrC psrc ∗ aS1 psrZ psrz ∗ precond(¬psrc∨psrz) ∗
cond((pc_rel && 3w= 0w)∧ (r3� 2 6= 0xFFFFFFF8w)∧ (32920w+ r3� 2 && 3w= 0w)))

{(32912w,0x979ff103w “ldrls pc, [pc, r3, lsl #2]”);(32920w+ r3� 2,pc_rel)}
(aPC pc_rel ∗ aR 3w r3 ∗ aS1 psrC psrc ∗ aS1 psrZ psrz)

Figure 5.7. Hoare triple theorem for jump table target computation instruction “ldrls pc, [pc, r3, lsl #2]”.

Challenge with Reasoning about a Switch Jump Table

The main challenge with reasoning about the compiled machine-code for the switch statement

lies with the instruction that dynamically computes the jump target for the switch, ldrls. The

ldrls instruction, as decompiled by the Cambridge ARM model, has a Hoare triple theorem whose

post-state program counter has a symbolic value. Figure 5.7 shows the Hoare triple for the ldrls

instruction at 0x8090 in Figure 5.6 for the condition where the condition flags have the value

(¬psrc∨psrz) = 1 (as evaluated by the “cmp r3, #9” comparison instruction).

From the Hoare triple theorem in Figure 5.7, the program counter value after the instruction

executes is pc_rel, which is a symbolic variable. This program counter value is the jump table entry

as stored at the address given by the expression “32920w+r3� 2”, which is the jump table address

computation performed by the ldrls instruction. Hence, the value of the program counter after the

execution of the ldrls instruction depends on the value of register r3, which cannot be statically

determined at compile-time in order to compute a concrete value for the program counter.

Concretization of Switch Jump Instruction

To enable reasoning about the ldrls jump table computation instruction, we need to concretize

the value of the program counter in the post-state of the theorem for the instruction. This effec-

tively treats each possible switch branch as a separate goto. There are three observations about a

machine-code jump table compiled from a C switch statement:

1. There is a finite (and typically small) number of jump table entries.
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2. The (register) value used in the jump table comparison (r3 in our example in Figure 5.6) is

typically zero-based. Even for switch statements in C whose possible case values may in-

clude non-zero values, the compiler (gcc in our observations) rebases the value of the register

to begin from 0.

3. The jump table is indexed by a contiguous range of integers from 0 to the operand in the

comparison instruction at the start of the compiled machine-code for the jump table.

From these observations, we can compute the possible index values into the jump table based on

the comparison value in the comparison instruction at the start of the compiled code for the switch

statement. Thus, we can compute a concretized version of the Hoare triple theorem in Figure 5.7

by constructing an N Hoare triple theorems, one for each possible value of the jump register (r3 for

our example), and concretely computing the jump table entry, and extracting the jump table entry to

obtain a concrete program counter value, for each triple.

` SPEC ARM_MODEL

(aPC 32912w ∗ aR 3w r3 ∗ aS1 psrC psrc ∗ aS1 psrZ psrz ∗ precond(¬psrc∨psrz) ∗
cond((32960w && 3w= 0w)∧ (0w 6= 0xFFFFFFF8w)∧ (32920w && 3w= 0w)))

{(32912w,0x979ff103w “ldrls pc, [pc, r3, lsl #2]”);(32920w,32960w)}
(aPC 32960w ∗ aR 3w 0w ∗ aS1 psrC psrc ∗ aS1 psrZ psrz)

Figure 5.8. One of the 11 concretized Hoare triple theorems for jump table target computation instruction “ldrls pc,
[pc, r3, lsl #2]”. Note that the instruction word “32960w” is not actually an instruction, but contains an address for
the jump table for the switch statement.

To concretize the jump instruction for a switch table, we take the following steps:

1. Identify jump table computation instruction for a jump table, note its address p.

2. Identify constant operand cmp_opd, and register operand jmp_reg in comparison instruction

at address p−4.

3. Duplicate theorem for jump table computation instruction N times for N = cmp_opd +1.

4. For each theorem, substitute variable jmp_reg for each of values 0, . . . ,(N−1).

5. Look up jump table entries (i.e., constants in program text) at addresses p+8, p+12, . . . , p+

((N + 2) ∗ 4), (p holds the jump table computation instruction, and p+ 4 holds the exit/fall-

through instruction) and substitute them in the appropriate duplicate theorem from step 3.
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This concretization process takes place as a wrapper around the

CambridgeARM_GetInstrModel function (Line 13 in Algorithm 5.1). Figure 5.8 shows one

of the 11 concretized Hoare triple theorems for the switch example that is obtained after we

applied the above steps to concretize the theorem for the switch example presented. For each

instruction, if the instruction is a jump table computation (i.e., ldrls), we carry out the above

concretization process on the Hoare triple theorem returned from the Cambridge ARM model

before proceeding to return the (resulting concretized) theorem to AUSPICE. Thus, the end result

of our concretization process is an N-way branching instruction at the jump table instruction

ldrls, where each branch has a concrete program counter value. This in turn enables AUSPICE to

proceed with its automated safety property proof process, as symbolic program counter values have

been concretized, enabling safety assertions about the program counter value to be automatically

discharged.

5.5.2 Memory Reconciliation in FSI_Rule

Next, we describe the process of “memory reconciliation” in the implementation of FSI_Rule in

AUSPICE, which enables safety proof generation to proceed for safety theorems that Selective

Composition (§5.3.2) has been applied to.

In the Safe Function (FUN_SAFE) rule in our LLR program logic (§4.2.3), the clauses specifying

the requirements for safety to hold at the intra-procedural and inter-procedural levels both require

the post-state of (the rearranged Hoare triple or FUN_SAFE theorems of) predecessor nodes to be

equal to the pre-state of successor nodes at each CFG edge. This is in keeping with the spirit of the

Compose rule in typical Hoare logics [132, 31] when reasoning about successively executed code

at the same time.

One of the goals of the Selective Composition proof tactic in AUSPICE’s proof automation is

to make global information of a function, in the form of saved caller register values on the stack,

available for local usage (§5.3.2) at particular CFG nodes in a function being analyzed. In particular,

this involves making a substitution for the memory expression at every CFG node that comes after

the prologue of the function in the CFG.

This use of the Selective Composition proof tactic creates a challenge for ensuring that the post-

state of predecessor CFG nodes is equal to the pre-state of successor CFG nodes, as the pre- and

post-state contain assertions about memory (using the “aMEMORY” relation). This challenge arises in

the implementation of the FSI_rule (Line 8 in Algorithm 5.1).
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Effects of Selective Composition on Memory Assertions on FSI_rule

To begin, we illustrate the effects of the Selective Composition proof tactic when used to make

global information (i.e., register values saved in the function prologue) available for local reason-

ing at individual CFG nodes in a function (§5.3.2). These effects present challenges to our proof

automation, when we wish to make global information (in the form of memory updates of the func-

tion’s prologue) available at local nodes (i.e., all other basic blocks in the function other than its

prologue basic block), that we now illustrate.

Consider a function prologue, cprologue, whose behavior is described by the (simplified) Hoare

triple in Figure 5.9. In this function, the prologue saves the value of the link register r14 to its

own stack (at address “r13− 4w”) before any code in the function executes. Then, to make this

saved value of register r14 available at every CFG node in the function (following the function

prologue in the CFG), the substitution [(r13−4w7→r14) f/f ] is applied to the Hoare triple theorem

describing every CFG node in the function before the safety assertion analysis is carried out (Line

6 in Algorithm 5.1).

` SPEC ARM_MODEL

(aR 13w r13 ∗ aR 14w r14 ∗ aMEMORY df f ) cprologue

(aR 13w r13 ∗ aR 14w r14 ∗ aMEMORY df (r13−4w 7→r14) f )

Figure 5.9. Hoare triple for function prologue. f represents the contents of memory just before this block of instructions
cprologue executes.

Then, suppose there are two adjacent basic blocks, with code c1 and c2, in this function, with

the (simplified) Hoare triple theorems shown in Figure 5.10. Note that the first two steps of the

Pre-Composition proof tactic (§4.1.3), also known as the “shift” operation [31], have already been

carried out, and the resources asserted in c1’s theorem but not in c2’s theorem have already been

added to c2’s theorem using the Frame rule in Hoare logic, and vice versa. Thus, for the pair of

theorems in Figure 5.10, completing the Pre-Composition proof tactic prior to applying the Hoare

Logic Compose rule is straightforward: we only need to apply the substitution [(r13−8w7→r0) f/f ]

to the theorem for c2.

On the other hand, after applying the Selective Composition proof tactic to this pair of theorems

for code c1, c2, the two theorems will be as shown in Figure 5.11. If we proceed with the third

step of the Pre-Composition proof tactic, we would apply the substitution [(r13−8w 7→r0) (r13−
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` SPEC ARM_MODEL

(aR 0w r0 ∗ aR 13w r13 ∗ aMEMORY df f ) c1

(aR 0w r0 ∗ aR 13w r13 ∗ aMEMORY df (r13−8w7→r0) f )

` SPEC ARM_MODEL

(aR 0w r0 ∗ aR 13w r13 ∗ aMEMORY df f ) c2

(aR 0w 0w ∗ aR 13w r13 ∗ aMEMORY df f )

Figure 5.10. Simplified Hoare triple theorems for example code c1 and c2.

4w 7→r14) f/f ] to the theorem for c2. This will result in the theorem in Figure 5.12, but we can see

that the post-state of c1’s theorem in Figure 5.11 is no longer equal to the pre-state of c2’s theorem

in Figure 5.12 due to the now mismatched memory expressions.

` SPEC ARM_MODEL

(aR 0w r0 ∗ aR 13w r13 ∗ aMEMORY df (r13−4w7→r14) f ) c1

(aR 0w r0 ∗ aR 13w r13 ∗ aMEMORY df (r13−8w7→r0) (r13−4w 7→r14) f )

` SPEC ARM_MODEL

(aR 0w r0 ∗ aR 13w r13 ∗ aMEMORY df (r13−4w7→r14) f ) c2

(aR 0w 0w ∗ aR 13w r13 ∗ aMEMORY df (r13−4w 7→r14) f )

Figure 5.11. Simplified Hoare triple theorems for example code c1 and c2, after applying the Selective Composition
proof tactic.

Hence, in functions whose CFG nodes’ Hoare triple theorems have had the Selective Compo-

sition proof tactic applied to them, we need to perform an additional step that we call “memory

reconciliation”, so that the post-state of predecessor Hoare triples can be made equal to the pre-state

of successor Hoare triples, before the FSI_rule can be successfully completed.

Memory Reconciliation

Memory Reconciliation is a step taken in the FSI_rule function, that proves a rewrite theorem

to “reconcile” the memory expression in a predecessor Hoare triple’s post-state with the memory

expression in its successor Hoare triple’s pre-state. Memory Reconciliation resolves the differing

memory expressions, that we illustrated above, due to the use of the Selective Composition proof
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` SPEC ARM_MODEL

(aR 0w r0 ∗ aR 13w r13 ∗
aMEMORY df (r13−4w7→r14) (r13−8w 7→r0) (r13−4w 7→r14) f )

c2

(aR 0w 0w ∗ aR 13w r13 ∗
aMEMORY df (r13−4w7→r14) (r13−8w 7→r0) (r13−4w 7→r14) f )

Figure 5.12. Hoare triple theorem for c2 after fully applying Pre-Composition proof tactic to it.

tactic to make global information (function prologue memory updates to store callee-saved registers

to the stack) available at the CFG nodes in a function’s body.

Essentially, Memory Reconciliation proves that the memory expression in the post-state of a

predecessor theorem is equal to the memory expression in the pre-state of its successor theorem.

Thus, Memory Reconciliation proves theorems of the form (where { f reevars(a), f reevars(c)}∩

{ f reevars(b), f reevars(d)} = /0, and f reevars(·) indicates the free variables in each expression,

which we have found to be true in practice in the machine-code programs that we analyzed):

` (a7→b)(c 7→d)(a7→b) f = (c 7→d)(a7→b) f

These theorems can be used to simplify the successor Hoare triple in a pair of theorems. In our

example, for the Hoare triple in Figure 5.12, we wish to generate the theorem:

` (r13−4w 7→r14) (r13−8w7→r0) (r13−4w7→r14) f = (r13−8w 7→r0) (r13−4w 7→r14) f

We make use of the proof rules in UpdateTheory in the HOL4 library, as shown in Figure

5.13, to prove the above rewrite theorem. The UPDATE_EQ rule is an “overwrite” rule: for mem-

ory that is expressed as a list of memory updates, newer updates overwrite older updates. The

UPDATE_COMMUTES rule specifies that for addresses that do not overlap, i.e., there is no aliasing of

addresses, we can reorder the updates in an update expression. The mechanism we have adopted for

our memory updates is part of the Cambridge model [31], although we can explore more efficient

techniques for representing and capturing state updates to memory using techniques from the ODL

extension of dynamic logic [135] by using “non-rigid” function symbols to represent the state being

updated, i.e., main memory, in our case.
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(a7→c)((a7→b) f )
(a 7→c) f

UPDATE_EQ

a 6= b (a 7→c)((b 7→d) f )
(b 7→d)(a7→c) f

UPDATE_COMMUTES

Figure 5.13. Proof Rules in Update Theory in HOL4.

The key observation of the differing memory expressions in the pre-state of a predecessor theo-

rem and the post-state of its successor theorem, is that the memory updates in the function prologue

are repeated in the memory expression of the successor theorem. Hence, for each repeated memory

update in the memory expression of the successor theorem, we can make use of a combination of:

(i) one or more applications of the UPDATE_COMMUTES rule to swap distinct and non-overlapping

memory updates, and (ii) the UPDATE_EQ rule to eliminate the repeated memory update.

Thus, Memory Reconciliation proceeds as follows, for each pair of Hoare triple theorems from

adjacent nodes in the CFG of a function:

1. Extract memory expression asserted by the “aMEMORY” relation from the post-state of pre-

decessor Hoare triple and pre-state of successor Hoare triple: proceed if the two memory

expressions differ, otherwise no Memory Reconciliation is needed.

2. Next, Memory Reconciliation is carried out on the memory expression with repeated updates

to the same address (this is typically the memory expression in the pre-state of the successor’s

Hoare triple).

3. For each outermost memory update “(a 7→b)”, check if the update “(a 7→b)” is repeated later in

the same memory expression. If so, apply the UPDATE_COMMUTES rule to swap the outermost

memory update with the next memory update.

4. For each repeated memory update, recursively swap the outermost memory update with the

next memory update (by proving that the two memory updates are to addresses that are dif-

ferent) until the repeated memory update is adjacent to its repeated update (i.e., we obtain the

expression “(a7→b)((a7→b) f )”). Then, apply the UPDATE_EQ rule to eliminate the repeated

memory update.

Thus, a series of rewrite theorems is obtained from the above steps (which could be simplified

using non-rigid functions as in the ODL extension of dynamic logic for verifying object-oriented
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programs [135]). We use HOL4’s built-in METIS automatic prover, supplying the rewrite theorems

to the prover, to prove that the memory expressions asserted in the post-state of the predecessor

theorem and the pre-state of the successor theorem are equal, thus obtaining our desired rewrite

theorem.

We can then simplify the Hoare triples with the obtained rewrite theorem, which completes the

process of ensuring that the post-state of the predecessor Hoare triple is equal to the pre-state of

the successor Hoare triple, thus enabling us to reason about combined behavior of the two adjacent

CFG nodes, when the Selective Composition proof tactic (§5.3.2) is used.

Feasibility of Memory Reconciliation

Note that there are two classes of memory-write addresses that occur: (i) writes to local variables

of the current function, whose addresses are constant offsets from the stack pointer (i.e., r13−N

for some constant N), and (ii) possibly “unsafe” writes to memory to computed addresses that are

stored in an intermediate register, e.g., r3.

Writes to local variables can always be automatically reconciled in this above process, as their

stack addresses will not overlap with the callee-saved register values on the stack, hence their ad-

dresses will not overlap with the address range where callee-saved registers are saved. As a result,

we can always automatically prove that the written addresses are not equal to the repeated addresses

where callee-saved register values are saved.

On the other hand, writes to “unsafe” locations will have had additional source-code safety-

checks prescribed by PCFIRE-C (§3.2.1). The third and fourth clauses in the prescribed safety-

checks will provide the logic pre-conditions that are sufficient to enable us to prove that the unsafe

addresses do not overlap with the addresses where callee-saved register values are located on the

stack in memory. This then allows the UPDATE_COMMUTES rule to be applied, and the Memory

Reconciliation process to be carried out successfully.

5.6 Summary

In this chapter, we described the proof automation algorithms in AUSPICE [128], which realize the

logic approach in this dissertation. We described the overall automatic proof generation algorithm

of AUSPICE, and we described details of the components of the proof automation algorithm. The

overall goals of AUSPICE’s proof automation algorithm are to: (i) specify safety assertions that
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need to be discharged, (ii) find logic pre-conditions that can discharge each safety assertion, and

(iii) generate proofs that safety assertions are discharged, and construct Safe Function theorems

using the FUN_SAFE rule.

The proof automation of AUSPICE focused on rearranging Hoare triple theorems from the

Cambridge model [31], which the LLR logic that we developed extends, to enable reasoning about

dynamic program behavior in the presence of our automatically specified safety assertions. The

bulk of the automation work focused on obtaining Hoare triple theorems of the appropriate shape

for use in our LLR proof rules (§4). This proof automation work could be simplified in dynamic

logic, which enables specifying both the program as well as properties in the same logic [108],

as we would not need to concern ourselves with obtaining appropriately-shaped theorems, as the

semantics of the program are captured in the semantics of the logic rather than as the pre-state and

post-state assertions that make up Hoare triples.

First, our safety properties for ensuring CFI are automatically specified as safety assertions

at the Hoare triple theorem for every instruction, and the MEMCFISAFE rule ensures every Hoare

triple theorem contains its safety assertions. Second, the Selective Composition proof tactic in

AUSPICE prepares safe basic block theorems for the automatic discharge of safety proof obligations

by ensuring that: (i) logic pre-conditions needed to discharge safety assertions, that are located in

multiple basic blocks preceding the basic block whose safety assertion needs to be discharged, are

propagated forward to the basic block where they are needed, and (ii) global information in the

form of callee-saved register values from the function prologue are propagated forward to enable

proving that function returns are safe. Third, AUSPICE uses abstract interpretation to search for

pre-conditions to discharge safety assertions automatically.

Finally, we described some of the challenges faced by AUSPICE in its proof automation, and

how we addressed them. We described how proofs can be automated for machine-code jump ta-

bles compiled from switch statements, whose Hoare triples have program counter values that are

symbolically computed, preventing automatic proof discharge. We described our algorithm for con-

cretizing the program counter value for such machine-code jump tables to enable automated proofs.

Second, we described the Memory Reconciliation algorithm in the FSI_rule construction of Safe

Function theorems, which enables FUN_SAFE theorems to be proved when the Selective Composi-

tion proof tactic is used for propagating global information in a function to all CFG nodes in the

function.



Chapter 6

Proofs for Realistic Embedded Programs

This chapter describes the extensions [136] to the AUSPICE automated safety property generation

framework in the logic approach of this dissertation, in order to support: (i) safety proofs for user-

mode machine-code programs that contain system calls, and (ii) larger-sized programs, with safety

proofs generated in less time, through optimizations to the proof automation in AUSPICE. In §6.1,

we describe our axiomatic approach to support reasoning about the user-mode-visible effects of

system call invocations serviced by the underlying operating system (OS) kernel, and in §6.2 we

describe our optimizations to the proof automation algorithm in AUSPICE.

6.1 Safety Proofs for Machine-code with System Calls

6.1.1 Approach and Design

There are two main steps to support safety proofs for ARM user-mode machine-code programs

containing system calls (syscalls).

First, we need to model the ARM supervisor call instruction (svc), whose effects occur in both

user-mode, and in supervisor-mode where the OS services the syscall. As our focus is on the safety

of user-mode programs, we do not wish to fully model the actions of the OS. Instead, we assume that

the processor correctly handles the mode-switch from user-mode to supervisor-mode, and that the

OS correctly services the syscall (§1.3). We focus on only the user-mode-observed effects after the

syscall has been serviced by the OS. We model syscalls in user-mode in an axiomatic manner: we

represent the user-mode-observed effects of syscalls as “axiomatized” (rather than proven) Hoare

triples, that we then introduce as hypotheses in our model. Note that for a program containing

syscalls, our generated proofs of CFI safety properties for these programs will retain these unproved

101
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Hoare triples for each syscall in its antecedents/hypotheses. Thus, the generated proofs of CFI safety

properties for programs with syscalls is not unconditional, and is dependent on our assumptions of

the behavior of the syscalls present in the particular program. Our current goal is to make our

assumptions about syscall behavior explicitly, and these assumed triples can currently be examined

manually. In future, we envision that these assumptions can be analyzed mechanically.

Second, we need to augment our syscall models to support safety-proof automation. AUSPICE’s

proof automation needs concrete safety assertions for each instruction. For typical instructions

(e.g., for data processing and branching) in user-mode programs, the proven Hoare triples for each

instruction contain enough information for computing concrete safety assertions for each instruction

(Line 14 in Algorithm 5.1). However, the effects of a syscall cannot be determined from the svc

instruction alone, and depends on the arguments passed to it. These arguments are set up in the

instructions leading up to the svc instruction, and in the callers of the syscall. Note that in our

approach, for syscalls that write to the memory of a user process, we support reasoning about safety

properties for CFI only when the syscalls are invoked with a concrete buffer address and a concrete

number of bytes, as our approach needs to identify the exact memory locations written to, in order

to determine that our CFI safety properties are not violated.

In AUSPICE, we use a delayed approach to analyze syscalls: we express the effects of syscalls

symbolically, and we concretize these symbolic variables later in the analysis when information is

available from callers of the syscall.

6.1.2 Modeling of System Calls in User-mode Programs

Rationale Behind Model

Our model of syscall behavior must capture the user-mode-visible effects of the invocation of the

syscall, as these may affect the safety properties proved in our logic approach.

First, we consider the user-mode-visible effects of syscalls that may affect our safety properties.

Our safety properties are affected by memory addresses that are written to, and by the value of the

program counter. As the processor will restore the program counter to the address of the instruc-

tion immediately following the svc instruction (B1.8.10 in [137]), we need to focus on only the

addresses in the user process’s memory that are written to during the servicing of the syscall. All

other processor state (user-mode registers, apart from r0 which stores a return value, and status flag
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values) remains unchanged, as user-mode registers are distinct from supervisor-mode registers, and

the processor restores the values of the original status flags (B1.8.10 in [137]).

Second, we need to know what the user-mode-visible effects of each syscall in user-mode are.

We need to (i) retrieve the number of the syscall being invoked (as passed in register r7, based on the

Linux Application Binary Interface (ABI) for ARM [138]), (ii) identify the syscall being invoked

(e.g., from the Linux kernel’s documentation and/or source-code), and (iii) retrieve the arguments

passed to the syscall (either via user-mode registers, or on the stack of the user code). Then, we can

identify the behavior of each syscall invoked based on its specification. We can then instantiate our

safety-assertions based on the user-mode-observed effects of each syscall invocation.

Axiomatization of System Call Effects

Next, we “axiomatize” the Hoare triples for syscalls. We “axiomatize” the Hoare triples for syscalls

by constructing an unproven Hoare triple for each syscall, which we then introduce as an assump-

tion. Note that we do not introduce our constructed, and unjustified Hoare triples, as axioms into our

proofs, and we merely introduce them as assumptions. These unproven Hoare triples are then col-

lected as hypotheses of the final safety proof, and they formalize our assumptions of each syscall’s

effects on user-mode state, based on the syscall’s specification.

Figure 6.1 shows an example of an axiom for the write syscall. aR asserts the value of the

specified register, aPC asserts the value of the program counter, and aMEMORY asserts the domain (df )

and contents of memory (map f from addresses to stored values). The pre-state value of register r7

is asserted to be the literal 4, which is the syscall number for write, while the other pre-state values

of the other registers are asserted to be symbolic variables (r0, r1, r2, r14), as they are unknown

when we analyze the svc instruction on its own. We will instantiate these symbolic variables with

concrete values later when analyzing the instructions leading up to the syscall invocation (details in

§6.1.3).

Note that the Hoare triple is repeated on the left-hand-side of the turnstile “`”, indicating that

the Hoare triple is a hypothesis. Note also that these unproved Hoare triples will remain in the

hypotheses/antecedents of the safety theorem of CFI safety properties that our logic approach gen-

erates. The post-state of this axiom for write is identical to its pre-state (except for the value of

register r0, given by the aR 0w assertion), as write does not modify any user-mode-visible pro-

cessor state. The value of register r0 in the post-state is given by the symbolic variable rv, which

indicates the return-value from the syscall, and can represent the return value of both failed and



CHAPTER 6. PROOFS FOR REALISTIC EMBEDDED PROGRAMS 104

successful syscalls. This axiom is representative of the other syscalls AUSPICE supports for which

there are no effects that are directly visible in user-mode: open, close, mmap, munmap, nanosleep.

SPEC ARM_MODEL ` SPEC ARM_MODEL

(aR 0w r0 ∗ aR 1w r1∗aR 2w r2∗aR 7w 4w ∗ (aR 0w r0 ∗ aR 1w r1∗aR 2w r2∗aR 7w 4w ∗
aPC p ∗aR 14w r14∗aMEMORY df f ) aPC p ∗aR 14w r14∗aMEMORY df f )

{(p,0xEF000000w “svc #00000000”)} {(p,0xEF000000w “svc #00000000”)}
(aR 0w rv∗aR 1w r1∗aR 2w r2∗aR 7w 4w ∗ (aR 0w rv∗aR 1w r1∗aR 2w r2∗aR 7w 4w ∗
aR 14w r14 ∗ aPC (p+4w) ∗aMEMORY df f ) aR 14w r14 ∗ aPC (p+4w) ∗aMEMORY df f )

Figure 6.1. Constructed Hoare triple axiom for the write syscall. 4w is a numerical constant 4, where the suffix w

indicates 4 is a fixed-width word.

In contrast, consider our constructed axiom for the read syscall in Figure 6.2. read has user-

mode-visible effects: the bytes that it reads are written to and visible in the process’s memory at the

supplied address. The condition “cond(addrs⊆ df )” asserts that the set of addresses addrs supplied

to the syscall are in the domain of the memory map f. Also, the process’s memory is updated from

map f to (g f ), where g represents the effects of read on memory. Note that addrs and g are both

symbolic. Note also that the value in register r0 (asserted by aR 0w) in the post-state of the axiom

is symbolic, and can represent the return values from both successful and failed invocations of the

syscall. While the OS may not have written to all the addresses in the set addrs when read fails or

reads fewer than the requested number of bytes, addrs conservatively lists the maximum extent of

the memory written to by read.

Quantifiers on Opaque System Call Effects

In our constructed assumed Hoare triples for syscalls, opaque syscall effects, specifically return val-

ues from syscalls and memory effects, are universally quantified. Thus, for example, our constructed

Hoare triples describe syscalls that can simultaneously return 0 and 1, however, such a syscall can-

not exist, as each syscall returns only one specific value. As a result, our assumed syscall triples

cannot be justified, and hence are false. Thus, for programs containing syscalls, the antecedents/hy-

potheses of the proofs generated by our logic approach contain Hoare triples (that we construct and

leave unjustified) that cannot be justified, and hence are false. However, our assumed syscall triples

do not affect the validity of our generated proofs of CFI safety properties, as we explain below.
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SPEC ARM_MODEL ` SPEC ARM_MODEL

(aR 0w r0∗aR 1w r1 (aR 0w r0∗aR 1w r1

∗ aR 2w r2∗aR 7w 3w∗aR 14w r14 ∗ aR 2w r2∗aR 7w 3w∗aR 14w r14

∗ aPC p∗cond(addrs⊆ df )∗aMEMORY df f ) ∗ aPC p∗cond(addrs⊆ df )∗aMEMORY df f )

{(p,0xEF000000w “svc #00000000”)} {(p,0xEF000000w “svc #00000000”)}
(aR 0w rv∗aR 1w r1∗aR 2w r2∗aR 7w 3w ∗ (aR 0w rv∗aR 1w r1∗aR 2w r2∗aR 7w 3w ∗

aR 14w r14 ∗aPC (p+4w)∗aMEMORY df (g f )) aR 14w r14∗ aPC (p+4w)∗ aMEMORY df (g f ))

Figure 6.2. Constructed Hoare triple axiom for the read syscall.

In our proof automation, the proof tactics and proof steps that we have developed do not make

use of the fact that our assumed syscall triples are unjustifiable (and hence are false). Our proof

tactics and proof steps, as described in §4.2, retain any antecedents/hypotheses in each of the the-

orems being manipulated. Thus, by inspection of our proof tactics and proof steps in §4.2, our

generated proofs of CFI safety properties remain valid, although our generated proofs are based on

unjustifiable antecedents/hypotheses.

Moving forward, this issue can be addressed in two ways. First, we can existentially quantify

syscall effects instead of universally quantifying them. However, introducing an existential quan-

tifier changes the shape of the Hoare triples, which would require significant re-engineering of our

proof automation algorithms. This is a limitation of using Hoare logic, in which proof steps are de-

pendent on the shapes of theorems, and this issue could be alleviated if we had reasoned about the

program in Dynamic Logic instead [106]. Second, we can also bound the possible opaque and uni-

versally quantified effects by specifying an oracle in the pre-state of each assumed Hoare triple that

supplies the return values and memory transformations for a syscall given a number of transitions

undertaken on the underlying system state.

We relegate these explorations to future work, and we intend to explore a more robust construc-

tion of our assumed Hoare triples for syscalls, by both existentially quantifying syscall effects, and

using oracles on underlying system state to avoid relying on false triples as justifications for our CFI

safety proofs.
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Algorithm 6.1 Hoare triple extraction for individual ARM instructions, with support for unproven
triple construction for syscalls.

1: function GETINSTRUCTIONMODEL_WITHSYSCALLS(addr,addr_to_func map, instr)
2: if !(instr = 0xEF000000) then
3: return CAMBRIDGEARM_GETINSTRUCTIONMODEL(instr)
4: else
5: func_containing_instr← addr_to_func[addr]
6: return CONSTRUCTSYSCALLTRIPLE(instr,addr,func_containing_instr)
7: end function

Algorithm 6.2 Algorithm for unproven Hoare triple construction for syscalls.
1: function CONSTRUCTSYSCALLTRIPLE(instr, addr, func_containing_instr)
2: syscall_num← GETSYSCALLNUMFORSYSCALL(func_containing_instr)
3: num_syscall_args← GETSYSCALLNUMARGS(syscall_num)
4: register_asserts← /0
5: for i ∈ {0, . . . ,num_syscall_args} do
6: curr_reg_assert← MAKEDEFAULTARGASSERT(i)
7: register_asserts← register_asserts ∪ curr_reg_assert
8: end for
9: register_asserts← register_asserts ∪ MAKEARGASSERT(7, syscall_num)

10: mem_prestate← “ f ”
11: if DOESSYSCALLMODIFYMEMORY(syscall_num) then
12: mem_poststate← CONSTRUCTOPAQUEMODIFIEDMEMEXPR(syscall_num, addr)
13: else
14: mem_poststate← “ f ”
15: end if
16: (pre_state_pc,post_state_pc)← (MAKEPCASSERT(addr),MAKEPCASSERT(addr+4))
17: unproven_syscall_triple ← LIST_MK_COMB(“SPEC ARM_MODEL”, [register_asserts ∪

mem_prestate ∪ pre_state_pc, “0xEF000000”, register_asserts ∪ mem_poststate ∪
post_state_pc])

18: syscall_triple_assumption← ASSUME(unproven_syscall_triple)
19: return syscall_triple_assumption
20: end function
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Implementation

The construction of unproven Hoare triples for each syscall (Algorithm 6.1) is implemented as a

wrapper around the model construction for individual instructions in the Cambridge ARM model,

and replaces Line 13 in Algorithm 5.1. When a svc instruction (0xEF000000) is detected, AUS-

PICE constructs an unproven Hoare triple based on the name of the function that the instruction is

in. ConstructSyscallTriple (Algorithm 6.2) implements the unproven Hoare triple construction

process described above. MakeDefaultArgAssert constructs a register assertion that asserts that

the register with the given register number contains its default symbolic value; MakeArgAssert

constructs a register assertion that asserts that the given register number contains the given value;

ConstructOpaqueModifiedMemExpr constructs a symbolic expression for memory updates by the

syscall for syscalls that modify user-mode memory; and MakePCAssert constructs an assertion of

the value of the program counter. List_Mk_Comb and Assume are functions provided by the meta-

logic in HOL4. We initially support modeling the following syscalls for simple I/O operations:

read, write, open, close, mmap, munmap, nanosleep.

6.1.3 Supporting Safety Proof Automation for System Calls

Next, to support automated safety proofs in AUSPICE for syscalls, we need to concretize the

initially-symbolic effects in the unproven Hoare triples for each syscall, as the safety assertion

discharge in SafetyAssertionAnalysis (Algorithm 5.3) reasons about memory addresses indi-

vidually. To concretize the symbolic effects of a syscall’s unproven triple, AUSPICE examines the

arguments the syscall is invoked with when running SafeFunctionAnalysis (Algorithm 5.1) on

the caller of the syscall. We first illustrate how the arguments to system calls are interpreted, using

the read syscall. Then we discuss how the symbolic effects are concretized, before we describe

how these are implemented in AUSPICE’s analysis.

System Call Arguments

The Linux Programmer’s Manual [29] states that the read syscall takes 3 arguments: (i) an integer

indicating the file descriptor, (ii) a pointer at which to store bytes that have been read, and (iii) the

number of bytes to read. Fig. 6.3 shows a fragment of machine code, where the basic block at

address 0x80E4 calls the function c_read, which is the assembly-code wrapper that invokes the

read syscall (at address 0x822C). Fig. 6.4 shows the C prototype of the assembly-code wrapper.
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80e4: e3a00000 mov r0, #0
80e8: e59f1098 ldr r1, [pc, #152]
80ec: e3a02003 mov r2, #3
80f0: eb000049 bl 821c <c_read>
... ...
8188: 00010250
... ...
0000821c <c_read>:
821c: e92d4880 push {r7, fp, lr}
8220: e28db004 add fp, sp, #4
8224: e24dd000 sub sp, sp, #0
8228: e3a07003 mov r7, #3
822c: ef000000 svc 0x00000000
... ...

Figure 6.3. Example ARM machine code invoking the c_read wrapper to the read syscall.

ssize_t read(int fd, void *buf, size_t count);

Figure 6.4. Prototype of C function wrapper to read syscall.

For each invocation of the read syscall, the values of the arguments to the syscall are loaded to

the relevant registers (r0, r1, r2) at the call-site to its wrapper (i.e., at the basic block at 0x80E4).

AUSPICE extracts these values from the post-state assertions of the Safe Basic Block theorem for

the call-site. Concretely, for this example, the values to the arguments are fd = 0, buf = 0x10250,

count = 3.

Note that the arguments may still be symbolic at this point (e.g., if reading a variable-length

number of bytes). However, for AUSPICE to prove our safety properties for the read syscall, the

pointer to store read bytes and the number of bytes to read must be concrete. This enables AUSPICE

to update the symbolic safety assertions in the FUN_SAFE theorem of read’s syscall wrapper with

concrete expressions, thus enabling the safety assertions to be discharged. If the pointer and number

of bytes read remain symbolic, SafetyAssertionAnalysis cannot reason about the symbolic

safety-assertions, and the safety proof will fail.

Updating of Symbolic Effects

Next, we construct variable substitutions for the initial symbolic effects (written-address set ad-

drs and memory-update function g), which we apply to the unproven Hoare triple for the read

syscall. These substitutions concretize the effects of the syscall on user-mode processor state, so
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that SafetyAssertionAnalysis can reason about the safety of these effects. To complete its au-

tomated safety-property proofs, AUSPICE needs to enumerate the memory address of each byte

written to. While AUSPICE can reason about byte-addresses containing symbolic variables (e.g.,

when the address written to is a symbolic variable r3), it cannot reason about symbolic ranges of

addresses where the number of elements in the set is symbolic (even if the elements of the set are

drawn from a finite universe, e.g., fixed-width words). This is due to limitations with HOL4’s built-

in tactics for reasoning about sets (pred_setLib). Hence, AUSPICE enumerates the byte-addresses

written to by the syscall.

For the example in Fig. 6.3, 3 bytes are written to at the address 0x10250. Hence, we substi-

tute addrs with {0x10250w;0x10251w;0x10252w}, and the update function g with the expression

shown in Figure 6.5, where extmem__c_read__0x80E4 is an opaque function that represents the

results of external I/O, and it returns the (symbolic) data read given the byte-number read.

λ f . ((0x10250w=+ (extmem__c_read__0x80E4 0w))

((0x10251w=+ (extmem__c_read__0x80E4 1w))

((0x10252w=+ (extmem__c_read__0x80E4 2w)) f )))

Figure 6.5. Concretized memory-update expression for the read syscall in Figure 6.3.

After substituting the symbolic effects for concrete values in each syscall’s Hoare triple axioms,

AUSPICE can automatically discharge the safety assertions for these axioms (if the machine code

contains the necessary safety-checks).

Implementation

Algorithm 6.3 describes the updated Safe Function analysis algorithm in AUSPICE, incorporat-

ing the unproven Hoare triple axiomatization (Line 15), and the concretization of symbolic effects

(Line 5). In functions that call syscalls, SafeFunctionAnalysisWithSyscalls is first called

on each syscall callee (Line 3). Then, the arguments to the syscall are available in the caller

of the syscall, and the FUN_SAFE theorems of syscalls are concretized using information from

the caller function’s basic blocks, bb_safe (Line 5). This concretization must take place before

SafetyAssertionAnalysis (Line 8). 1300 lines of ML proof scripts were added to AUSPICE’s

code-base of 11.8 KLOC of ML to support proof automation for machine-code containing syscalls.
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Algorithm 6.3 Updated Safe Function analysis in AUSPICE with support for safety proofs for
machine code with syscalls. Added or changed steps are highlighted in blue.

1: function SAFEFUNCTIONANALYSISWITHSYSCALLS(function_name,bb_safe_thms list)
2: (cfg, func)←∀i ∈ bb_safe_thms · COMPUTECFGANDCALLEES(i) . Compute

Control-Flow Graph for function_name
3: func_safe ← ∀callee ∈ cfg · SAFEFUNCTIONANALYSISWITH-

SYSCALLS(callee,bb_safe_thms)
4: syscall_callees← ∀callee ∈ func | IS_SYSCALL(callee)
5: func_safe′←∀c ∈ syscall_callees · CONCRETIZEARGS(func_safe[c], bb_safe)
6: bb_safe_thms← SC-FWDPROPAGATE-BRANCHCONDS(bb_safe_thms, cfg)
7: bb_safe_thms← SC-FWDPROPAGATE-FUNCPROLOGUE(bb_safe_thms, cfg)
8: assertion_info← SAFETYASSERTIONANALYSIS(bb_safe_thms, func_safe′, cfg)
9: bb_safe_thms← AUGMENTTHEOREMS(bb_safe_thms, func_safe′, assertion_info)

10: safety_theorem← FSI_RULE(bb_safe_thms, func_safe′, cfg)
11: return safety_theorem
12: end function
13: function AUSPICE((addr, instr) list) . List of machine-code instructions
14: (bb list)← COMPUTEBASICBLOCKS(instr) . Compute basic blocks in program
15: (bb_instr_thms list)←∀instr · GETINSTRUCTIONMODEL_WITHSYSCALLS(instr) .

Obtain Hoare triple theorem for each instr in each bb, with support for syscalls
16: (bb_safe_instr_thms list)← map (λx.ADDSAFETYASSERTIONS(x)) bb_instr_thms
17: bb_safe_thms← map (λx.COMPOSESAFEINSTRS(x)) bb_safe_instr_thms
18: return SAFEFUNCTIONANALYSISWITHSYSCALLS(main,bb_safe_thms)
19: end function
20: AUSPICE(program)
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6.2 Optimizing Safety Proof Automation

AUSPICE optimizes SafeFunctionAnalysis (Algorithm 5.1) and SafetyAssertionAnalysis

(Algorithm 5.3), to improve the speed of its safety-proof generation, so that larger programs can be

verified in less time. AUSPICE leverages (i) common patterns in gcc-generated machine code, to

speed up SafetyAssertionAnalysis, and (ii) the behavior of safety-assertions for local-variable-

writes in callee functions.

6.2.1 Common Compiler Conventions

AUSPICE’s SafetyAssertionAnalysis performs two tasks: (i) it finds pairs of pre-conditions

p ∈ P and safety-assertions a ∈ A, such that p⇒ a, and (ii) for assertions a ∈ A for which no

p is found, it propagates a to predecessor nodes, and checks if a’s propagation path has a cycle.

However, computing the propagation path of assertion a is expensive, as it is effectively an exercise

in symbolic execution (i.e., we need to repeatedly perform variable substitutions to simulate the

transformation of program state by the program, in the spirit of the Hoare logic Compose rule and

the pre-composition tactic, as described in §4.1.3) along the propagation path.

We leverage two observations in (gcc) compiled code (or any compiler that generates such

code). First, there are two classes of memory-writes: to local variables (to a constant offset from

the frame pointer r11, or stack pointer r13), and to arbitrarily-computed addresses (typically stored

in registers). Second, r11 and r13 are generally updated only at the start and end of each function.

Thus, safety assertions for writes to local variables will not change during the analysis in func-

tion bodies. To improve the speed of SafetyAssertionAnalysis, for writes to local variables,

AUSPICE: (i) reduces the number of assertion terms analyzed, and (ii) skips the propagation-cycle

check.

First, we represent the safety assertions for local-variable writes using range predicates, e.g.,

for a safety assertion “{r13−21w; r13−22w; r13−23w; r13−24w} ⊆ {addr | addr < r11}”, the

addresses that are offset from r13 are where the local variable is stored on the stack, and we use

the range predicate “24w ≤ r13 < r11+ 24w”. Thus, for writes to N different local variables in a

function, only 2 rather than 2N predicates are propagated: one each for Safety Properties 1 and 2

(§3.1.2). We also define a narrowing operator for the meet of two range predicates which returns

the more restrictive of two predicates to merge terms from multiple CFG paths.
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Algorithm 6.4 Optimized analysis step for SafetyAssertionAnalysis in AUSPICE. Updated
steps are highlighted in blue. is_range and is_localvar return true for predicates that are ranges
and that are about local-variable writes respectively.

1: function SAFETYASSERTIONANALYSIS(bb_safe_thms map, cfg)
2: info map← /0
3: procedure ASSERTIONANALYSISSTEP(info map, last_info map, cfg)
4: for all node ∈ cfg do
5: for all pred ∈ FINDPREDS(cfg, node) do
6: pred_preconds← GETTHMPRECONDS(pred)

⋃
last_info[pred]

7: node_asserts← GETTHMASSERTS(node)
⋃

last_info[node]
8: (range_pds,other_pds)← partition is_range pred_preconds
9: (localvar_asserts,other_asserts)← partition is_localvar node_asserts

10: for all assert ∈ localvar_asserts do
11: curr_range_term← narrow(compute_range_predicate(assert),range_pds)
12: (prev_range_term,other_terms)← partition is_range info.term[pred]
13: info.term[pred]← other_terms

⋃
narrow(curr_range_term,prev_range_term)

14: end for
15: for all assert ∈ node_asserts do
16: if PROVE(pred_preconds, assert) == False then
17: info.term[pred]← info.term[pred]

⋃
assert

18: a_path← FINDASSERTPATH(last_info.path[node], assert)
19: info.path[pred]← info.path[pred]

⋃
a_path

20: ABORTIFASSERTPATHISCYCLE(a_path)
21: end if
22: end for
23: end for
24: end for
25: end procedure
26: repeat
27: last_info← info; info← ASSERTIONANALYSISSTEP(info, last_info, cfg)
28: until last_info == info
29: return info
30: end function
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Second, since writes to local variables are to fixed offsets from the frame pointer (r11) or stack

pointer (r13), which do not change in the function’s body, we do not need to compute nor check for

cycles in propagation paths.

Algorithm 6.4 describes the optimized version of the inner analysis step in

SafetyAssertionAnalysis (Algorithm 5.3), which replaces AssertionAnalysisStep in

Algorithm 5.3.

6.2.2 Context-Sensitivity of Analysis

bar() { ... }
baz() { bar();

... }
foo() { bar();

baz();
bar();
... }

Figure 6.6. Example program for inter-procedural analysis.

SafeFunctionAnalysis (Algorithm 5.1) is an inter-procedural analysis which constructs a

distinct Safe Function (i.e., FUN_SAFE) theorem for every call to each callee function. We use the

program in Figure 6.6 to illustrate our approach. For instance, in foo(), bar() is called twice,

thus one FUN_SAFE theorem is constructed for each of its two call-sites. We call this analysis “call-

site context-sensitive”, or CSCS. CSCS provides the highest level of precision. We would like to

reduce the precision of our analysis to reduce the number of iterations of SafeFunctionAnalysis

(Algorithm 5.1) needed to successfully generate a safety proof.

Context-insensitive inter-procedural analysis provides the lowest level of precision: we analyze

each function once and generate one FUN_SAFE theorem for it. However, in our example, having

only one FUN_SAFE theorem for each function results in imprecise analysis by forcing safety as-

sertions from instructions at different call-tree depths (e.g., foo() vs. baz()) to be framed onto

the same theorem (bar()). (We refer to the function-level CFG as a call-tree, whose depth is the

number of nested function calls.) This is logically equivalent to different instances of the function’s

stack overlapping in memory at the same time, although during execution, only one instance of

the function’s stack exists in memory at any point in time. Hence, the proof generation fails when

there are safety-assertions from a smaller call-tree depth (e.g., foo()) than the call-tree depth of

the currently-analyzed function (e.g., baz()). Having one FUN_SAFE theorem per-function per-call-
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tree-depth is also insufficient, as two caller functions at the same call-tree depth could have different

stack sizes, resulting in the same contradiction as above.

On the other hand, in each function, we need to analyze each callee function only once, re-

gardless of how many times that callee function is called. We call this analysis “single-function

context-sensitive”(SFCS). When analyzing a function F, we need only one FUN_SAFE theorem for

each callee function C, regardless of how many times C is called in F. Then, we can frame the

safety assertions from all the return-sites of C in the function F to the single theorem for C, as there

would not be any contradiction in the analysis. In our example, we can merge all the safety asser-

tions required at all the return-sites from bar() in foo(), and add them to the FUN_SAFE theorem

for bar(). While there is some loss of precision (e.g., the FUN_SAFE theorem for the second call

to bar() does not need to consider the safety assertions that need to be discharged when calling

baz()), we now need to run SafeFunctionAnalysis fewer times.

Limitations

AUSPICE continues to analyze wrapper functions for syscalls using call-site context-sensitive

(CSCS) inter-procedural analysis. This is because AUSPICE needs to generate a unique FUN_SAFE

theorem to correctly consider each set of arguments passed to the syscall at each distinct call-site.

6.2.3 Other Engineering Optimizations

Next, we discuss some of the engineering optimizations throughout the AUSPICE workflow to

improve the time taken to automatically generate safety proofs. The main engineering optimizations

are in the caching of various intermediate results that need to be computed multiple times, so that

complex computations are performed once, and their results retrieved from the cache for subsequent

uses.

Caching of Proved Theorems

The safety proof generation process in AUSPICE takes as input Hoare triple theorems from the

Cambridge ARM model (Line 13 in Algorithm 5.1), and tries to prove that the FUN_SAFE theorem

holds for the particular input program. Then, proving the FUN_SAFE theorem involves: (i) aug-

menting Hoare triples for individual instructions with safety assertions, (ii) composing “safe” Hoare

triples (i.e., MEMCFISAFE theorems) for basic blocks, and (iii) proving the “precond⇒ assert” safety

proof obligations, as required in each clause of the FUN_SAFE rule.
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The proving of safety proof obligations first takes place in the SafetyAssertionAnalysis

algorithm (Algorithm 5.3), when AUSPICE checks if each safety assertion can be discharged by all

of its predecessors’ pre-conditions during its abstract interpretation. However, the proofs of these

safety obligations are required later in the FSI_rule function, which constructs the actual FUN_SAFE

theorem and discharges the proof obligations automatically generated by HOL4’s interactive proof

process (which AUSPICE automates).

Thus, to save the time taken to search for discharging pre-conditions later in FSI_rule, the

proofs of safety proof obligations (i.e., theorems of the form “precond ⇒ assert”) are saved in

a cache by the abstract interpretation, and later retrieved in FSI_rule (Line 8 in Algorithm 5.1)

during the construction of the FUN_SAFE theorem.

AUSPICE uses the Binarymap library in ML to implement its cache. The theorems saved to the

cache are keyed by the parsed string representation of the proof goal, so that in FSI_rule, having

access to the goal term to be proved is sufficient to retrieve the proved theorem, without having to

make a repeated call to HOL4’s prover to re-prove a result that has already been proved.

Caching of Parser Results

The storage and retrieval of safety proof obligations to and from the theorem cache in AUSPICE

makes heavy use of HOL4’s Parser structure to parse theorems and terms to strings in order to

generate cache keys. HOL4’s Parser structure is designed to format theorems and terms in HOL4

in colour for readable on-screen print-outs, and hence can be computationally intensive.

To save the computational effort taken to parse theorems and terms to strings, AUSPICE also

caches the results of HOL4’s parser for theorems and terms. Our parser cache is implemented as

a linear list, and lookups need to potentially walk the entire length of the list. The cache of parsed

strings has a Least-Recently-Used (LRU) eviction policy, so that we store only the N most recently

used parsed strings, and we rotate each retrieved cache entry to the head of the cache on each cache

retrieval.

For terms, we key our cache entries by a single term; for theorems, we key our cache entries by

a list of terms, where the last term is the conclusion of the theorem, and all terms prior to the last

term in the list are the hypotheses of the theorem.

In our implementation, we use a cache of 50 entries for both parsed terms and theorems. We

have found, in practice, that the hit rate of our parser cache is over 90% for our configured cache

size.



CHAPTER 6. PROOFS FOR REALISTIC EMBEDDED PROGRAMS 116

6.3 Support for Compiler Optimized Programs

Next, we discuss the extent to which compiler-optimized machine-code programs are supported by

the logic approach of this dissertation. We discuss compiler optimizations that we have found to

be amenable to the automated safety proofs by AUSPICE, i.e., machine-code programs containing

the optimizations could still be proved safe by AUSPICE. We also discuss a number of compiler

optimizations that cannot be supported, such that programs containing such compiler optimizations

cannot be automatically proved by AUSPICE to have our desired safety properties.

For our study into the extent to which compiler optimizations are supported by AUSPICE, we

make use of the compiler optimization flags supported by the gcc compiler. In particular, we stud-

ied the individual -f* compiler optimization flags that are automatically enabled at the -O1 level of

optimization for gcc. In future, we intend to generalize our results to study compiler optimizations

implemented by different compilers. We also intend to study the performance impact of programs

compiled with gcc’s -O0 level of optimization as compared to its -O1 level of optimization, to quan-

tify the performance impact of programs needing to be compiled at the -O0 level of optimization to

render them amenable to our approach.

To investigate which compiler optimizations are supported, we identified our test programs

(as described in §7) whose compiled machine-code was successfully optimized by each compiler

optimization flag, i.e., their compiled machine-code was different with versus without the particular

optimization flag. Then, we ran AUSPICE’s safety proof generation on the optimized machine-

code program to study if a safety proof could be generated for the optimized program. Based on

these findings, we report the compiler optimization flags that are compatible with AUSPICE’s safety

proof generation, and the ones that are not.

6.3.1 Unsupported Compiler Optimizations

We begin by discussing the gcc compiler optimizations for which AUSPICE does not support gen-

erating safety proofs for. First, there are a number of gcc optimization flags that are enabled as

part of the -O1 optimization level that are not supported by AUSPICE. This led us to investigate the

ability of AUSPICE to support individual -f* optimization flags that are enabled at the -O1 level.

We begin by discussing some of the -f* optimization flags enabled under -O1 that are not supported

by AUSPICE.
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Branchless Conditional Jumps (-fif-conversion, -fif-conversion2)

As described in §1.7, the logic approach in this dissertation does not support safety proofs in

machine-code programs containing conditionally-executed, non-branching instructions, as they in-

duce multi-graphs in the Control-Flow Graphs (CFG) in our analysis and proof generation.

Since the -fif-conversion and -fif-conversion2 optimization flags try to reduce machine-

code size by transforming “conditional jumps into branch-less equivalents” [139], and non-

branching conditionally-executed instructions are not supported in our logic approach, we are un-

able to support the automatic generation of safety proofs for these flags.

Frame Pointer Omission (-fomit-frame-pointer)

The safety properties that are specified and proved in our logic approach make direct use of the

frame pointer: to ensure CFI, AUSPICE proves that memory writes must be to addresses smaller

than the current frame pointer value (§3.1.3). The omission of the frame pointer will invalidate the

specification of safety properties in AUSPICE. Hence, the -fomit-frame-pointer flag, which

treats the frame pointer register as a regular register, will prevent AUSPICE’s safety property speci-

fication and proof from taking place, as the frame pointer value is required for AUSPICE to identify

safe addresses in memory where writes are allowed.

6.3.2 Supported Compiler Optimizations

Supported -O1 Optimization Flags

Next, we studied the individual gcc optimization flags that are enabled at the -O1 optimization level.

We identified our test programs that are successfully optimized by each of our tested optimization

flags, i.e., the sizes of the compiled programs changed after each optimization flag was enabled.

Table 6.1 summarizes the test programs in our investigation, and indicates the test programs whose

compilation was successfully optimized (i.e., machine-code changed) by each compiler optimiza-

tion flag.

Optimization Flag arrcpy sort stringsearch matmult
-fmerge-constants 4

-fsplit-wide-types 4

-ftree-ter 4 4 4

Table 6.1. Test programs that were successfully optimized by each gcc compiler optimization flag.
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We do not discuss the reasons why each particular optimization flag in Table 6.1 was able to

optimize each particular test program, as the effects of compiler optimizations are beyond the scope

of this dissertation.

With that, we briefly describe each optimization flag. The -fmerge-constants flag merges

constants that may be defined at multiple different program points, but which are identical, to save

space. The -fsplit-wide-types flag enables types such as “long long” on a 32-bit architecture

to be split up, allocated, and stored in non-contiguous registers. The -ftree-ter flag performs

temporary expression replacement during the code generation process for single-use expressions to

enable more efficient code generation.

We found that the above flags did not interfere with the ability of AUSPICE in our logic ap-

proach to still successfully generate safety proofs for our test programs, as they did not change the

compiled machine-code of our safety-checks, or the compiled machine-code of the suspect state-

ments that required safety-checks.

The above list of supported compiler optimization flags is non-exhaustive, as it is challeng-

ing to produce test programs that can successfully exercise each optimization flag that we wish to

investigate. In general, compiler optimizations that do not affect the compiled machine-code of

our safety-checks or of suspect statements, and that do not eliminate or optimize away important

information, such as the frame pointer, that is used in the safety proof process, will be supported.

Register Allocation

Register Allocation (§9.1 in [140]) refers to the process during compilation in which a set of pro-

gram variables are selected to reside in registers at a point in the program (as compared to residing

in memory on the function’s stack). While Register Allocation is not specifically enabled via a

compiler flag in gcc, it is an important optimization during compilation.

The logic approach in this dissertation is able to support safety-proof generation for programs

with variables that (i) are allocated to reside in registers, that also (ii) contain the destination address

for a memory write instruction (i.e., the variable is used as a pointer). For register-allocated local

variables that are not pointers, no safety assertions are generated, since the manipulation of primitive

variable types (e.g., ints) do not make use of loads and stores. For register-allocated local variables

that are pointers, when the address that the pointer variable is pointing to is written, a safety-check

will be prescribed by PCFIRE-C. Then, with the appropriate safety-check in place, our logic ap-

proach will be able to automatically prove that the memory-write is safe, as this memory-write will
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look similar to other unsafe memory-writes that make use of an intermediate register to store the

computed memory-write address, except that a register that is associated with a specific source-level

variable is used instead of an intermediate register.

6.4 Summary

In this chapter, we described a number of extensions to AUSPICE in our logic approach to support

features in real-world programs.

First, we described an axiomatic approach to automatically prove safety for ARM machine-

code programs containing system calls. We modeled the user-mode-visible outcomes of an OS

kernel servicing a system call on behalf of the user-mode program. Then, we automatically gen-

erated safety assertions for these system call invocations based on: (i) the POSIX specification of

the system call’s behavior, and (ii) the arguments supplied to the system call, as extracted from

the Hoare triples leading up to the system call. These safety assertions are initially symbolic and

opaque, because the semantics of the system call are available only at the inter-procedural level,

and we use a delayed approach to concretize these safety assertions later in the analysis, before

performing automatic discharge of the safety proof obligations.

Second, we described how we optimized the automated safety proof process to speed up the

process, and enable AUSPICE to support larger programs. We leveraged common compiler con-

ventions to abbreviate and reduce the number of proof terms required to reason about writes to local

variables on the stack of a function, and we used a novel form of context-sensitive analysis known as

“Single-Function Context-Sensitive” (SFCS) analysis to reduce the number of analyses required for

large programs. Then, we described how we made use of caching in AUSPICE to reuse computation

results and hence save computation time.

Finally, we investigated the ability of AUSPICE to support compiler-optimized machine-code

programs. We identified two compiler optimization flags in gcc’s -O1 level of optimization that

are not compatible with AUSPICE’s proof automation as they drop critical pieces of information

required for AUSPICE’s safety proofs. We also empirically identified three compiler optimization

flags that are enabled as part of gcc’s -O1 level of optimization, that AUSPICE is compatible with,

and we explain how AUSPICE is able to prove safety in programs that have local variables allocated

to registers.



Chapter 7

Experimental Evaluation and Case Studies

This chapter presents the results of the experimental evaluation of our approach to Control-Flow

Integrity (CFI). To evaluate our approach, we sought to investigate the kinds of programs that our

CFI approach can be applied to, to both prescribe source-code CFI safety-checks (our enforcement

approach), as well as automatically prove the CFI of the resulting programs (our logic approach).

We sought to evaluate our approach by the kinds and sizes of programs supported.

Research Questions

The research questions that we sought to answer in our experimental evaluation were:

• Can our CFI approach support programs with commonly-used C constructs? (§7.1)

• Can our CFI approach support programs containing simple file-based input/output (I/O) be-

havior? (§7.2)

• Can our CFI approach support embedded programs containing hardware I/O behavior? (§7.3)

• Can the scalability of our CFI approach be improved by our proposed proof automation opti-

mizations? (§7.4)

• Can our CFI approach be applied to security vulnerabilities? (§7.5)

At the same time, in each of our research questions, we also sought to evaluate the feasibility

of our approach, as measured by the times taken to generate our safety-check prescriptions, and to

prove the CFI of programs that our approach has been applied to. In addition, we also sought to

understand the costs associated with our approach to CFI, in terms of the run-time overheads of our

120
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prescribed safety-checks, as well as the increased source-code and machine-code sizes of programs

containing our prescribed safety-checks.

Overall Methodology

We begin by describing our overall methodology for answering the first three of our research ques-

tions. First, we selected a number of representative test programs for each of the three classes of

programs, for which we wish to demonstrate that our CFI approach supports. Second, for each of

our test programs, we provide CFI enforcement using PCFIRE-C [126] (§3) to obtain prescriptions

of safety-checks for enforcing CFI. We manually insert these prescribed safety-checks into our test

programs. Third, we use AUSPICE [128] (§4, 5, 6) to automatically generate safety proofs of the

CFI of the test programs.

To evaluate the feasibility of our approach, we measured the following: (i) the times taken

for PCFIRE-C to construct its safety-check prescriptions, and (ii) the times taken for AUSPICE to

complete its safety proof generation. To measure the costs of our approach, we measured the run-

time overheads introduced by the safety-checks prescribed by PCFIRE-C, and the increases in the

sizes of the source-code and machine-code of our test programs.

7.1 Benchmark Programs

First, we evaluate the ability of our CFI approach to provide CFI enforcement, as well as automati-

cally prove the CFI, of C programs containing a variety of C constructs. Our aim is to demonstrate

that our CFI approach can support a wide variety of C constructs (and their corresponding compiled

machine-code), and thus can be applied to different kinds of real-world programs with various C

constructs.

We begin by describing our evaluation methodology and experimental setup (§7.1.1). Then,

we present and discuss our experimental results on the times taken by our approach to prescribe

safety-checks (§7.1.2) and to generate CFI safety proofs (§7.1.3). Finally, we measure and present

the space overheads of our added safety-checks (§7.1.4), and the run-time overheads of the safety-

checks inserted in our test programs (§7.1.5).
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7.1.1 Evaluation Methodology

To demonstrate the variety of C programs supported, we evaluate our approach on C programs

selected from two benchmarks: (i) the MiBench [33] suite of commercially representative bench-

mark embedded programs, that contains embedded programs written in C that implement a number

of common algorithms and tasks, and (ii) the WCET Benchmarks [34] which, while designed for

benchmarking WCET algorithms, contains programs with various different C constructs, and are

suitable for our evaluation. We selected 2 programs from the MiBench suite, and we selected 20

programs from the WCET benchmark suite. We excluded 15 programs from the WCET bench-

mark suite that were incompatible with our approach, as they contained features such as recursive

function calls, floating point instructions, and unstructured control-flow jumps. In addition, we also

wrote a small number of test programs containing particular C constructs, and we also include an

implementation of the memcpy function from the Bionic C library for Android to demonstrate the

ability of our approach to support real-world C programs.

Table 7.2 describes our test programs, and characterizes our test programs by the features found

in each test program, and the sizes of the compiled machine-code and the number of source-code

lines.

Experimental Setup

Each test program was compiled using gcc 4.6.3. All test programs were compiled with debug

symbols included, and all test programs were statically linked, with no external libraries.

All safety-check prescriptions were generated on an Intel 2.6 GHz Core i7 (Quad-core) with

16 GB of RAM. All safety proofs were generated on an r3.large instance on the Amazon Elas-

tic Compute Cloud (EC2), which has 2 virtual CPUs on the Intel Xeon E5-2670 v2 (Ivy Bridge)

processor and 15.25 GB of RAM.

To evaluate the overheads of our inserted safety-checks, we ran our test programs on the Rasp-

berry Pi 1 Model B+ with a 700 MHz ARMv6 processor and 512 MB RAM with Linux 3.18.

7.1.2 Results: Safety-Check Prescription Times

Table 7.3 summarizes the results of our evaluation of our enforcement approach, as measured by

the time taken by PCFIRE-C [126] to prescribe safety-checks for each program.
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The times taken by PCFIRE-C to prescribe safety-checks for each program was less than 1 sec-

ond for most (20 out of 26) programs. PCFIRE-C took the longest time (7 minutes and 16 seconds)

to prescribe safety-checks for the nsichneu program, which had significantly more source-code

lines (3136 lines of C code before safety-checks were added) than the other test programs. Other

than the nsichneu program, PCFIRE-C took 53 seconds to prescribe safety-checks for crc32, be-

cause crc32 had a large input array included its code, and PCFIRE-C took 39.5 seconds and 8.4

seconds respectively to prescribe safety-checks for statemate and adpcm, which had 1276 lines

and 706 lines of C code respectively. We believe that the time taken by PCFIRE-C to generate

safety-check prescriptions for most programs makes it feasible for use by programmers.

7.1.3 Results: Safety Proof Times

Table 7.3 also summarizes the results of our evaluation of our logic approach, as measured by the

time taken by AUSPICE [128] to generate a CFI safety proof for each program.

The times taken by AUSPICE to generate CFI safety proofs for each program ranged from 9

minutes for arrcpy, to 18.65 hours for adpcm, to 322.5 hours for statemate. For the remaining

programs, AUSPICE took between 10 to 30 minutes to generate CFI safety proofs for small pro-

grams (e.g., arrcpy, sort, memcpy, crc32, ns, fir, prime), and between 1 to 2 hours to generate

CFI safety proofs for the larger, more complex (as measured by the number of CFG edges and nodes

in each program) programs (e.g., stringsearch, jfdctint, edn, fdct). We believe that the time

taken by AUSPICE to generate CFI safety proofs is feasible for use by programmers. We believe

that the run-times of AUSPICE are acceptable given that the proofs that it generates are strong (in

a formal logic) and foundational (about the behavior of machine-code, and built on trustworthy,

validated semantics as provided by the Cambridge ARM model [131, 31, 32]).

The CFI safety proof generation did not complete in a timely manner for nsichneu: AUSPICE’s

abstract interpretation algorithm for the automatic discharge of proof obligations (Algorithm 5.3,

as described in §5.4), completed in 53.5 hours. However, HOL4’s set simplifier (pred_setLib),

which instantiates the FUN_SAFE rule with the Control-Flow Graph information supplied to it, was

not able to generate all the proof obligations that need to be discharged for proving nsichneu safe:

pred_setLib’s built-in set simplifier could not complete the generation of all proof obligations

within 720 hours (30 days), at which point we stopped the proof generation process. This is be-

cause nsichneu consists of a single function that contains over 3000 lines of C code, and over

21000 machine-code instructions, with an extremely complex Control-Flow Graph (4147 nodes,
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7579 edges). In addition, the inordinately long proof time for statemate was due to a number of

functions having complex Control-Flow Graphs as well (e.g., the three most complex functions each

respectively had: 945 nodes / 1615 edges, 809 nodes / 1416 edges, 378 nodes / 652 edges), causing

HOL4’s set simplifier to take an extremely long time to generate proof obligations, accounting for

a vast majority of the proof-generation time.

Comparison with other CFI Techniques

We compare the time taken by AUSPICE in our logic approach to generate CFI safety proofs, to the

time taken by ARMor [18] to generate its SFI safety proof, for the stringsearch program from

the MiBench [33] benchmark.

ARMor reported taking 8 hours to generate its safety proof for stringsearch on an Intel Core

i7 2.7 GHz using HOL4. In contrast, AUSPICE took 1.06 hours to generate its CFI safety proof for

the stringsearch program. Hence, AUSPICE is able to generate safety proofs automatically in

a much shorter amount of time than prior techniques that generate strong and foundational safety

proofs.

7.1.4 Results: Space Overheads

In addition to the times taken to prescribe safety-checks and generate safety proofs, Table 7.3 also

summarizes the increase in the sizes of the source-code and compiled machine-code of our test

programs.

The additional number of lines of source-code introduced due to safety-checks is determined by

the number of suspect statements in each program that require additional safety-checks. Hence the

number of additional lines of source-code is dependent on the specific behavior of each program.

We argue that the increase in the size of the machine-code of each test program is the more

important metric, as it determines the amount of memory required for loading each program to

memory before it can be executed. From Table 7.3, we can see that the increase in the size of the

compiled machine-code of each program ranged from 0% for benchmark programs that did not

need any safety-checks (e.g., ns), to 156% for the nsichneu program, which had a large number

of unsafe memory writes to global variables. For most of the remaining test programs, the increase

in the sizes of their compiled machine-code ranged from 2% (fir) to 59% (compress), with most

programs experiencing an increase in compiled machine-code size of between 15% and 50%. We
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believe that the increases in the sizes of our compiled test-programs when safety-checks are added

is modest, and that our approach is feasible for use with most common programs.

7.1.5 Results: Run-time Overheads

Program Source Run-time Slowdown
arrcpy Own 113.3%
sort Own 72.3%

matmult1 Own 0.78%
memcpy Bionic [141] 800.8%

stringsearch MiBench [33] 213.2%
crc32 MiBench [33] 43.1%

Table 7.1. Run-time slowdowns in our test programs after safety-checks were introduced.

Next, we evaluate the run-time costs of the CFI safety-checks in our approach by measuring the

run-time slowdowns in our benchmark programs due to our introduced safety-checks. We selected

only our self-written programs, the memcpy implementation in the Bionic C library [141], and our

two test programs from the MiBench embedded software benchmark [33]. This is because the

WCET benchmark programs were designed for testing source-code-based WCET analysis tools,

as a result, they had some characteristics that made them unsuitable for studying their run-time

performance, e.g., they had very small input data sizes, and their run-times were extremely short,

making it difficult to measure the run-time overheads meaningfully.

Table 7.1 summarizes our results of measuring the run-time overheads of a selection of our

test programs. For each test program, we measured its run-time over 1000 iterations, and we com-

pared the run-time for each program with and without safety-checks inserted. Then, the run-time

slowdown is calculated as:

slowdown =
(runtime with safety-checks)− (runtime without safety-checks)

(runtime without safety-checks)

From our results in Table 7.1, we can see that the run-time slowdown ranged from 0.78% for

matmult1 to 800.8% for memcpy. The amount by which each test program’s run-time slowed

down depended on the proportion of each test program’s workload that invoked suspect statements

for which safety-checks were prescribed, and added. matmult1 had the smallest run-time slow-

down, as its workload was mainly computation. memcpy had the highest run-time slowdown, as

it is a worst-case scenario for PCFIRE-C’s safety-checks in terms of run-time performance, since
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memcpy’s workload is made up entirely of memory writes that require safety-checks. Hoisting our

memory-address-write checks out of the loop would help reduce our run-time overheads, although

this would require manually-specified loop invariants in our safety proofs. For test programs with

mixed workloads (e.g., stringsearch, crc32, sort), the run-time slowdown ranged from 43% to

213%.

Comparison with other CFI Techniques

We contrast the run-time slowdowns due to CFI enforcement mechanisms in previous CFI tech-

niques, with the run-time slowdown due to our prescribed CFI safety-checks.

Previous CFI techniques that detect CFI violations after-the-fact, such as Abadi et al. [15], XFI

[16], and CCFIR [25], incurred average run-time slowdowns of 16%, 11%, and 3.6% respectively.

On the other hand, ARMor [18], like PCFIRE-C, uses safety-checks (albeit for SFI [46] rather than

CFI) that are preventative in nature (although ARMor does not allow for customizable recovery

actions). ARMor incurred run-time slowdowns of 240% for the stringsearch program from the

MiBench [33] benchmark, which is comparable to our run-time slowdown of 213% for the same

program.

This suggests that preventative CFI techniques, such as PCFIRE-C, fundamentally incur higher

overheads as compared to CFI techniques that detect violations after-the-fact. This is because pre-

ventative CFI techniques require safety-checks at all suspect memory-writes, whereas after-the-

fact CFI techniques need safety-checks only at indirect jumps, and there are typically many more

memory-writes than indirect jumps in a program.

Nonetheless, we believe that the trade-off of higher run-time slowdowns, in exchange for the

ability to prevent the root-causes of CFI violations, and hence enable customizable recovery actions,

is acceptable for applications that may be safety-critical that require robust recovery actions when

(potential) CFI violations occur.
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Program Source S L N A B Bytes LOC Description
1 arrcpy Own 4 4 4 1442 17 Array-copy example in §3.1.1.
2 sort Own 4 4 4 1390 25 Our implementation of the selection sort algorithm.
3 matmult1 Own 4 4 4 3481 30 Our implementation of matrix multiplication.
4 memcpy Bionic [141] 4 4 4 4238 98 Efficient implementation of memcpy from the Bionic C library for Android.
5 stringsearch MiBench [33] 4 4 4 23532 68 Implementation of the Boyer-Moore string search algorithm.
6 crc32 MiBench [33] 4 4 5480577 91 Implementation of the CRC32 checksum algorithm.
7 nsichneu WCET [34] 4 45691 3136 Automatically-generated code simulating an extended Petri Net.
8 statemate WCET [34] 4 23871 1276 Automatically-generated code from the State-Chart Real-time Code Generator, STARC.
9 adpcm WCET [34] 4 21361 706 Implementation of the Adaptive Pulse Code Modulation algorithm.
10 ns WCET [34] 4 4 4 7862 436 Search in a multi-dimensional array (returns from middle of a 4-deep nested loop).
11 compress WCET [34] 4 4 4 11041 413 Data compression, adapted from the SPEC95 benchmark.
12 jfdctint WCET [34] 4 4 4 5293 309 Discrete-cosine transformation on an 8x8 pixel block.
13 fir WCET [34] 4 4 4 10121 263 Implementation of the Finite Impulse Response filter signal processing algorithm.
14 edn WCET [34] 4 4 4 4 4 9558 256 Implementation of filter calculations for the Finite Impulse Response filter operation.
15 fdct WCET [34] 4 4 4 4 6011 171 Implementation of the Fast Discrete Cosine Transform algorithm.
16 matmult WCET [34] 4 4 4 4 4018 119 Matrix multiplication of two 20 x 20 matrices.
17 ud WCET [34] 4 4 4 5010 138 Calculation of matrices with 3-deep nested loops.
18 expint WCET [34] 4 4 4 4012 133 Series expansion for computing an exponential integral function.
19 cnt WCET [34] 4 4 4 4329 69 Count non-negative numbers in a matrix.
20 crc WCET [34] 4 4 4 4 4438 110 CRC checksum computation on 40 bytes of data.
21 bsort100 WCET [34] 4 4 4 4074 96 Implementation of the bubble sort algorithm.
22 bs WCET [34] 4 4 2773 86 Binary search of an array of 15 integer elements.
23 prime WCET [34] 4 4 3739 46 Calculation of whether a given number is prime.
24 insertsort WCET [34] 4 4 4 2416 64 Implementation of the insertion sort algorithm.
25 fibcall WCET [34] 4 4 2243 64 Iterative calculation of the Fibonacci series, used to calculate fib(30).
26 janne_complex WCET [34] 4 4 4 2337 57 Program with nested loops.

Table 7.2. Summary of benchmark programs that we evaluated our CFI approach on, and the benchmark suite each program was from (“Own” refers to self-written test-cases).
WCET benchmark program descriptions adapted from [34]. Legend: S = always single path program (no potential flow dependency on external variables), L = contains loops, N
= contains nested loops, A = uses arrays and/or matrices, B = uses bit operations. Bytes refers to number of bytes in compiled program (without safety-checks), LOC = lines of C
code in program (without safety-checks).



C
H

A
PT

E
R

7.
E

X
PE

R
IM

E
N

TA
L

E
VA

L
U

A
T

IO
N

A
N

D
C

A
SE

ST
U

D
IE

S
128

Source-code LOC Machine-code bytes PCFIRE-C AUSPICE
Program Source (without (with (without (with Size Prescription Proof

safety-checks) safety-checks) safety-checks) safety-checks) Increase Time Time
arrcpy Own 17 33 1442 1714 18.9% 0.22 s 9.3 m
sort Own 25 46 1390 1718 23.6% 0.25 s 13.3 m

matmult1 Own 30 47 3481 3605 3.6% 0.56 s 2.87 h
memcpy Bionic [141] 98 143 4238 4891 15.4% 0.36 s 27.4 m

stringsearch MiBench [33] 68 100 23532 23592 0.25% 0.71 s 1.06 h
crc32 MiBench [33] 91 119 5480577 5480841 0.005% 53 s 19.2 m

nsichneu WCET [34] 3136 3662 45691 117079 156% 7 m 16 s DNF
statemate WCET [34] 1167 1304 23879 63627 162% 39.5 s 322.5 h

adpcm WCET [34] 706 826 21361 33573 52.7% 8.4 s 18.65 h
ns WCET [34] 436 436 7862 7862 0% 0.2 s 10.66 m

compress WCET [34] 413 447 11041 17529 58.8% 2.4 s 9.21 h
jfdctint WCET [34] 309 345 5293 6953 31.4% 0.56 s 1.65 h

fir WCET [34] 263 270 10121 10325 2.0% 0.35 s 22.2 m
edn WCET [34] 256 312 9558 12070 26.3% 1.0 s 1.89 h
fdct WCET [34] 171 208 6011 7363 22.5% 0.59 s 1.98 h

matmult WCET [34] 123 138 4034 4782 18.5% 0.27 s 44.5 m
ud WCET [34] 144 168 5030 6152 22.3% 0.36 s 49.7 m

expint WCET [34] 133 133 4012 4012 0% 0.16 s 18.0 m
cnt WCET [34] 69 80 4329 5057 16.8% 0.30 s 48.7 m
crc WCET [34] 110 127 4438 5219 17.6% 0.30 s 31.5 m

bsort100 WCET [34] 103 111 3352 3916 16.8% 0.33 s 16.6 m
bs WCET [34] 86 86 2773 2773 0% 0.16 s 3.4 m

prime WCET [34] 46 51 3739 3999 7.0% 0.22 s 28.65 m
insertsort WCET [34] 65 78 2416 3864 60.0% 0.32 s 52.6 m
fibcall WCET [34] 64 64 2243 2243 0% 0.16 s 3.3 m

janne_complex WCET [34] 57 57 2337 2337 0% 0.16 s 4.0 m

Table 7.3. Evaluation results of source-code and machine-code size increases and prescription and proof times for our benchmark programs. (“DNF” = Did not finish in less than
30 days.)
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7.2 File-based I/O

Next, we investigate how our approach to CFI in this dissertation can be applied to user-mode

programs that contain file input/output (I/O) behavior. For user-mode programs to perform file I/O

operations, they need to be able to invoke system calls (syscalls), as the underlying operating system

(OS) needs to perform the file I/O operations on behalf of the user-mode program. In §6.1, we

described how we extended AUSPICE in our logic approach to support automated safety-property

proofs for target programs that contain syscall invocations. At the same time, these target programs

also need to be developed in a way that renders them amenable to the automated generation of

safety-property proofs in AUSPICE.

In §7.2.1, we describe the process of developing our target programs that contain syscalls, so

that our target programs are amenable to the automated safety-property proof process in AUSPICE.

At a high-level, we did not make use of standard C library functions, and we directly called our

syscall wrappers, as described in §7.2.1. To simplify our software development process, we wrote

simple helper functions around our syscall wrappers.

Then, in §7.2.2, we describe our target programs and the experimental setup for evaluating the

ability of our CFI approach to support programs containing file-based I/O behavior, and we discuss

the results of our evaluation in §7.2.3 and §7.2.4. Finally, we investigate the relationship between

input buffer sizes and the trade-off between proof times and run-time overheads of our test programs

in §7.2.5.

7.2.1 Developing Automatically-Provable Programs with File-based I/O

In typical software development projects that use the C programming language, the development

environment consists of a compiler suite, such as gcc, which performs a sequence of steps such as

preprocessing of directives, compilation of source-code to (relocatable) object-code, and linking of

object code to produce machine-executable binary programs. In addition, the development envi-

ronment, often in cooperation with the underlying OS, typically provides libraries for performing

common functions. For software development in C, compiler suites such as gcc are often designed

to work with a “standard” library, such as the GNU libc library. Such a standard library typically

provides various functionalities, including file-based I/O, and any syscall invocations required to

perform I/O functionality are usually transparently performed on behalf of the programmer in the

standard library.
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Before describing our experimental evaluation of the application of the approach to CFI in this

dissertation to programs containing file-based I/O, we describe some of the practical steps taken to

develop programs that support file-based I/O, so that the resulting programs are amenable to the

automated safety proof generation of the logic approach in this dissertation.

Limiting Unsupported and Opaque Code

The logic approach in this dissertation generates safety proofs whose reasoning about inter-

procedural program behavior is precise and context-sensitive: all functions and instructions that

are reachable from the entry function to the program must be reasoned about in a program’s safety

proof, as explained in §4.2.4. As a result, all instructions that can be executed in a program must be

statically linked and included in the program binary (as stated in §1.3), and all instructions that are

statically linked and included in the program binary must meet the requirements stated in §1.3, 1.7

(e.g., no multi-threaded behavior).

In a typical C project, a compiler suite such as gcc automatically links to and includes support

code from a C standard library such as libc, which performs startup tasks to prepare the user

program for execution. Concretely, the gcc compiler calls the GNU ld linker with a default linker

script. This default linker script specifies that the startup function in the final program executable

will be the libc-provided startup function that: (i) prepares data structures for multi-threading, and

(ii) copies command-line arguments into the stack of the entry function of the user program, and

(iii) calls the entry function (i.e., main()).

However, the default libc startup function performs a number of tasks, many of which contain

behavior unsupported by the logic approach in this dissertation (e.g., multi-threading behavior). In

addition, the startup function typically calls a number of other functions, and this adds to the number

of instructions that would need to be verified by our logic approach if we tried to prove the CFI of

programs compiled and statically linked with the default libc startup code (and all of the other

functions it calls).

In this dissertation, we take a “clean-slate” approach to the software compilation process to

eliminate the standard libc support code that: (i) adds to the scalability challenge for our logic

approach by introducing additional instructions whose behavior needs to be verified, and (ii) con-

tains behavior (e.g., concurrency and multi-threading related behavior) that is not supported by our

logic approach. Instead, to minimize opaque behavior of the kind introduced by GNU libc in our
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target programs, and to minimize the size of the programs verified in our logic approach, we take

the following steps:

1. We provide a custom GNU ld linker script which avoids running GNU libc’s program ini-

tializer (__libc_init()) before a user program’s main() function.

2. We provide a custom initializer function, consisting of 20 lines of C code, that only pre-

pares command-line arguments (i.e., argc, argv) for the target program. This minimizes the

amount of code that is added to the target program.

Enabling System Calls and File I/O Behavior

Next, to perform file-based I/O, user-mode programs need to invoke syscalls to request the under-

lying OS to perform the desired I/O operations on behalf of the user-mode program. As we require

all our test programs to be statically compiled and linked (§1.3), and typical C standard library im-

plementations such as GNU libc have large library functions that provide rich functionality, using

libc-provided I/O helper functions will result in large amounts of library code being added to our

target programs that our logic approach will need to prove the safety of.

Instead, in this dissertation, we also adopt a “clean-slate” approach to enabling our target pro-

grams to carry out file-based I/O behavior. Instead of relying on GNU libc-provided helper func-

tions to perform I/O operations, we have implemented thin wrappers of hand-written assembly code

around a small number of common syscalls that we believe are needed to support basic file-based

I/O operations. Each assembly code wrapper prepares the arguments for the syscall for the syscall

invocation, and is between 15 to 20 lines long. This minimizes the amount of code that is statically

compiled and linked into each test program, thus providing AUSPICE in our logic approach with

compact programs that support file-based I/O, without introducing excessively many instructions

that need to be proved safe.

We then provide C function prototypes for these wrappers in a C header file which can be

included by programmers to enable them to use these wrappers as regular C functions in their

programs to perform file-based I/O operations. We implemented assembly code wrappers for the

following syscalls: open, close, read, and write, to support file-based I/O.

We envision that in future, this “clean-slate” approach to file-based I/O can be extended to

writing helper functions that provide similar functionality as some of the helper functions in the

GNU libc standard library, but with added safety-checks that are prescribed by PCFIRE-C in our
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enforcement approach, so that the resulting library code can be proved to be safe by AUSPICE in

our logic approach.

In addition to enabling programmers to directly invoke syscalls, we also wrote simple versions

of the following helper functions typically provided by GNU libc: strlen, strpos, strrev,

itoa, atoi, memset, memcpy. We completed the implementation of each function before using

PCFIRE-C to prescribe safety-checks for each function, after which we inserted the safety-checks

in each function. We also implemented a helper function, read_line, which reads up to a given

number of bytes from a given file descriptor into a given buffer, until a newline character is encoun-

tered in the input stream.

7.2.2 Evaluation Methodology

To evaluate the ability of our CFI approach to provide CFI enforcement and safety proof generation

for programs with file-based I/O behavior, we implemented simple versions of three common file

I/O utilities found in Linux. We implemented simple versions of the cat, wc, and grep text utilities

using the software development methodology described in §7.2.1. The functionality of each text

utility is as follows:

• cat: Outputs contents of a file.

• wc: Counts number of words in a file.

• grep: Prints lines in a file containing given a string.

These programs contained the read, write, open, and close syscalls.

When implementing our three text utilities, we first implemented each text utility, after which

we used PCFIRE-C to generate prescriptions of safety-checks required for each utility (which also

generated the safety-checks required for statically linked helper functions). We then measured the

time taken by PCFIRE-C to prescribe safety-checks, and the time taken by AUSPICE to generate

safety proofs of CFI for each test program. We also measured the run-times of each utility with and

without the prescribed safety-checks to measure the run-time overheads due to the safety-checks.

Experimental Setup

We wrote each utility in C, and we compiled each program using gcc 4.6.3 on Linux 3.18 on the

ARM platform. All programs were compiled with debug symbols included, and all programs were

statically linked.
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Similarly to our experiments in §7.1, all safety-check prescriptions were generated on an In-

tel 2.6 GHz Core i7 (Quad-core) with 16 GB of RAM. All safety proofs were generated on an

r3.large instance on the Amazon Elastic Compute Cloud (EC2), which has 2 virtual CPUs on the

Intel Xeon E5-2670 v2 (Ivy Bridge) processor with 15.25 GB of RAM.

To evaluate the overheads of the inserted safety-checks, we ran our test programs on the Rasp-

berry Pi 1 Model B+ with a 700 MHz ARMv6 processor and 512 MB RAM with Linux 3.18.

7.2.3 Results: Safety Proof Times and Space Overheads

Source-code LOC Machine-code bytes PCFIRE-C AUSPICE
Program (without (with (without (with Size Prescription Proof

safety safety safety safety Increase Time Time
-checks) -checks) -checks) -checks)

cat 275 337 6400 6780 5.9% 0.24 s 43.6 mins
wc 292 354 11680 12608 7.9% 0.57 s 2.15 h

grep 293 355 8434 8858 5.0% 0.48 s 1.07 h

Table 7.4. Safety-check prescription times, safety proof generation times, and source-code and machine-code size
increases due to safety-checks for file-based I/O programs.

Next, we present the results of our evaluation of our CFI approach on our file-based I/O utilities.

Table 7.4 summarizes the results of our evaluation for our test programs containing file-based I/O.

The compiled binary files for our file-based I/O utilities were between 6.7 kilobytes to 12.6

kilobytes in size. The added safety-checks, as prescribed by PCFIRE-C, resulted in the compiled

machine-code of our file-based I/O utilities increasing by between 5% and 8%. PCFIRE-C took less

than 1 second to prescribe safety-checks for all of our file-based I/O programs. AUSPICE took less

than 2.15 hours to automatically prove the safety of each of our test programs.

Hence, our results show that: (i) the added safety-checks in our enforcement approach cause

only small increases in the sizes of our file-based I/O utilities, (ii) the PCFIRE-C tool in our en-

forcement approach prescribed safety-checks in very short amounts of time, and (iii) AUSPICE in

our logic approach can prescribe safety-checks and prove safety automatically in realistic programs

that implement useful I/O functionality using syscall invocations.

7.2.4 Results: Run-time Overheads

Table 7.5 summarizes the run-time overheads of the safety-checks in our file-based I/O utilities. We

ran each program on a 10 MB input file over 5 iterations and we report the average run-times. We
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Run-times Slowdown
Program Safe Unsafe Original vs. Unsafe vs. Original
cat 151s 149s 5.7s 0.96% 2549%
wc 25.2s 24.5s 4.4s 2.7% 479%

grep 37.3s 37.2s 4.9s 0.40% 655%

Table 7.5. Run-time overheads of file-based I/O utilities.

report the run-time slowdown of each “safe” utility, as compared to an “unsafe” version without

the PCFIRE-C-prescribed safety-checks. The “safe” version of each utility slowed down between

0.39% to 2.71% as compared to the “unsafe” version without our safety-checks. This suggests that

the slowdown due to PCFIRE-C’s safety-checks in more realistic programs with a mixed workload

is likely to be much less than shown in §7.1.5 for our benchmark programs.

Since our goal was to evaluate our safety-checks on programs with I/O behavior, we did not aim

to optimize our implementations. Nonetheless, we compared the run-times of our utilities with the

system-provided versions for completeness. Both the safe and unsafe versions of each utility were

significantly slower than their system-provided versions. Slowdowns ranged from 4.7x for wc, to

25.5x for cat, as the system-provided utilities used large input buffers to amortize the overheads of

syscalls, whereas our utilities invoke the read syscall for each character to minimize proof times.

7.2.5 Impact of Input Buffer Size on Proof Times and Run-time Overheads

Buffer Size Proof Time Run-time Slowdown vs. Original
1 byte 44.2 mins 2549%

10 bytes 48.58 mins 148.9%
20 bytes 82.2 mins 61.5%
30 bytes 165.6 mins 56.5%

Table 7.6. Improved run-time slowdown but slower proof times with larger buffer sizes for cat.

Next, we investigated the cause of the discrepancy between the run-times of our implementa-

tions of file-based I/O utilities, and the system-provided versions of our file utilities. If the cause

of the slower run-times of our implemented file-based I/O utilities were due to our PCFIRE-C-

prescribed safety-checks, the run-time performance of the “unsafe” versions of our implemented

utilities (i.e., which did not contain the PCFIRE-C-prescribed safety-checks) would be similar to

that of the system-provided versions of each utility. However, the “unsafe” versions of our file-

based I/O utilities performed significantly worse than their system-provided versions.



CHAPTER 7. EXPERIMENTAL EVALUATION AND CASE STUDIES 135

We hypothesized that the cause of the slower run-times in our versions of the our utilities, as

compared to the system-provided versions, was due to differences in the way file I/O was handled

in our implementations, as compared to in the GNU libc C standard library. In particular, libc

provides a wrapper around the read syscall which performs buffered reading of data from a given

file descriptor, whereas in our implementation, we directly invoked the read syscall with no input

buffering.

To validate our hypothesis, we implemented a buffered version of our read_line function for

reading input from a file descriptor, with a configurable buffer size. Then, we measured the effects

of increasing input buffer sizes on the run-times of safe versions of our implementation of the cat

utility.

Table 7.6 summarizes our results. As the buffer size in read_line is increased from 1 to 30

bytes, the run-time slowdown for cat improved significantly from 2549% to 56.5%, even with

PCFIRE-C-prescribed safety-checks included in the program. On the other hand, the safety proof

time increased by 4x to 165.6 minutes. The safety proof time increased with larger input buffers

as AUSPICE needs to check that each byte in the input buffer is safe. On the other hand, the run-

time of cat improved as the input buffer size is increased, as the high cost (in terms of number of

processor cycles used) of making a context switch to invoke the read syscall is amortized over a

larger number of characters read.

Hence, there is a trade-off between run-time performance and safety proof times in AUSPICE

for file-based I/O utilities, due to the inverse relationship between verification cost, as measured by

the safety-proof generation time of AUSPICE, and run-time overheads.

7.3 Hardware I/O

Next, we investigate how our approach to CFI in this dissertation can be applied to embedded

software that contains hardware input/output (I/O) behavior. In particular, we evaluate our support

for embedded software that performs hardware I/O using the Raspberry Pi single-board-computer.

We develop our test programs for the Raspberry Pi that interface with various hardware input sources

and hardware outputs via the General Purpose I/O (GPIO) interface on the Raspberry Pi.

We begin by describing how we developed our test programs that support hardware I/O behavior,

that are also amenable to the automated safety proof generation in our approach (§7.3.1). Then, we
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describe our evaluation methodology and experimental setup (§7.3.2). Next, we present and discuss

the results of our evaluation (§7.3.3).

7.3.1 Support for Hardware-based I/O

To support the development of embedded software that contains hardware I/O behavior, we extended

our approach in §7.2.1 for supporting file I/O behavior.

First, for our evaluation in this dissertation, we selected the Raspberry Pi single-board-computer,

as it uses an ARMv6 processor (where ARMv6 is the ISA supported by our logic approach), and

because it provides an easy-to-use General Purpose I/O (GPIO) digital interface for connecting to

hardware input devices such as sensors, and output devices. In addition, the ARM architecture is

widely used in Internet-of-Things devices [142].

Second, to support hardware I/O in user-mode programs on the Raspberry Pi, we make use

of memory-mapped I/O to address the Raspberry Pi’s GPIO interface. Thus, to enable user-mode

programs to perform memory-mapped I/O, we make use of our assembly wrapper for the open

syscall (as described in §7.2.1), and we wrote additional wrappers for the mmap and munmap syscalls.

In addition, we also wrote an assembly wrapper for the nanosleep syscall to enable user-mode

programs to request delays of its own execution from the OS, e.g., to implement polling behavior.

Third, to ease the process of writing C code to perform hardware I/O operations, we adapted the

WiringPi C library [143]. WiringPi is a convenience library to help programmers write C programs

that interface with hardware for the Raspberry Pi. We adapted a small subset of the WiringPi library

to invoke syscalls via our assembly wrappers instead of via the interface provided by the GNU libc

C standard library. This required minimal changes to the subset of WiringPi that we adapted. In

addition, we used PCFIRE-C to prescribe safety-checks for the subset of the WiringPi library that

we adapted, and we added the prescribed safety-checks to our adapted library.

7.3.2 Evaluation Methodology

Next, we implemented 4 programs containing hardware inputs and outputs on the Raspberry Pi

to evaluate our CFI approach in this dissertation. Our test-programs contained the mmap, munmap,

open, close, and nanosleep syscalls. Our 4 test programs are:

• blink: Controls an LED, and turns it on and off repeatedly to blink the LED.
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• led: Uses an analog light sensor (with a capacitor arranged in series) to sense the amount of

ambient light, and turns on an LED when the amount of ambient light sensed falls below a

given threshold.

• lcd: Initializes and prints a string to an 16x2 monochrome LCD.

• fall-det: Implements the fall-detection algorithm in [144] and detects falls in persons using

an ADXL345 accelerometer, e.g., when the accelerometer is worn by a person. Figure 7.1

shows images of the accelerometer (connected to a Raspberry Pi) being dropped from a height

in our drop test, while Figure 7.2 shows screenshots of the output from the fall-det program

running on the Raspberry Pi.

Figure 7.1. Snapshots of accelerometer being dropped from a height to simulate a fall.

Figure 7.2. Screen output showing fall detection. “Fi→ Fj” indicate state-transitions in the state-machine algorithm for
fall detection in [144]. A “Critical Fall” is reported when there is no movement for a certain amount of time after a fall is
first detected and the “Alert Fall” state is triggered.

Then, we measured the times taken for PCFIRE-C in our enforcement approach to prescribe

safety-checks for each test program, and we measured the times taken for AUSPICE in our logic

approach to automatically prove the safety of each test program. We did not measure the run-time

overheads of our safety-checks on our hardware I/O test programs, as we focused on ensuring that

each test program could perform their intended hardware I/O operations.
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Experimental Setup

We wrote each test program in C, and we compiled each program using gcc 4.6.3 on Linux 3.18 on

the ARM platform. All programs were compiled with debug symbols included, and all programs

were statically linked.

Similarly to our experiments in §7.1, all safety-check prescriptions were generated on an In-

tel 2.6 GHz Core i7 (Quad-core) with 16 GB of RAM. All safety proofs were generated on an

r3.large instance on the Amazon Elastic Compute Cloud (EC2), which has 2 virtual CPUs on the

Intel Xeon E5-2670 v2 (Ivy Bridge) processor with 15.25 GB of RAM.

In addition, we ensured that each of our test programs performed their intended hardware I/O

behavior by running each test program on a Raspberry Pi 1 Model B+ with a 700 MHz ARMv6

processor and 512 MB RAM with Linux 3.18, with the required hardware input and output devices

connected via the Raspberry Pi’s GPIO interface.

7.3.3 Results

Source-code LOC Machine-code bytes PCFIRE-C AUSPICE
Program (without (with (without (with Size Prescription Proof

safety safety safety safety Increase Time Time
-checks) -checks) -checks) -checks)

blink 291 407 13546 13572 0.2% 1.3 s 1.07 h
light 312 428 13930 14920 7.1% 1.3 s 1.64 h
lcd 625 908 20764 25076 20.8% 4.4 s 37.5 h

fall-det 693 925 23021 31032 34.8% 5.2 s 71.8 h

Table 7.7. Safety-check prescription times, safety proof generation times, and source-code and machine-code size
increases due to safety-checks for hardware I/O programs.

Next, we present and discuss the results of our evaluation for programs containing hardware I/O

behavior. Table 7.7 summarizes our evaluation results for the sizes of the source-code and machine-

code of our test programs before and after safety-checks were added, and for the times taken by

PCFIRE-C to prescribe safety-checks, and for AUSPICE to generate safety proofs.

First, the added safety-checks introduced between approximately 100 (for blink and light) to

300 (for lcd and fall-det) lines of C code. The compiled test programs containing safety-checks

had binaries that were between 0.2 % and 7.1% larger (for blink and light) to 20% to 35% larger

(for lcd and fall-det).
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Second, PCFIRE-C prescribed safety-checks for all four of our hardware I/O test programs in

less than 5 seconds. AUSPICE generated the safety proofs for the blink and lcd test programs in

under 2 hours, and this proof time is comparable to that of our file I/O examples in §7.4. On the

other hand, the proof times for the lcd and fall-det test programs are significantly longer. This

is because both programs are significantly larger, and have much deeper call-trees. For instance,

for our file I/O test programs, the deepest call-tree path has a depth of 4, and for the blink and

light examples, the deepest call-tree path has a depth of 3. In contrast, lcd and fall-det both

have a maximum call-tree depth of 6, as they have more complex functionality. Since the run-time

of AUSPICE’s inter-procedural analysis is exponential in the depth of the call-tree, the proof times

are significantly longer for lcd and fall-det.

We note that lcd and fall-det have 2229 and 3331 instructions respectively, and are signif-

icantly larger than the largest reported test-programs for which safety properties have been auto-

matically proved using a foundational approach that considers the full semantics of the instructions

(1104 instructions using ARMor [18], which uses the Cambridge ARM model [32]).

7.4 Proof Optimization

Next, we investigated the impact of our safety proof optimizations, as described in §6.2, on the

times taken to generate safety proofs in AUSPICE. First, we investigate the effects of leveraging

common compiler conventions to optimize the safety assertion analysis in AUSPICE (§6.2.1) on

proof times. Second, we investigate the effects of weakening the context-sensitivity of AUSPICE’s

overall analysis (§6.2.2) on the number of analysis iterations needed.

7.4.1 Safety Assertion Analysis Optimizations

To quantify the impacts of the optimizations to AUSPICE’s safety assertion analysis, we compared

the safety proof times on a small number of our benchmark test programs (described in §7.1) using

AUSPICE’s original, unoptimized safety assertion analysis (§5.4), as compared to the optimized

safety assertion analysis (§6.2.1).

Experimental Setup

For this experiment, We compared the safety proof times for 3 programs: arrcpy, sort, and

stringsearch. For this experiment, all safety proofs were generated on an Intel Core i7 2.6 GHz
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quad-core processor with 16 GB RAM (note that this is a different setup from our experiments in

§7.1, which used a slower CPU).

Results

Program Size Unoptimized Optimized Optimized:
(Bytes) Proof Time Proof Time X% faster

arrcpy 1714 16.4 m 6.5 m 252%
sort 1718 2 h 9.4 m 1297%

stringsearch 23592 6.05 h 0.76 hours 796%

Table 7.8. Comparing AUSPICE’s safety proof times before and after optimization of the safety assertion analysis in
AUSPICE.

Table 7.8 summarizes our results. AUSPICE’s proof optimizations significantly improved the

times taken for automated safety proofs for all of our test programs. With our optimized safety

assertion analysis in AUSPICE, the safety proof times for our test programs improved by between

252% (for arrcpy) to 1297% (for sort).

7.4.2 Optimization of Inter-procedural Analysis

Iterations of Analysis
Program Program Size (Bytes) CSCS (Unoptimized) SFCS (Optimized) Optimization
lcd 25076 2799 751 73%

fall-det 31032 5069 845 83%

Table 7.9. Comparison of number of iterations of analysis of Call-site Context-Sensitivity (CSCS) vs. Single-Function
Context-Sensitivity (SFCS) (§6.2.2).

Next, to show the optimization gains from AUSPICE’s SFCS inter-procedural analysis (§6.2.2),

we compared the number of iterations that the SafeFunctionAnalysis function (Algorithm 5.1)

needs to be run in our optimized SFCS analysis to the number of iterations it would have taken

in the unoptimized CSCS analysis. The savings in the number of analysis iterations is greatest in

programs that make repeated calls to non-syscall-wrapper functions in the program.

We simulated the number of iterations the inter-procedural analysis needs to run for the lcd

and fall-det test programs by analyzing their function-level call-trees. Table 7.9 summarizes the

results of using SFCS over CSCS. The number of iterations of the inter-procedural analysis for

constructing a safety-proof reduced by 73% for lcd, and by 83% for fall-det, showing that SFCS



CHAPTER 7. EXPERIMENTAL EVALUATION AND CASE STUDIES 141

made our analysis feasible for large and complex test programs such as lcd and fall-det, which

have repeated calls to the same callee functions (e.g., helper functions) in each function.

7.5 Case Study: Prevention of Security Vulnerabilities

Next, we carried out a small-scale case study to apply our approach to CFI in this dissertation to

a known security vulnerability in a piece of commodity software. The objective of this case study

was to investigate if our approach can both: (i) provide CFI enforcement through our safety-check

prescriptions, to prevent a known security vulnerability, and (ii) provide an automatically generated

safety proof stating that the resulting program, after adding our safety-check prescriptions, now

possesses the safety property of CFI, and hence will no longer be susceptible to the (now mitigated)

security vulnerability.

In this case study, we make use of a buffer overflow vulnerability in the WU-FTPD daemon

for FTP servers. This vulnerability was announced in CVE-1999-0878, and is part of a corpus of

known security vulnerabilities for evaluating software static-analysis tools curated by Zitser et al

[145].

We first describe the target software, the WU-FTPD daemon, and the details of the buffer over-

flow vulnerability in WU-FTPD (§7.5.1). Then, we describe the process and results of applying our

CFI approach to the target software (§7.5.2). Finally, we conclude the case study by discussing the

impacts of our prescribed CFI safety-checks on the behavior of the target program (§7.5.3).

7.5.1 Buffer Overflow Vulnerability in WU-FTPD

Zitser et al. [145, 146] assembled a corpus of buggy C code fragments containing actual buffer

overflow vulnerabilities from three popular open-source applications: the BIND DNS server, the

WU-FTPD FTP server, and the Sendmail mail transfer agent (MTA). Each buffer-overflow vulner-

ability in the corpus contained buggy C code fragments, a small driver program for invoking the

vulnerable code fragment, as well as a “correct” code fragment that repaired the root-cause of the

buffer overflow vulnerability. This corpus consisted of 15 buffer overflow vulnerabilities, and we

selected one of these fragments of C code to apply our CFI approach to.

We selected the C code fragment for the “WU-FTPD mapped chdir” vulnerability from Zitser’s

corpus. This vulnerability was announced in the Common Vulnerabilities and Exposures (CVE)

database as CVE-1999-0878, and is a remotely exploitable vulnerability in versions of WU-FTPD
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older than or equal to 2.5. Listings A.1 and A.2 in §A.1 show the vulnerable fragments of C code

in WU-FTPD, as curated by Zitser [146].

The “mapped chdir” vulnerability was caused by calls to the strcpy() and strcat() func-

tions provided by the GNU libc standard library for C that copied tainted pathnames into a buffer.

WU-FTPD failed to check that the supplied pathnames being copied could fit in their destination

buffers before calling strcpy() and strcat(), thus making it possible for a buffer-overflow to

occur. Specifically, there were three separate buffers that could be overflowed as a result of the

unchecked calls to strcpy() and strcat().

7.5.2 Applying our CFI Approach

To apply our CFI approach in this dissertation, we performed two steps: (i) we compiled the buggy

code fragment with its driver code; (ii) we obtained prescriptions of safety-check code by running

the PCFIRE-C tool on the resulting compiled program and the buggy source-code fragment, after

which we inserted the prescribed safety-checks into the buggy source-code, and (iii) we recompiled

the resulting code with the prescribed safety-check code inserted, and ran the AUSPICE tool on the

compiled machine-code to try to obtain a safety proof of the CFI of the resulting code.

PCFIRE-C generated a total of 7 safety-check prescriptions in 0.82 seconds. AUSPICE took

2.46 hours to complete its safety proof generation on the resulting compiled program containing the

prescribed safety-checks on an r3.large instance on the Amazon Elastic Compute Cloud (EC2),

which has 2 virtual CPUs on the Intel Xeon E5-2670 v2 (Ivy Bridge) processor with 15.25 GB of

RAM.

Thus, we demonstrated that our CFI approach can be applied to programs containing buffer

overflow vulnerabilities to both: (i) insert safety-checks to prevent exploitable buffer overflow vul-

nerabilities, and (ii) automatically prove that the resulting program can no longer be exploited (by

proving that the CFI safety property holds for the program).

7.5.3 Impacts on Program Behavior

Next, we discuss the impacts of the PCFIRE-C-prescribed safety-checks on the behavior of the

buggy program in our case study. We first describe Zitser’s proposed fixes to eliminate the ex-

ploitable buffer overflows in the “mapping chdir” vulnerability in WU-FTPD. Next, we describe

our safety-checks as prescribed by PCFIRE-C, and compare them with Zitser’s proposed fixes. Fi-
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nally, we describe the run-time behavior in programs containing our prescribed safety-checks, and

contrast this with the run-time behavior of Zitser’s fixed version.

Fixes in Zitser’s “Correct” Version

Listing A.3 in §A.2 lists Zitser’s fixed version of the WU-FTPD code fragment that contains the

“mapped chdir” buffer-overflow vulnerability.

At a high-level, the code fragment for the WU-FTPD vulnerability includes the string.c

source file (which provides the string functions memcpy, strchr, strcpy, strcat, strrchr and

strlen), and Zitser’s proposed fixes do not modify any of these functions, presumably because they

are provided by the GNU libc standard library.

Then, Zitser’s fixes eliminate the buffer overflows in the code fragment in the following ways:

• The mapping_getwd() function is replaced with mapping_getcwd(); the new

mapping_getcwd() function has an added size parameter. Then, the previous call to

strcpy() is replaced with the length-guarded strncpy(), which uses this supplied size

parameter, and the destination buffer which is written to is manually null-terminated in this

new function.

• In the do_elem() function, a check is added to ensure that strcat() is called only if the

length of the buffer to be concatenated on to the destination buffer will not exceed the length

of the destination buffer; also, the length-guarded strncat() function is used instead of

strcat() in another concatenation operation.

• In the pwd() function, a canary is used to detect if the path buffer has been overflowed [44],

after a function whose buffer can potentially be overflowed (getwd() or getcwd()) is called.

Then, if the buffer has been overflowed, a warning message is printed.

• In addition, the pathspace and old_mapped_path buffers are declared as global variables,

so that if these buffers are overflowed, they cannot result in function return pointers saved to

the stack being overwritten.

Thus, Zitser’s fixes try to eliminate potential buffer overflows either by using length-guarded

versions of string functions provided by the GNU libc C standard library, such as strncpy() and

strncat(), or by checking the lengths of destination buffers before calling the length-unguarded

versions of string functions such as strcpy() and strcat().
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Comparing Our Safety-Checks with Zitser’s “Correct” Version

Next, we describe the safety-checks prescribed by PCFIRE-C. Listings A.4 and A.5 in §A.3 list the

source-code fragments with our prescribed safety-checks added.

Unlike in Zitser’s fixes, we do not assume that the GNU libc C standard library cannot be

modified; instead, our approach would involve writing safe versions of the equivalent functions

provided by the C standard library.

Our prescribed source-code safety-checks are added directly at the source-code statements

where strings (i.e., arrays of chars) are written to. This includes the memcpy, strcpy, and strcat

functions in Listing A.5. In addition, our prescribed source-code safety-checks are also added to the

source-code statements in the do_elem() and mapping_chdir() functions in Listing A.4 where

path buffers are written to.

The main difference between our safety-checks and Zitser’s fixes is that our prescribed safety-

checks address the root-causes of potentially dangerous memory writes, and that we allow safety-

checks to be inserted in (modified) library functions such as strcpy, whereas Zitser’s approach

assumes that library functions will not be modified, and their fixes work around existing library

functions.

In addition, in using the length-guarded versions of the GNU libc-provided string manipulation

functions, such as strncpy() and strncat(), Zitser’s fixes implicitly assume that the length argu-

ment supplied to the mapping_getcwd() function is correct, and that the buffer addresses supplied

are valid char arrays.

However, as we illustrated in our example in §3.1.1, length-guarded versions of functions such

as strcpy() can still be susceptible to buffer-overflow vulnerabilities when the wrong buffer length

is supplied to such functions, or when buffer addresses supplied are incorrect or invalid. As a result,

AUSPICE was unable to prove that the buggy code fragment which contains Zitser’s fixes possessed

the CFI safety property. On the other hand, the safety-checks prescribed in our approach that we

added prevent all root-causes of buffer-overflows that may lead to CFI violations, and this is borne

out by the CFI proofs generated successfully by AUSPICE.

Comparing Run-time Behavior During Buffer Overflow

The safety-checks prescribed by the PCFIRE-C tool in our approach, when added to the target

program as-is, have the following features: (i) they prevent potential CFI violations from occurring,
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and (ii) they do not specify any recovery action. As a result, the prescribed safety-checks will cause

potentially dangerous memory writes (e.g., to arrays) to not be executed when they are not safe,

resulting in the memory writes being silently ignored.

Concretely, the modified string-manipulating functions such as memcpy(), strcpy(), and

strcat() that have our prescribed safety-checks added to them will silently stop copying or con-

catenating characters to their destination buffers if a memory write may result in a buffer overflow

that can lead to a CFI violation.

On the other hand, if an invalid destination buffer or an invalid buffer length is passed to

the string-manipulating functions in Zitser’s fixed version of the target program, a buffer over-

flow can still occur. If the destination buffer and buffer length provided to functions such as

mapping_getcwd() are valid in Zitser’s fixed version of the target program, but a buffer over-

flow can still occur (e.g., destination buffer too small), the behavior of Zitser’s fixed version will be

determined by the behavior of the strncat() and strncpy() functions, i.e., copying stops when

the destination buffer is full.

The advantage of Zitser’s approach to fixing potential buffer overflows by using the length-

guarded variants of the GNU libc string functions (e.g., strncpy(), strncat()) is that the se-

mantics of these functions are well-understood. However, these functions are still not foolproof for

preventing CFI violations, as compared to our approach. A more robust way of handling poten-

tial CFI violations is to use our approach for CFI enforcement, and combine it with sensible error

handling behavior, e.g., returning a special error code from the else clause of our prescribed safety-

checks. However, such error handling behavior is application-specific, and as such, it is outside of

the scope of this dissertation.

7.6 Discussion: Supported Programs

In this chapter, we have demonstrated the range of programming language features in C that our

approach to CFI is amenable to. For instance, our benchmark programs have demonstrated that

our approach can support programs with function calls, loops, nested loops, arrays, and bit opera-

tions. Our file I/O programs have demonstrated that our approach can support programs that use the

open, close, read, and write syscalls to read and write files. Our hardware I/O programs have

demonstrated that our approach can support programs that additionally use the nanosleep, mmap

and munmap syscalls to read and write from and to hardware devices using memory-mapped I/O.
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Through our implementations of our file I/O and hardware I/O test programs, we have demonstrated

that it is possible to write programs with realistic and useful features that are still amenable to our

approach for prescribing CFI safety-checks, and proving CFI.

However, were unable to directly make use of the C standard library due to its large size, and due

to our requirement that all our target programs must be statically compiled. In addition, we had to

make some changes to the WiringPi [143] library that simplifies hardware I/O programming on the

Raspberry Pi. These suggest that our approach is not amenable to being directly applied to existing

programs without any changes. In addition, our approach suffers from a number of limitations (as

discussed in §8.1), such as not supporting writes to variables in the stacks of caller functions, and

supporting safety proofs only for syscalls that write to concretely-specified buffers whose sizes are

statically known at compile-time. Such behavior is likely to be found in existing programs.

Nonetheless, as we demonstrated in our experiments, it is still possible to write programs that

perform useful functionality even with these limitations. Moving forward, we envision that our

approach can be used to develop new software for which CFI is desired, with high-assurance that

the CFI holds.

7.7 Summary

In this chapter, we described various experiments that we performed to evaluate the ability of our

approach to CFI in this dissertation to be applied to various kinds of target programs. We described

the methodology and setup of our experiments, and we presented and discussed the results of our

experiments. We evaluated our CFI approach on a different types of target programs to illustrate the

variety of programs that can be supported by our approach.

First, we showed that our approach to CFI can support programs containing a wide variety of C

constructs (§7.1). We demonstrated that our CFI approach was able to prescribe safety-checks and

automatically prove the safety for 23 different benchmark programs drawn from the MiBench suite

of realistic embedded software benchmarks [33], the WCET benchmarks [34], the Bionic C library

for Anrdoid [141], and for 3 of our self-authored test programs. We also showed that the times taken

to prescribe CFI safety-checks (less than 8 minutes for all test programs) and automatically prove

safety in our approach (less than 19 hours for all but one test program) were feasible.

Second, we showed that our approach to CFI can support programs that contain simple file

I/O behaviors (§7.2). We described a methodology for developing C programs containing file I/O
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behaviors that are also amenable to the automated safety proof process in the logic approach of this

dissertation. Then, we implemented simple versions of 3 common Unix-based text utilities (cat,

wc, and grep), and showed that our approach was able to prescribe safety-checks and automatically

prove the safety of these text utilities that contained file I/O behaviors. Our safety-check prescription

took less than 1 second for our 3 utilities, and our safety-check proofs took less than 2.15 hours for

each of our 3 utilities. In addition, we also showed that there is an inverse relationship and a trade-off

between run-time overheads and proof times for varying input buffer sizes for our test programs.

Third, we showed that our approach to CFI can support programs that contain hardware I/O

behaviors (§7.3). We described how our methodology for developing C programs containing file

I/O behaviors that are amenable to our automated safety proofs can be extended for developing C

programs containing hardware I/O behaviors. We then developed 4 test programs for the Raspberry

Pi single-board-computer containing hardware inputs such as light sensors and accelerometers, and

hardware outputs such as LEDs and LCD screens. We evaluated our approach to CFI on these 4

programs, and we showed that we could prescribe safety-checks and automatically prove the safety

of these programs containing hardware I/O behavior. Our safety-check prescription took less than

6 seconds, and our automated safety proofs took less than 2 hours for 2 of our test programs, and

38 and 72 hours respectively for our more complex test programs that performed LCD outputs and

implemented a fall detector using an accelerometer respectively.

Fourth, we demonstrated the effectiveness of the safety proof optimizations (§7.4) described

in §6.2, and showed that our optimizations improved the safety assertion analysis in AUSPICE by

between 250% and 1290%, and improved the inter-procedural analysis for large programs (such as

our LCD and fall-detector examples for hardware I/O) by between 70% and 83%.

Finally, we performed a small-scale case study on applying our approach to CFI in this disser-

tation to known buffer overflow vulnerabilities in commodity software (§7.5). We showed that we

were able to automatically prescribe safety-checks for a piece of C code with a known, exploitable

buffer overflow vulnerability in the WU-FTPD daemon, and that we could automatically prove the

safety of the resulting program. We also qualitatively compared the proposed fixes for the buffer

overflow vulnerabilities by Zitser et al. [146] to our prescribed safety-checks, and we argued that

our approach to CFI provides a more comprehensive “clean-slate” approach to ensuring CFI.



Chapter 8

Discussion

This chapter discusses a number of issues concerning the approach to Control-Flow Integrity pre-

sented in this dissertation. First, we describe a number of behaviors in C programs that our approach

is unable to support (§8.1). This is because of the nature of the automated safety proof generation

in our logic approach. Second, we perform a qualitative security analysis of our approach (§8.2).

We discuss the security measures that would need to be deployed alongside our approach to at-

tain software security, as well as residual security threats that are possible in spite of our approach.

Third, we discuss challenges in enforcing and proving CFI at different levels of abstraction, at the

source-code and machine-code levels respectively (§8.3).

8.1 Limitations to Program Behavior

8.1.1 Writable Memory Regions

Our approach to CFI in this dissertation defined 3 safety properties (§3.1) such that when they hold

for a program, the CFI of the program is ensured. We defined these 3 safety properties in a way

that they enable our logic approach in this dissertation to automatically generate safety proofs for

programs. These safety proofs in turn imply that the CFI of the programs is ensured.

While our safety properties are sufficient to ensure CFI, they are stricter than necessary to en-

sure the CFI of a program. This is to enable our prescribed run-time safety-checks to be simple,

and to enable our safety proofs to be automatically generated. To ensure CFI, we do not need to

restrict memory writes in each function to addresses that are smaller than the current function’s

frame pointer value (Property 2 in §3.1.2); we only need to ensure that the memory addresses in

callers’ stacks where callee-saved register values are stored are not written to. However, this would

148
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require complex stack analyses, which may not be feasible at run-time, and it would be difficult to

automatically prove that such complex stack analyses will indeed ensure safety (and CFI).

Hence, as a result of our strict safety properties to ensure that our logic approach can automati-

cally prove CFI, the memory regions that instructions in a given function are allowed to write to is

restricted.

Restrictions on Writable Memory Regions
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Figure 8.1. Writable memory for instructions in a given function, bar().

Figure 8.1 shows the memory layout for a user-mode process in Linux, and illustrates the mem-

ory areas that an instruction in the function bar() is allowed to write to. To ensure that Safety

Property 2 (§3.1.2) in our enforcement approach holds, it must not be possible for instructions in

the function bar() to overwrite any callee-saved registers for bar() nor for any function in the

call-stack that ran before bar(). Then, to enable this property to be automatically provable in our

logic approach, we ensure (in our safety-checks prescribed by PCFIRE-C, §3) that instructions in

bar() must not be able to write to any memory larger than the frame pointer of bar().

Then, from Figure 8.1, the stacks of all callers of bar() appear at addresses larger than the

frame pointer of bar(). As a result, all local variables of caller functions of bar() will be located
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at memory addresses that are larger than the frame pointer of bar(). For instance, in Figure 8.1, the

local variable num1 in the function foo(), which is a caller of bar(), will not be (provably) safely

writable by an instruction in bar(). Hence, even if foo() passes bar() a pointer to foo()’s local

variable (e.g., as a way of receiving a return value), a safety-check prescribed by our PCFIRE-C tool

will prevent any instruction in bar() from modifying any memory in its callers’ stacks. Then, any

attempt to write to a caller function’s local variables will result in a “silent” failure of the attempted

memory write, as the prescribed safety-check will prevent it.

Passing Data by Reference Between Functions

Typically, arguments are passed-by-reference from a caller function to its callee function when a

programmer wants to be able to access the changes made to the arguments after the callee func-

tion’s execution. Arguments are typically passed-by-reference from a caller to its callee using a

pointer to a memory location containing the argument. Typically, caller functions pass arguments

by reference using a pointer to a local variable stored on the caller function’s own stack. However,

in our approach to CFI, callee functions will not be able to modify the memory pointed to by such

a pointer to a local variable of a caller function.

Thus, to pass arguments by reference, a caller function must use memory that is writable by both

itself, as well as by its callee function. In Figure 8.1, we can see that the data section of the process’s

memory, where global variables are stored, and the heap of the process, will remain writable to all

functions regardless of their position in the call stack. On the other hand, each function cannot

modify the memory that contains the stacks of its callers. Hence, to pass arguments by reference,

functions must use pointers to either the heap, or to global variables in the data section.

In our approach, we do not make use of the standard C library, as it introduces extraneous in-

structions and behaviors that are not supported by our logic approach (§7.2.1). As a result, we

currently do not have a heap allocator (i.e., an implementation of the malloc heap memory alloca-

tor). Thus, functions must use global variables to pass data by reference between functions. Note

that this applies only if callee functions must be able to modify the memory (pointed to by a pointer

from a caller) passed to it by its caller; otherwise, callee functions will still be able to read from

memory locations where its callers’ stacks (and hence its callers’ local variables) are located.

It is also possible to write a heap allocator that contains our prescribed safety-checks, so that

the heap allocator can be proved safe by our logic approach, and statically linked to a program

being developed. Caller functions can then allocate variables on the heap, and pass pointers to these
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variables to their callee functions. We intend to explore the development of a heap allocator that can

be proved safe in our logic approach in future.

8.1.2 Return of structs From Functions

The logic approach in this dissertation does not support generating safety proofs for programs that

contain functions that have a struct return type. This is because commodity compilers (e.g., gcc)

compile C functions that return a struct to machine-code whose behavior cannot be automatically

proved safe by our logic approach.

Unsafe Behavior in struct-returns
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Figure 8.2. Typical struct return behavior from a function bar().

To support struct-returns from a function, in general, the compiler passes an address in register

r0 to the callee function, at which the callee is expected to return the struct. The compiler then

stores the return address on the stack of the callee function. Figure 8.2 illustrates the stacks of

two functions foo() and bar(), where foo() calls bar(), and bar() returns a struct. Then,

the compiler automatically allocates memory on foo()’s stack to receive the returned struct, and
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passes the address of this memory in register r0. Next, the compiler copies this address from the

register r0 to bar()’s stack, as shown at the location marked “struct _s *result_ptr”. Then,

for bar() to return a struct to its caller foo(), the compiler copies the struct to be returned to

the address pointed to at the location marked “struct _s *result_ptr” in Figure 8.2.

However, as discussed earlier, our approach to CFI does not allow instructions in a function to

write to memory addresses in the stack frames of functions that are earlier in the call stack (i.e.,

its caller and their callers). However, the address passed from a caller to a callee for the callee to

write the saved struct to will be on the caller’s stack. Then, by the ATPCS [28], the callee will

necessarily advance its own frame pointer’s address past the caller’s stack, so that the callee does

not interfere with the caller’s stack. This then renders the return address passed from the caller

to the callee unwritable, based on the safety requirement as defined in our approach (§3.1), as the

temporary address will be at an address that is larger than the callee-function’s stack frame-pointer

address.

Supporting Passing of structs Between Functions

Hence, for two functions A and B, such that A calls B, for B to pass a struct to its caller A,

function A should: (i) allocate a struct in a region of memory that can be provably safely written

to by the function B, and (ii) pass a pointer to this struct to its callee function B. For the struct

to be provably-safely writable by B, it must be at an address that is either larger than the base of B’s

stack, or smaller than the top of B’s stack.

As discussed earlier in §8.1.1, for a caller function to pass a pointer to a callee function, e.g.,

for a caller to receive a struct from its callee, the caller function needs to pass a pointer to a

global variable to its callee function. Then, without any compiler modifications (as is a goal of this

dissertation, §1.3), programmers cannot make use of a C return statement to return its struct.

Instead, programmers must manually “return” the struct back to its caller by copying the struct

to the address of the global variable supplied to it by its caller. In future, we also envision that with

a heap allocator that can be proved safe by our logic approach, functions can also pass pointers to

heap-allocated variables to their callees to receive “returned” structs.

8.1.3 Hoisting of Safety-Checks

The proof automation in our logic approach makes use of local reasoning (§4.2.3) to avoid requir-

ing loop invariants to summarize the behavior of loops. If a potentially-CFI-violating expression
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contains expressions that change in a loop, then moving a CFI safety-check outside of a loop will

require the behavior of the loop to be summarized, so that the analysis can reason about the en-

tire loop at once. Then, summarizing the behavior of the loop will require loop invariants, whose

automatic inference is an open problem in the general case.

Generating loop invariants automatically typically uses syntactic heuristics for loops written in

various syntactically similar ways [147, 117], or estimations from dynamic analyses [148]. These

approaches do not generalize well: for each type of loop pattern encountered, a separate approach

for automating the CFI proof for the pattern will be required. Due to the lack of generalizable ways

to handle CFI proofs for optimized safety-checks, we do not plan to address the automated proving

of CFI safety for such optimized patterns of CFI remedial-hints in this dissertation.

In addition, in experiments with more balanced workloads (e.g., our file-based I/O utilities,

§7.2), the run-time overheads of the inserted safety-checks are significantly lower than 220% even

when they are inserted inside loops, suggesting that the performance overheads of the safety-checks

in our enforcement approach are likely to be reasonable for realistic applications, even with safety-

checks located inside of loops.

8.2 Security Analysis

Next, we analyze the impacts of our approach to CFI on the security of the target programs that

we protect. First, we discuss the additional defenses that are needed, considering our threat model

(§1.3), in order to achieve high-assurance of the security of our target programs (§8.2.1). Next, we

analyze the list of 2011 CWE/SANS Top 25 Most Dangerous Software Errors [127], and qualita-

tively evaluate the software errors that our approach is able to mitigate (§8.2.2).

8.2.1 Threat Model and Assumed Defenses

In §1.3, we described the attacker model in our approach to CFI in this dissertation. Our attacker

is an “external input attacker” who is only able to supply arbitrary external inputs to our target

program, e.g., via files, network communication, and any other means of external communication.

For this attacker model to be realized, a developer or IT engineer who is preparing and configuring

a system to be deployed must ensure that security measures are in place to prevent attackers from:

• Compromising the hardware and firmware of the system.
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• Compromising the OS kernel of the system.

• Compromising any other software on the system, that may in turn allow privilege escalation

attacks that allow the OS kernel to be compromised.

Complementary Defenses

We discuss some of the security measures and high-assurance components that software developers

and IT engineers can deploy to build a system for which they can have high-assurance of its security.

While we introduce some concepts and techniques that can be used, we do not strive to be exhaustive

in our list.

First, the hardware and firmware of the platform that a target program runs on must be able to

function correctly, and be free of backdoors and implementation bugs (e.g., incorrectly-behaving

instructions in processors). Many techniques have been developed for verifying various properties

about hardware circuits (e.g., functional correctness, absence of deadlock, handshake protocols)

[149]. In addition, recent work has formally verified important properties about various aspects of

instruction set architectures (ISAs), such as device driver behavior [103] and instruction isolation

for the ARMv7 architecture [102]. Techniques have also been developed to detect insider attacks

that may circumvent microprocessor functionality [150, 151].

Second, the OS kernel must function correctly and be free of security bugs that attackers might

otherwise exploit. Recent work has addressed various aspects of formally verifying that OS kernels

are correct. For instance, the C implementation of the seL4 microkernel has been formally verified

to be faithful to its high-level specification [113], and its subsequent compilation to machine-code

for the ARM platform has also been automatically verified to be correct [152]. The Verve OS kernel

and run-time system has been automatically verified to have type- and memory-safety [35] using

a combination of Typed Assembly Language (TAL) [80, 81, 82] and a Hoare-style verifier. The

CertiKOS project [96, 97] has built an OS kernel using a clean-slate design that has been proven to

have important security properties. Dam et al. verified information-flow security for the PROSPER

separation kernel [101]. In addition, some CFI techniques such as KCoFI [56] have focused on

hardening OS kernels against CFI attacks.

These projects and techniques point to many possible candidates for deploying secure and cor-

rect OS kernels. Such OS kernels with strong guarantees of correctness and security provide the

assurance that: (i) attackers cannot compromise the OS kernel to modify the target program and
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its memory in user-space, and that (ii) the assumptions in our approach that the OS kernel cor-

rectly performs context-switching (e.g., correctly saving and restoring registers) during system call

invocations do indeed hold.

Third, although our target programs are statically compiled and linked (§1.3), and hence do not

have any direct dependencies on external libraries that need to be secure, they may rely on additional

auxiliary software, such as device drivers and networking protocol stacks that reside and execute in

the OS kernel. In addition, there may be user-level network protocols that programmers may link

against for use in their programs, such as SSL. Techniques have been developed to verify safety

properties of device drivers, such as in the Microsoft SLAM project, which produced the Static

Driver Verifier (SDV) [153, 154]. Techniques have also been developed to verify the correctness of

implementations of important network security protocols such as SSL [155].

Thus, while our approach to CFI can ensure that user-mode programs are secure against attacks

from external input attackers who attempt to circumvent the CFI of programs, additional comple-

mentary security techniques are necessary to provide defense-in-depth, and we have provided a brief

(and non-exhaustive) list of some such complementary techniques.

Residual Threats

While our approach to CFI protects our target programs from control-flow hijacking attacks, the

main residual threat (apart from those that can be defended against using the complementary de-

fenses we listed above) that our approach does not protect against is data attacks.

Our approach to CFI prevents control-flow sensitive areas of memory from being written by

store instructions on the ARM architecture. However, attacks can still overwrite areas of memory

that are not control-flow sensitive. These include data items in memory that are not control-flow

sensitive. While attackers are not able to overflow buffers into control-flow sensitive regions of

memory in our approach (e.g., overwrite the stack of a caller function), attackers can still overflow

buffers into non-control-flow sensitive regions of memory.

For instance, there may be a buffer that is allocated as a global variable in the data section

of the program’s memory, that is adjacent to another variable in the data section. Attackers can

still overflow such a buffer to overwrite adjacent variables. Likewise, attackers can also overflow

heap buffers (supposing there is a heap allocator that our logic approach is able prove is safe) to

overwrite adjacent variables. Attackers can then overwrite data items that may have an effect on the

logic of the application, and thus indirectly modify the control-flow of the program. Such attacks
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do not violate the safety property of CFI, but still constitute an attack as the logic of the program is

circumvented.

8.2.2 Mitigated Attacks

Next, we review the CWE/SANS Top 25 Most Dangerous Software Errors [127], and qualitatively

assess which of these errors can be mitigated by the approach to CFI in this dissertation.

ID Software Error Mitigated?
CWE-89 Improper Neutralization of Special Elements used in an

SQL Command (’SQL Injection’)
Not Applicable

CWE-78 Improper Neutralization of Special Elements used in an
OS Command (’OS Command Injection’)

Not Applicable

CWE-120 Buffer Copy without Checking Size of Input (’Classic
Buffer Overflow’)

Some errors directly mit-
igated

CWE-79 Improper Neutralization of Input During Web Page Gen-
eration (’Cross-site Scripting’)

Not Applicable

CWE-306 Missing Authentication for Critical Function Not Applicable
CWE-862 Missing Authorization Not Applicable
CWE-798 Use of Hard-coded Credentials Not Applicable
CWE-311 Missing Encryption of Sensitive Data Not Applicable
CWE-434 Unrestricted Upload of File with Dangerous Type Not Applicable
CWE-807 Reliance on Untrusted Inputs in a Security Decision Not Applicable
CWE-250 Execution with Unnecessary Privileges Not Applicable
CWE-352 Cross-Site Request Forgery (CSRF) Not Applicable
CWE-22 Improper Limitation of a Pathname to a Restricted Di-

rectory (’Path Traversal’)
Not Applicable

CWE-494 Download of Code Without Integrity Check Not Applicable
CWE-863 Incorrect Authorization Not Applicable
CWE-829 Inclusion of Functionality from Untrusted Control

Sphere
Not Applicable

CWE-732 Incorrect Permission Assignment for Critical Resource Not Applicable
CWE-676 Use of Potentially Dangerous Function Some impacts mitigated
CWE-327 Use of a Broken or Risky Cryptographic Algorithm Not Applicable
CWE-131 Incorrect Calculation of Buffer Size Some impacts mitigated
CWE-307 Improper Restriction of Excessive Authentication At-

tempts
Not Applicable

CWE-601 URL Redirection to Untrusted Site (’Open Redirect’) Not Applicable
CWE-134 Uncontrolled Format String Some impacts mitigated
CWE-190 Integer Overflow or Wraparound Some impacts mitigated
CWE-759 Use of a One-Way Hash without a Salt Not Applicable

Table 8.1. Ranked list of the CWE/SANS Top 25 Most Dangerous Software Errors, and a qualitative evaluation of which
errors can be mitigated by the approach to CFI in this dissertation. CWE IDs and Software Error descriptions are from
[127].
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In Table 8.1, we evaluate which of the Top 25 errors our approach to CFI can mitigate. First,

we note that a majority of the Top 25 errors are not related to CFI, which is a property about the

execution of programs written in low-level languages such as C. For instance, many of the errors are

related to SQL and OS command executions (CWE-89, 78), web applications running over HTTP

(CWE-79, 434, 352, 494, 601, 829), authentication and cryptographic mechanisms (CWE-306, 862,

798, 311, 863, 732, 327, 307, 759), and interactions with the OS (CWE-807, 250, 22).

Second, our approach to CFI directly mitigates some buffer overflows (CWE-120) when they

lead to control-flow hijacks, which SANS ranks as its third most dangerous software error. Other

related software errors that our approach mitigates are those that can subsequently lead to buffer

overflows or control-flow hijacks, namely, incorrect buffer size calculation (CWE-131), uncon-

trolled format strings (leading to format string attacks via use of the “%n” format specifier in C)

(CWE-134), and integer over-/under-flows leading to wraparounds that can sometimes lead to buffer

overflows (CWE-190). We say that some of the impacts of these software errors are mitigated (for

CWE-131, 134, 190), as our approach prevents any potential buffer overflows that can arise from

these errors, but does not mitigate any other effects, such as logic errors, that may result from errors

such as incorrect buffer sizes.

While it is straightforward that our approach can directly mitigate buffer overflows (when they

lead to control-flow hijacks), our approach can partially mitigate the subsequent impacts of some of

the other software errors.

Incorrect buffer size calculations and integer over-/under-flows can lead to buffer overflows

when the incorrect calculations involve pointer arithmetic or calculation of buffer or array indices.

Then, when the safety-checks that are prescribed by our approach are in place, any statement that

would result in a buffer overflow at run-time would be stopped from executing by the safety-check.

Likewise, the execution of the print code that handles the “%n” format specifier will also be sur-

rounded by a safety-check in our approach, and if an input is supplied that would result in a danger-

ous buffer overflow, the print code will be prevented from executing by the safety-check.

In our approach, for dangerous string functions such as strcpy (CWE-676), our enforcement

approach will prescribe safety-checks for the statements that perform the actual dangerous string

operations. Thus, our approach will be able to mitigate the dangerous behavior in these dangerous

functions, although it would require users to implement their own safe versions of string functions

provided by standard C libraries such as GNU libc, as we discussed in §7.2.1. We say that some

of the impacts of this software error are mitigated by our approach, as there may be other dangerous
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functions that result in flaws other than buffer overflows resulting in CFI violations.

Hence, our approach to CFI is able to directly mitigate the 3rd most dangerous software error

in the CWE/SANS Top 25 Most Dangerous Software Errors, and it is also able to partially mitigate

some of the impacts (that result in buffer overflows leading to control-flow hijacks) of 4 other errors

on the list.

8.3 Machine-code vs. Source-code Views of CFI

Next, we discuss the challenges faced in providing CFI enforcement mechanisms at the source-

code level of abstraction using source-code safety-checks (as prescribed by PCFIRE-C, §3.2), and

proving CFI at the machine-code level of abstraction using our AUSPICE framework (§4).

The main challenge faced in the discrepancy between the levels of abstraction where we enforce

CFI, as compared to where we prove CFI, is that we need to maintain a correspondence between the

source-code level artifact at which CFI is being enforced, and the machine-code level at which CFI

is being proved.

At the source-code level in C, potential CFI violations occur in suspect statements that make

changes to memory (§3.2). More specifically, the safety-checks prescribed in our enforcement

approach need to extract the memory address(es) that are written to by a suspect statement. These

memory addresses that are written to are then subjected to a bounds checks in our prescribed safety-

check. At the source-code level, these memory addresses manifest in multiple ways, e.g., as a

pointer, as the address of a variable, as an array element, or as a member of a struct, amongst

others.

Then, at the machine-code level, the memory addresses written to by the suspect instruction

(which the suspect statement is compiled to) appears in two locations: (i) in the compiled machine-

code of the PCFIRE-C-prescribed safety-check, and (ii) in the compiled machine-code of the sus-

pect instruction. AUSPICE tries to automatically prove that the memory address bounds established

by the safety-check apply to the memory addresses written to by the suspect instruction (§5.4). For

this automatic proof to succeed, the memory address, as manifested at the machine-code level in

(i) the safety-check, and (ii) the suspect instruction which writes to memory, must be identical.

Otherwise, the bounds established by the safety-check cannot be used to reason about the memory

addresses written to.
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At the machine-code level, the operands of comparisons in our prescribed safety-checks, and the

memory addresses written to in the suspect instructions, both manifest as values stored in a register,

as ARM is a load/store architecture. In the LLR program logic in AUSPICE, Hoare triples are

constructed for basic blocks of instructions using the Compose rule in Hoare Logic (§4.2.2). Thus,

the expressions of values in registers that AUSPICE reasons about are scoped to the basic block

level. The basic block construction algorithm in AUSPICE (§5.1) is typical: we identify leaders as

the targets of indirect jumps, and each basic block begins from a leader instruction and continues

until but not including the next leader instruction.

Then, AUSPICE reasons about the effects of basic blocks “locally” (§4.2.3), i.e., it does not

accumulate the effects of instructions on machine resources such as registers across multiple basic

blocks, and reasons only about adjacent basic blocks. As a result, for AUSPICE’s automatic safety

assertion discharge to succeed, safety-checks need to be in a basic block adjacent to the suspect

instruction.

For suspect statements whose memory expressions may be complex, PCFIRE-C’s construction

of safety-check prescriptions (§3.2) tries to ensure that its prescribed safety-checks are in an adjacent

basic block. PCFIRE-C does this by suggesting to programmers to first pre-compute the memory

address to write to using a pointer variable, and then writing directly to the pointer using the deref-

erencing (“*”) operator in the suspect statement. This ensures that after the safety-check, there are

no intervening basic blocks used to compute the memory address to write to, as the pre-computed

address is already available in a temporary register in the compiled machine-code.

8.4 Summary

In this chapter, we described some of the limitations to program behavior (§8.1) that are imposed by

our approach to CFI in this dissertation. These are: (i) instructions in a function are allowed to write

to only addresses smaller than their current frame pointer address, which implies that functions

can pass data to their callers only through global variables; (ii) functions are not allowed to return

structs to their callers; and (iii) our prescribed safety-checks cannot be hoisted out of loops as our

logic approach would not be able to support automated proof generation without manually-supplied

loop invariants from programmers.

We also qualitatively evaluated the security benefits of our approach (§8.2). We described some

complementary security measures that would need to be deployed alongside our approach to secure
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a target program given our threat model, and we discussed some of the residual threats that our

approach does not protect our target programs against, such as data attacks. We also qualitatively

discussed how our approach to CFI is able to directly mitigate the 3rd most dangerous software

error on CWE/SANS’ list of Top 25 Most Dangerous Software Errors [127], and is able to mitigate

some of the dangerous subsequent effects of 4 other errors on the list.

Finally, we discussed challenges in prescribing safety-checks for CFI and proving CFI at dif-

ferent levels of abstraction, at the source-code and machine-code levels respectively (§8.3). We de-

scribed how the machine-code representations of the memory addresses checked in our prescribed

safety-checks must correspond to those of the memory addresses written to, i.e., register values,

and how in PCFIRE-C we ensure this by using temporary staging pointer variables to ensure the

memory addresses checked and written to have identical machine-code representations by using the

same pointer variable in the safety-check and memory-write statements.



Chapter 9

Conclusions and Future Work

This dissertation introduces an approach to Control-Flow Integrity (CFI) for embedded software

that meets the challenges posed by today’s open, connected, and pervasive embedded software. To-

day’s embedded software is open and connected, exposing them to external attackers: CFI protects

the control-flow of embedded software from being hijacked and modified by potentially malicious

inputs from such external attackers. Our approach to CFI consists of two parts: an enforcement

approach, which prescribes mechanisms for programmers to include in their C programs to enforce

CFI, and a logic approach, which automatically generates safety proofs of CFI for ARM machine-

code programs containing CFI safety-checks prescribed by our enforcement approach.

Our approach to CFI provides enforcement mechanisms that prevent the root-causes of CFI, so

that today’s pervasive embedded software that is safety-critical will not be stopped when CFI viola-

tions are detected, and our approach also provides enforcement mechanisms that are visible to pro-

grammers, so that programmers can see how the enforcement mechanisms affect their software, and

customize them appropriately for their applications. In our approach, we developed the PCFIRE-C

tool to prescribe check-and-branch C statements as safety-checks around suspect C statements that

may cause CFI violations. Then, we leave it to programmers to insert these safety-checks, so that

they can account for any changes to the behavior of their software.

Our approach to CFI also enables CFI to be formally proved automatically without expert in-

puts. This enables CFI to be achieved in a high-assurance manner, and for as many programmers as

possible, without requiring programmers to have expert knowledge about formal methods. In our

approach, we developed the AUSPICE framework, which layers a local-reasoning safety rule on

top of a trustworthy semantics and a Hoare Logic for ARM machine-code instructions. Then, the

AUSPICE framework provides a proof automation algorithm consisting of our Selective Compo-

161
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sition proof tactic to enable reasoning about CFI enforced using source-code-based safety-checks,

and an abstract interpretation algorithm to automatically discharge safety-proof obligations. The

AUSPICE framework also includes extensions to support reasoning about CFI in user-mode ARM

machine-code programs that invoke system calls in an underlying operating system.

Using 26 benchmark programs from two embedded software benchmark suites as well as our

own test programs, we demonstrated that our approach is able to prescribe CFI safety-checks as

well as automatically prove the CFI of machine-code programs, for programs containing a variety

of C constructs and features such as loops, nested loops, function calls, arrays, and bit operations.

Using 3 of our simple implementations of common Unix-based file I/O utilities, we also demon-

strated that our approach is able to prescribe CFI safety-checks and prove the CFI of machine-code

programs containing file-based I/O behavior. In addition, we implemented 4 programs containing

various hardware inputs and outputs such as light sensors, accelerometers, LEDs, and an LCD,

and including an implementation of a human fall-detection algorithm, for the Raspberry Pi single-

board-computer. Then, we demonstrated that our approach is able to prescribe CFI safety-checks

and prove the CFI of these programs containing hardware inputs and outputs. Finally, we demon-

strated in a simple case-study that we were able to provably mitigate a known security vulnerability

in the WU-FTPD FTP server, although we required safety-checks to be inserted in string functions

typically provided by a standard C library. This suggests that our approach to CFI requires program-

mers to take a clean-slate approach to software development to ensure that any library function used

by a target program must also be made safe for its CFI to be provable at the machine-code level.

We showed that the times taken for our approach to prescribe CFI safety-checks was short, and

was less than 1 minute in most cases, and less than 8 minutes in all cases. We also showed that

the times taken for our approach to prove CFI automatically was under 2 hours for most programs,

and for a small number of large programs (more than 400 lines of C code, or more than 20 kB of

machine-code), took between 18 and 72 hours, depending on the complexity of the target program.

The approach to CFI presented in this dissertation addresses the challenges faced in providing

CFI for open, connected, and pervasive embedded software in the following ways:

CFI violations are currently prevented after-the-fact. Our enforcement approach prescribes

safety-checks made up of check-and-branch statements that target the root-causes of CFI viola-

tions, and prevent these violations from occurring. These safety-checks carry out bounds checks on

memory addresses before they are written to. Then, if writing to these memory addresses results

in a CFI violation, the memory-write statements are not executed. This prevents the root-causes of
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CFI violations, as compared to previous CFI techniques that detect only the end-results of a CFI

violation, possibly long after the violation occurred.

Recovery actions after CFI is violated are limited. Previous CFI techniques are limited in their

recovery actions as they detect CFI violations after-the-fact. Hence, previous techniques are limited

to stopping programs in which CFI violations have been detected, as a CFI violation cannot be

undone after it has occurred, without knowing the CFI-sensitive information that was overwritten in

the attack. In our enforcement approach, since our prescribed safety-checks prevent the root-causes

of CFI violations, we are able to allow programmers to perform different recovery actions. While

we do not propose recovery actions in this dissertation, alternative recovery actions can be taken in

the else-branch of our check-and-branch safety-check statements. Examples of recovery actions

include ignoring the suspect statement that was prevented, and continuing operation, and signaling

to other parts of the software that an error has been prevented, allowing appropriate actions to be

taken at other points in the software.

CFI techniques are not transparent to the software development process. Previous CFI tech-

niques required modified tools in the software compilation process: they required binary rewriters

that modified program binaries after they were compiled, or modified compilers to add different be-

haviors such as shadow stacks. In our approach, our PCFIRE-C tool for prescribing safety-checks

provides programmers with prescribed safety-checks that they can insert in their source-code prior

to compilation. Then, programmers compile their programs with a standard, unmodified commodity

compiler (we used gcc-4.6 in our evaluation), after which our AUSPICE framework proves CFI au-

tomatically for the resulting compiled machine-code program with the inserted safety-checks. Our

approach to CFI provides safety-check prescriptions for the source-code of programs, before the

software compilation begins, and our approach proves CFI for the machine-code of programs after

the compilation process. Thus, our approach is transparent to the software development process by

intervening before and after software compilation, making it amenable to development projects that

do not allow modifications to the software development process, such as in high-assurance software

projects.

We have demonstrated that our PCFIRE-C tool can prescribe CFI safety-checks for our test

programs at the C source-code level for a number of test programs from the MiBench [33] and

WCET benchmark [34] suites, as well as for our own implementations of file-based I/O utilities and

programs on the Raspberry Pi single-board-computer performing hardware I/O operations.
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Support for automated proofs is contingent on after-the-fact CFI enforcement. Previous tech-

niques for CFI that have provided automated proofs of CFI have relied on safety-checks that are

automatically-inserted using a modified software development process (e.g., binary-rewriting), and

their proof automation relies on the presence of such automatically-inserted checks. As a result,

their proof automation does not support the possibility of proof failures. In our approach, as safety-

checks are inserted by programmers, our logic approach needs to support proofs that may fail, with-

out running forever. In our logic approach, AUSPICE is explicitly designed to handle proof failures

in its abstract interpretation algorithm, and it does so by recording the paths of undischarged safety

assertions through the Control-Flow Graph (CFG) of a program. Then, when a cycle is detected in

the propagation path of an undischarged safety assertion, the proof process is halted, and a proof

failure is declared.

In addition, in our logic approach, we developed the Selective Composition proof tactic in AUS-

PICE which enables safety proofs to succeed using safety-checks provided using source-code mech-

anisms, as compared to previous CFI techniques, which relied on binary-rewriting inserted machine-

code safety-checks. The Selective Composition proof tactic eagerly propagates logic pre-conditions

forward in the Control-Flow Graph to Hoare logic theorems of successor basic blocks. This makes

the pre-conditions of compound safety-checks in machine-code statements, as compiled from our

prescribed source-code safety-checks, available for proof discharge in our abstract interpretation

algorithm in AUSPICE.

The automated generation of CFI safety proofs in our logic approach, by the AUSPICE frame-

work that we developed, has been evaluated on 26 benchmark programs from the MiBench [33] and

WCET benchmark [34] suites, and we have demonstrated that AUSPICE was able to automatically

generate safety proofs for our test programs containing various C features and constructs.

Support for realistic features in embedded applications has not been demonstrated. Previous

techniques for automated CFI proofs in machine-code programs have focused on machine-code

programs that run “bare-metal” on a processor without an operating system. Thus, previous tech-

niques have not supported user-mode programs containing system calls. The main challenge is that

the Cambridge ARM model, which AUSPICE in our logic approach is based on, does not support

reasoning about the user-mode effects of a system call invocation. In our approach, in AUSPICE,

we support proofs for system call invocations in user-mode programs by axiomatizing the user-

mode-visible effects of system call invocations, assuming that the operating system kernel correctly

services system calls according to the specified behavior in its interface. We then modified the
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proof automation algorithm in AUSPICE to support system calls by using a symbolic and opaque

representation of system call effects at the intra-procedural level, and concretizing these effects dur-

ing our inter-procedural analysis where the concrete arguments to each system call invocation are

available from the call-site of the system call invocation.

Our safety-check prescription and safety proof automation for programs containing system call

invocations has been demonstrated on programs implementing simple Unix file I/O utilities (cat,

wc, grep), and on programs providing hardware inputs and outputs on the Raspberry Pi single-

board-computer, including a human fall-detector. Our approach was able to prescribe safety-checks,

and subsequently automatically prove the safety of these test programs containing various file and

hardware I/O behaviors.

9.1 Open Questions and Future Work

The work presented in this dissertation introduces a new point in the design space of approaches

to tackle the problem of ensuring Control-Flow Integrity (CFI) in software, that is amenable to

today’s open, connected and pervasive embedded software. Our approach to CFI prioritizes the

customizability of recovery actions for CFI violations, and the automation of formal CFI proofs,

over the run-time overheads of providing CFI enforcement.

As an initial exploration of this point in the design space of focusing on customizable recovery

actions and automatically provable CFI, our work has focused on providing CFI for function return-

pointers. As such, one open question is how our preventative and provable approach to CFI can be

extended to provide CFI enforcement for explicit function pointers.

Second, our work has explored how individual instances of embedded software running on a

single (possibly embedded) computer can be secured against potentially malicious external inputs

by providing CFI enforcement. A second open question following our work is how the overall

security of multiple communicating instances of embedded software can be compositionally built

up from individual instances of embedded software that are each individually formally proven secure

against CFI violations.

Third, in evaluating our approach to CFI in this dissertation, we constructed a number of C pro-

grams to evaluate and demonstrate the capabilities of our PCFIRE-C and AUSPICE tools. In writing

these C programs that featured file and hardware I/O behavior and system call invocations, we wrote

a number of functions typically implemented by a standard C library such as GNU libc that in-
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corporated safety-checks prescribed by PCFIRE-C and could be automatically proved to be safe by

AUSPICE. An open question arising from our evaluation exercise is whether additional engineering

support can be provided to programmers in the form of a safe standard C library that incorporates

PCFIRE-C-prescribed safety-checks, that can be automatically proved safe by AUSPICE.

9.1.1 Provable CFI for Explicit Function Pointers

Most of the previous techniques for CFI [15, 25, 55] have focused on protecting the CFI of indirect

jumps made using explicit function pointers, while using shadow stacks to protect function return

pointers. Then, for indirect jumps, these techniques provide CFI at varying levels of granularity by

picking the number of equivalence classes of indirect jump targets that are tracked, and checking

that indirect jumps are made only to targets that belong to the same equivalence class. Then, the

Control-Flow Graph (CFG) of the program is computed to determine the equivalence classes of

indirect jump sites and targets.

In our approach, in the absence of indirect jumps made through explicit function pointers, we

were able to compute a precise inter-procedural CFG for our target programs. As a result, we

were able to achieve a context-sensitive inter-procedural analysis in the AUSPICE framework in

our approach. However, with the use of explicit function pointers, in the general case, each indirect

jump site can be a jump to any function in the program. This would cause a state-space explosion

for a precise inter-procedural analysis.

One possible approach for supporting provable CFI in the presence of explicit function pointers

is to reformulate our currently precise formal definition of CFI (in §4.2) to admit a less precise

definition that is context-insensitive at the inter-procedural level. However, this reduces the strength

of the formal proofs of CFI generated.

Another possible approach is to constrain the CFG computed in the presence of indirect jumps

made using explicit function pointers. Similarly to how PCFIRE-C prescribes source-code safety-

checks in our current approach to constrain the behavior of dangerous memory-write expressions,

we can also make use of source-code safety-checks at indirect jump sites to limit the possible values

of explicit function pointers that an indirect jump site can jump to. This is because programmers

are likely to know in advance which functions are plausible jump targets from an indirect jump site.

This would then allow the logic approach to compute a more precise CFG, and minimize the state-

space explosion caused by an unconstrained number of possible indirect jump targets. In addition,
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our approach would also need an enumeration of all memory locations that contain explicit function

pointers, to add safety assertions to assert that these locations will not be overwritten at run-time.

In addition, supporting explicit function pointers will allow us to provide support for machine-

code compiled from C++ programs, which make use of explicit function pointers to implement

virtual function calls. In the case of virtual function calls in C++, the compiler is also aware of all

possible jump targets for each virtual function call, making it possible for us to use such compiler

information to compute a precise CFG for our logic approach.

9.1.2 Provable CFI as a Building Block for Distributed Properties

In this dissertation, we have focused on protecting the execution of embedded software running on

a single (embedded) computer from CFI violations. However, with the growth in connectivity and

the openness of today’s embedded software, embedded software is likely to communicate with each

other. Thus, there is a need for secure distributed embedded software.

Most approaches for ensuring the security and reliability of distributed software has taken a

top-down view, for instance, by designing secure and reliable protocols for communication among

multiple participants in a distributed system. However, such approaches are reliant on the software

on each individual node first being reliable. Otherwise, when security violations such as CFI viola-

tions occur, the execution of the software can be hijacked and its behavior circumvented, resulting

in arbitrary Byzantine faults.

As our approach to CFI can ensure that the behavior of software running on individual embedded

nodes in a distributed system cannot be circumvented by CFI violations, we can use this property to

build up to system-level security for a distributed system in a bottom-up manner. We envision that

security properties about distributed systems can be expressed in a bottom-up manner, beginning

from secure individual nodes. Then, the proofs of CFI that are automatically generated by our

approach can be used either directly in a larger system-level proof about the distributed system (i.e.,

in the same proof environment), or they can be used indirectly as evidence of the security of each

individual node, and reasoning about the software separately at the distributed system level.
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9.1.3 Provable CFI for Large-scale Software Projects

Safe Libraries

In developing our case-studies to evaluate our approach to CFI, we implemented safe versions of

a number of functions typically implemented by a standard C library such as GNU libc. We

believe that our approach to CFI, which uses source-code safety-checks, can be extended to most

functions provided by a typical standard C library. As compared to other work that has developed

safe C libraries, our approach will be able to produce safe C libraries for which safety proofs can be

automatically generated.

One challenge in producing such a provably safe C library for which safety proofs can be gen-

erated automatically, is whether this safety can be achieved without changing the interfaces (i.e.,

function prototypes and signatures) of current functions provided by typical standard C libraries,

and if these interfaces need to be changed, then how can we minimize such changes.

Modular Preventative CFI

Another challenge is that our approach to provable CFI is currently not modular: our logic approach

requires all instructions that can possible be executed to be statically compiled and linked in the tar-

get program. Another open question is whether our logic approach can support proofs for modularly

compiled programs, perhaps with a cooperating dynamic link-loader.

Some CFI techniques have tackled the challenges of separate compilation [53] and modularity

[55], and an open question is whether these techniques can be adapted to support the preventative

CFI that was presented in this dissertation. One challenge is that these CFI techniques have provided

coarse-grained CFI, as compared to the CFI provided in our approach, which uses precise inter-

procedural CFGs (due to our current exclusion of explicit function pointers).
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Appendix A

Buffer Overflow Example

In this appendix, we present code listings for WU-FTPD’s “mapping chdir” buffer-overflow vul-

nerability (CVE-1999-0878) in Zitser et al.’s corpus of vulnerable code fragments containing buffer-

overflows, as described in our case study on applying the CFI approach in this dissertation in §7.5.

Listings A.1 and A.2 list the original source-code of the buggy C code fragment containing the

buffer-overflow vulnerabilities in WU-FTPD’s “mapping chdir” vulnerability.

Listing A.3 lists Zitser’s fixed version of the buffer-overflow vulnerability in the buggy C code

fragment in Listing A.1. We provide Zitser’s fixed version for comparison with the safety-checks

prescribed by our PCFIRE-C. Zitser’s buffer-overflow fixes are inserted at Lines 80, 86, 93, 94, 128,

132, 181, 210, and 238.

Listings A.4 and A.5 list the source-code of the C code fragment after PCFIRE-C’s prescribed

safety-checks have been added to the source-code in Listing A.1. PCFIRE-C-prescribed safety-

checks were inserted in lines 158, 208, 214, and 229 in Listing A.4, and in lines 31, 60, and 98 in

Listing A.5.

A.1 Buggy Version

Listing A.1. mapped-path-bad.c file in Zitser’s WU-FTPD “mapping chdir” bug.

1 /*
2 MIT Copyright Notice
3
4 Copyright 2003 M.I.T.
5
6 Permission is hereby granted, without written agreement or royalty fee, to use,
7 copy, modify, and distribute this software and its documentation for any
8 purpose, provided that the above copyright notice and the following three
9 paragraphs appear in all copies of this software.

10
11 IN NO EVENT SHALL M.I.T. BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
12 INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE
13 AND ITS DOCUMENTATION, EVEN IF M.I.T. HAS BEEN ADVISED OF THE POSSIBILITY OF

170
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14 SUCH DAMANGE.
15
16 M.I.T. SPECIFICALLY DISCLAIMS ANY WARRANTIES INCLUDING, BUT NOT LIMITED TO
17 THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
18 AND NON-INFRINGEMENT.
19
20 THE SOFTWARE IS PROVIDED ON AN "AS-IS" BASIS AND M.I.T. HAS NO OBLIGATION TO
21 PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22

23 $Author: tleek $
24 $Date: 2004/01/05 17:27:52 $
25 $Header: /mnt/leo2/cvs/sabo/hist-040105/wu-ftpd/f1/mapped-path-bad.c,v 1.1.1.1 2004/01/05

17:27:52 tleek Exp $
26 */
27 /*
28 WU-FTPD Copyright Notice
29
30

31 Copyright (c) 1999,2000 WU-FTPD Development Group.
32 All rights reserved.
33

34 Portions Copyright (c) 1980, 1985, 1988, 1989, 1990, 1991, 1993, 1994
35 The Regents of the University of California.
36 Portions Copyright (c) 1993, 1994 Washington University in Saint Louis.
37 Portions Copyright (c) 1996, 1998 Berkeley Software Design, Inc.
38 Portions Copyright (c) 1989 Massachusetts Institute of Technology.
39 Portions Copyright (c) 1998 Sendmail, Inc.
40 Portions Copyright (c) 1983, 1995, 1996, 1997 Eric P. Allman.
41 Portions Copyright (c) 1997 by Stan Barber.
42 Portions Copyright (c) 1997 by Kent Landfield.
43 Portions Copyright (c) 1991, 1992, 1993, 1994, 1995, 1996, 1997
44 Free Software Foundation, Inc.
45
46 Use and distribution of this software and its source code are governed
47 by the terms and conditions of the WU-FTPD Software License ("LICENSE").
48
49 If you did not receive a copy of the license, it may be obtained online
50 at http://www.wu-ftpd.org/license.html.
51
52

53 $Author: tleek $
54 $Date: 2004/01/05 17:27:52 $
55 $Header: /mnt/leo2/cvs/sabo/hist-040105/wu-ftpd/f1/mapped-path-bad.c,v 1.1.1.1 2004/01/05

17:27:52 tleek Exp $
56 */
57 /*
58 <source>
59 */
60 //#define SYSCALL
61
62 #ifdef SYSCALL
63 #include <ctype.h>
64 #include <stdlib.h>
65 /*#include <pwd.h> */ /* Using custom made pwd() */
66 #include <string.h>
67 #include <unistd.h>
68 #include <sys/stat.h>
69 #include <fcntl.h>
70 #include <assert.h>
71 #include <stdio.h>
72 #else
73 #define NULL ((void *) 0)
74 #endif
75 #include "my-include.h"
76 #include <sys/types.h>
77

78 /* Dummy chdir function to silence syscalls
79 * pwd is localized, so chdir effectively does nothing except
80 * check that an actual directory was created by the Makefile
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81 */
82 #ifndef SYSCALL
83 int chdir(const char *path) {
84 return 0;
85 }
86 #endif
87
88 #ifdef MAPPING_CHDIR
89 /* Keep track of the path the user has chdir’d into and respond with
90 * that to pwd commands. This is to avoid having the absolue disk
91 * path returned, which I want to avoid.
92 */
93 char mapped_path[ MAXPATHLEN ] = "/";
94
95 char *
96 #ifdef __STDC__
97 mapping_getwd(char *path)
98 #else
99 mapping_getwd( path )

100 char *path;
101 #endif
102 {
103
104 #ifdef SYSCALL
105 printf("Copying %d chars into buffer path[] whose size = %d\n", strlen(mapped_path) + 1,

MAXPATHLEN + 1);
106 #endif
107

108 /* BAD */
109 strcpy( path, mapped_path ); /* copies mapped_path to path without doing a size check */
110 return path;
111 }
112

113 /* Make these globals rather than local to mapping_chdir to avoid stack overflow */
114 char pathspace[ MAXPATHLEN ]; /* This buffer can get overflowed too */
115 char old_mapped_path[ MAXPATHLEN ];
116
117 void
118 #ifdef __STDC__
119 /* appends /dir to mapped_path if mapped_path != /, else appends simply dir */
120 do_elem(char *dir)
121 #else
122 do_elem( dir )
123 char *dir;
124 #endif
125 {
126 /* . */
127 if( dir[0] == ’.’ && dir[1] == ’\0’ ){
128 /* ignore it */
129 return;
130 }
131

132 /* .. */
133 if( dir[0] == ’.’ && dir[1] == ’.’ && dir[2] == ’\0’ ){
134 char *last;
135 /* lop the last directory off the path */
136 if (( last = strrchr( mapped_path, ’/’))){
137 /* If start of pathname leave the / */
138 if( last == mapped_path )
139 last++;
140 *last = ’\0’;
141 }
142 return;
143 }
144

145 /* append the dir part with a / unless at root */
146 if( !(mapped_path[0] == ’/’ && mapped_path[1] == ’\0’) )
147 /* BAD */
148 strcat( mapped_path, "/" ); /* no bounds checking is done */
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149 /* We do not check to see if there is room in mapped_path for dir */
150 /* BAD */
151 strcat( mapped_path, dir ); /* no bounds checking is done */
152 }
153
154 int
155 #ifdef __STDC__
156 mapping_chdir(char *orig_path)
157 #else
158 mapping_chdir( orig_path )
159 char *orig_path;
160 #endif
161 {
162 int ret;
163 char *sl, *path;
164
165 #ifdef SYSCALL
166 printf("Entering mapping_chdir with orig_path = %s\n", orig_path);
167 #endif
168

169 strcpy( old_mapped_path, mapped_path ); /* old_mapped_path is initially / */
170 path = &pathspace[0];
171

172 /* BAD */
173 strcpy( path, orig_path ); /* suppose path = orig_path = /x/xx/xxx/xxxx/... */
174 #ifdef SYSCALL
175 printf("Copying orig_path to path....max strlen(path) = %d. strlen(path) = %d\n",

MAXPATHLEN - 1, strlen(path));
176 if (strlen(path) >= MAXPATHLEN){
177 printf ("ALERT:pathspace[MAXPATHLEN] has been overflowed!\n");
178 }
179 #endif
180

181 /* set the start of the mapped_path to / */
182 if( path[0] == ’/’ ){
183 mapped_path[0] = ’/’;
184 mapped_path[1] = ’\0’;
185 path++;
186 }
187
188 #ifdef SYSCALL
189 printf("so far mapped_path = %s\n", mapped_path);
190 #endif
191

192 while( (sl = strchr( path, ’/’ )) ){
193 char *dir;
194 dir = path;
195 *sl = ’\0’;
196 path = sl + 1;
197 if( *dir )
198 do_elem( dir ); /* appends directory names to mapped_path */
199 if( *path == ’\0’ )
200 break;
201 }
202 if( *path )
203 {
204 #ifdef SYSCALL
205 printf("path = %s.. calling do_elem\n", path);
206 #endif
207 do_elem( path ); /* we’re in root and path is of the form aaaaa ... mapped_path

becomes /aaaa.. */
208 }
209 #ifdef SYSCALL
210 printf("mapped_path = %s\n", mapped_path);
211 #endif
212 #ifdef SYSCALL
213 if (strlen(mapped_path) >= MAXPATHLEN){
214 printf("ALERT: mapped_path[MAXPATHLEN] has been overflowed!\n");
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215 }
216 #endif
217
218

219 if( (ret = chdir( mapped_path )) < 0 ){ /* change to the specified path */
220 #ifdef SYSCALL
221 printf("couldn’t chdir to %s !\n", mapped_path);
222 #endif
223 strcpy( mapped_path, old_mapped_path ); /* change mapped_path back to original, i.e

root */
224 #ifdef SYSCALL
225 printf("mapped_path changed to %s\n", mapped_path);
226 #endif
227 }
228
229 return ret;
230 }
231
232

233 /* From now on use the mapping version */
234

235 #define getwd(d) mapping_getwd(d)
236 #define getcwd(d,u) mapping_getwd(d)
237

238 #endif /* MAPPING_CHDIR */
239

240 /* Define pwd */
241
242 void
243 #ifdef __STDC__
244 pwd(void)
245 #else
246 pwd()
247 #endif
248 {
249 int canary = 7; /* used to see if path[] gets overflowed */
250 char path[MAXPATHLEN + 1]; /* Path to return to client */
251
252 #ifndef MAPPING_CHDIR
253 #ifdef HAVE_GETCWD
254 extern char *getcwd();
255 #else
256 #ifdef __STDC__
257 extern char *getwd(char *);
258 #else
259 extern char *getwd();
260 #endif
261 #endif
262 #endif /* MAPPING_CHDIR */
263
264 #ifdef HAVE_GETCWD
265 if (getcwd(path,MAXPATHLEN) == (char *) NULL) /* mz: call to mapping_getwd might overflow

path */
266 #else
267 if (getwd(path) == (char *) NULL) /* mz: call to mapping_getwd might overflow path buf

*/
268 #endif
269 {
270 #ifdef SYSCALL
271 printf("Couldn’t get current directory!\n");
272 #endif
273 }
274 else{
275 #ifdef SYSCALL
276 printf("Current directory = %s\n", path);
277 printf("max strlen(path) is %d, strlen(path) = %d\n", MAXPATHLEN-1, strlen(path));
278 printf("Canary should be 7. Canary = %d\n", canary);
279 if (canary != 7)
280 printf("ALERT: path[MAXPATHLEN + 1] has been overflowed!\n");
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281 #endif
282 }
283 }
284
285

286 int main(int argc, char **argv){
287
288 #ifdef SYSCALL
289 char orig_path[MAXPATHLEN + 20];
290 FILE *f;
291

292 assert (argc == 2);
293 f = fopen(argv[1], "r");
294 assert(f != NULL);
295

296 fgets(orig_path, MAXPATHLEN + 20, f); /* get path name */
297 fclose(f);
298
299 #ifdef SYSCALL
300 printf("orig_path = %s\n", orig_path);
301 #endif
302 #else
303 char orig_path[MAXPATHLEN + 20] = {0x2f,
304 0x74,0x6d,0x70,0x2f,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,
305 0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x00};
306 #endif
307

308 mapping_chdir(orig_path); /* this overflows mapped_path[] and pathspace[] */
309 pwd(); /* get current working directory.. this calls getwcd = mapping_getwd*/
310 /* mapping_getwd overflows path[] */
311
312
313 return 0;
314

315 }
316 /*
317 </source>
318 */

Listing A.2. string.c file in Zitser’s WU-FTPD “mapping chdir” bug.
1 #include <string.h>
2 #include <stddef.h>
3 #include <sys/types.h>
4

5 //typedef char reg_char
6

7 // simple implementation
8 void* _memcpy(void *dest, const void *source, size_t num) {
9 int i = 0;

10 // casting pointers
11 char *dest8 = (char *)dest;
12 char *source8 = (char *)source;
13 for (i = 0; i < num; i++) {
14 dest8[i] = source8[i];
15 }
16 return dest;
17 }
18
19

20 char *_strchr(register const char *s, int c)
21 {
22 do {
23 if (*s == ((char)c)) {
24 return (char *) s; /* silence the warning */
25 }
26 } while (*s++);
27
28 return NULL;
29 }
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30
31 char *
32 _strcpy(char *s1, const char *s2)
33 {
34 char *s = s1;
35 while ((*s++ = *s2++) != 0)
36 ;
37 return (s1);
38 }
39
40 #undef strcat
41

42 /* Append SRC on the end of DEST. */
43 char *
44 _strcat (dest, src)
45 char *dest;
46 const char *src;
47 {
48 char *s1 = dest;
49 const char *s2 = src;
50 char c;
51

52 /* Find the end of the string. */
53 do
54 c = *s1++;
55 while (c != ’\0’);
56

57 /* Make S1 point before the next character, so we can increment
58 it while memory is read (wins on pipelined cpus). */
59 s1 -= 2;
60
61 do
62 {
63 c = *s2++;
64 *++s1 = c;
65 }
66 while (c != ’\0’);
67
68 return dest;
69 }
70
71 #undef strrchr
72

73 /* Find the last occurrence of C in S. */
74 char *
75 _strrchr (const char *s, int c)
76 {
77 register const char *found, *p;
78

79 c = (unsigned char) c;
80

81 /* Since strchr is fast, we use it rather than the obvious loop. */
82

83 if (c == ’\0’)
84 return strchr (s, ’\0’);
85
86 found = NULL;
87 while ((p = strchr (s, c)) != NULL)
88 {
89 found = p;
90 s = p + 1;
91 }
92

93 return (char *) found;
94 }
95
96
97 #undef strlen
98 /* Return the length of the null-terminated string STR. Scan for
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99 the null terminator quickly by testing four bytes at a time. */
100 size_t
101 _strlen (str)
102 const char *str;
103 {
104 const char *char_ptr;
105 const unsigned long int *longword_ptr;
106 unsigned long int longword, himagic, lomagic;
107

108 /* Handle the first few characters by reading one character at a time.
109 Do this until CHAR_PTR is aligned on a longword boundary. */
110 for (char_ptr = str; ((unsigned long int) char_ptr
111 & (sizeof (longword) - 1)) != 0;
112 ++char_ptr)
113 if (*char_ptr == ’\0’)
114 return char_ptr - str;
115

116 /* All these elucidatory comments refer to 4-byte longwords,
117 but the theory applies equally well to 8-byte longwords. */
118

119 longword_ptr = (unsigned long int *) char_ptr;
120

121 /* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
122 the "holes." Note that there is a hole just to the left of
123 each byte, with an extra at the end:
124 bits: 01111110 11111110 11111110 11111111
125 bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
126 The 1-bits make sure that carries propagate to the next 0-bit.
127 The 0-bits provide holes for carries to fall into. */
128 himagic = 0x80808080L;
129 lomagic = 0x01010101L;
130 if (sizeof (longword) > 4)
131 {
132 /* 64-bit version of the magic. */
133 /* Do the shift in two steps to avoid a warning if long has 32 bits. */
134 himagic = ((himagic << 16) << 16) | himagic;
135 lomagic = ((lomagic << 16) << 16) | lomagic;
136 }
137 if (sizeof (longword) > 8)
138 abort ();
139

140 /* Instead of the traditional loop which tests each character,
141 we will test a longword at a time. The tricky part is testing
142 if *any of the four* bytes in the longword in question are zero. */
143 for (;;)
144 {
145 longword = *longword_ptr++;
146

147 if (((longword - lomagic) & ~longword & himagic) != 0)
148 {
149 /* Which of the bytes was the zero? If none of them were, it was
150 a misfire; continue the search. */
151

152 const char *cp = (const char *) (longword_ptr - 1);
153

154 if (cp[0] == 0)
155 return cp - str;
156 if (cp[1] == 0)
157 return cp - str + 1;
158 if (cp[2] == 0)
159 return cp - str + 2;
160 if (cp[3] == 0)
161 return cp - str + 3;
162 if (sizeof (longword) > 4)
163 {
164 if (cp[4] == 0)
165 return cp - str + 4;
166 if (cp[5] == 0)
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167 return cp - str + 5;
168 if (cp[6] == 0)
169 return cp - str + 6;
170 if (cp[7] == 0)
171 return cp - str + 7;
172 }
173 }
174 }
175 }

A.2 Fixed Version: Zitser’s Fix

Listing A.3. Zitser’s fixed version of the mapped-path-bad.c file in Zitser’s WU-FTPD “mapping chdir” bug.

1 /*
2 MIT Copyright Notice
3
4 Copyright 2003 M.I.T.
5
6 Permission is hereby granted, without written agreement or royalty fee, to use,
7 copy, modify, and distribute this software and its documentation for any
8 purpose, provided that the above copyright notice and the following three
9 paragraphs appear in all copies of this software.

10
11 IN NO EVENT SHALL M.I.T. BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
12 INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE
13 AND ITS DOCUMENTATION, EVEN IF M.I.T. HAS BEEN ADVISED OF THE POSSIBILITY OF
14 SUCH DAMANGE.
15
16 M.I.T. SPECIFICALLY DISCLAIMS ANY WARRANTIES INCLUDING, BUT NOT LIMITED TO
17 THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
18 AND NON-INFRINGEMENT.
19
20 THE SOFTWARE IS PROVIDED ON AN "AS-IS" BASIS AND M.I.T. HAS NO OBLIGATION TO
21 PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22

23 $Author: tleek $
24 $Date: 2004/02/05 15:21:24 $
25 $Header: /mnt/leo2/cvs/sabo/hist-040105/wu-ftpd/f1/mapped-path-ok.c,v 1.2 2004/02/05

15:21:24 tleek Exp $
26 */
27 /*
28 WU-FTPD Copyright Notice
29
30

31 Copyright (c) 1999,2000 WU-FTPD Development Group.
32 All rights reserved.
33

34 Portions Copyright (c) 1980, 1985, 1988, 1989, 1990, 1991, 1993, 1994
35 The Regents of the University of California.
36 Portions Copyright (c) 1993, 1994 Washington University in Saint Louis.
37 Portions Copyright (c) 1996, 1998 Berkeley Software Design, Inc.
38 Portions Copyright (c) 1989 Massachusetts Institute of Technology.
39 Portions Copyright (c) 1998 Sendmail, Inc.
40 Portions Copyright (c) 1983, 1995, 1996, 1997 Eric P. Allman.
41 Portions Copyright (c) 1997 by Stan Barber.
42 Portions Copyright (c) 1997 by Kent Landfield.
43 Portions Copyright (c) 1991, 1992, 1993, 1994, 1995, 1996, 1997
44 Free Software Foundation, Inc.
45
46 Use and distribution of this software and its source code are governed
47 by the terms and conditions of the WU-FTPD Software License ("LICENSE").
48
49 If you did not receive a copy of the license, it may be obtained online
50 at http://www.wu-ftpd.org/license.html.
51
52

53 $Author: tleek $
54 $Date: 2004/02/05 15:21:24 $
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55 $Header: /mnt/leo2/cvs/sabo/hist-040105/wu-ftpd/f1/mapped-path-ok.c,v 1.2 2004/02/05
15:21:24 tleek Exp $

56 */
57 /*
58 <source>
59 */
60 #include <sys/types.h>
61 #include <ctype.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 /*#include <pwd.h>*/ /* Using custom made pwd() */
65 #include <string.h>
66 #include <unistd.h>
67 #include "my-include.h"
68 #include <sys/stat.h>
69 #include <fcntl.h>
70 #include <assert.h>
71
72 #ifdef MAPPING_CHDIR
73 /* Keep track of the path the user has chdir’d into and respond with
74 * that to pwd commands. This is to avoid having the absolue disk
75 * path returned, which I want to avoid.
76 */
77 char mapped_path[ MAXPATHLEN ] = "/";
78
79

80 char *mapping_getcwd(char *path, size_t size) /* NEW.. a replacement for mapping_getwd */
81 {
82

83 printf("Copying at most %d chars into buffer path[] whose size = %d\n", size, MAXPATHLEN
+ 1);

84

85 /* OK */
86 strncpy(path, mapped_path, size);
87 path[size-1] = ’\0’;
88 return path;
89 }
90
91

92 /* Make these globals rather than local to mapping_chdir to avoid stack overflow */
93 char pathspace[ MAXPATHLEN ];
94 char old_mapped_path[ MAXPATHLEN ];
95
96
97 void
98 #ifdef __STDC__
99 do_elem(char *dir)

100 #else
101 do_elem( dir )
102 char *dir;
103 #endif
104 {
105 /* . */
106 if( dir[0] == ’.’ && dir[1] == ’\0’ ){
107 /* ignore it */
108 return;
109 }
110

111 /* .. */
112 if( dir[0] == ’.’ && dir[1] == ’.’ && dir[2] == ’\0’ ){
113 char *last;
114 /* lop the last directory off the path */
115 if(( last = strrchr( mapped_path, ’/’) )){
116 /* If start of pathname leave the / */
117 if( last == mapped_path )
118 last++;
119 *last = ’\0’;
120 }
121 return;
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122 }
123

124 /* append the dir part with a leading / unless at root */
125 if( !(mapped_path[0] == ’/’ && mapped_path[1] == ’\0’) )
126 if (strlen(mapped_path) < sizeof(mapped_path) - 1) /* NEW */
127 /*OK*/
128 strcat(mapped_path, "/");
129

130 if (sizeof(mapped_path) - strlen(mapped_path) > 1) /* NEW */
131 /*OK*/
132 strncat(mapped_path, dir, sizeof(mapped_path) - strlen(mapped_path) - 1); /* NEW */
133 }
134
135
136 int
137 #ifdef __STDC__
138 mapping_chdir(char *orig_path)
139 #else
140 mapping_chdir( orig_path )
141 char *orig_path;
142 #endif
143 {
144 int ret;
145 char *sl, *path;
146

147 strcpy( old_mapped_path, mapped_path );
148 path = &pathspace[0];
149

150 /*OK*/
151 printf ("strlen(path) = %d \t path=%s\n", strlen (path), path);
152 printf ("strlen(orig_path) = %d \t orig_path=%s\n", strlen (orig_path), orig_path);
153

154 if (strlen (path) >0)
155 strcpy( path, orig_path );
156

157 /* / at start of path, set the start of the mapped_path to / */
158 if( path[0] == ’/’ ){
159 mapped_path[0] = ’/’;
160 mapped_path[1] = ’\0’;
161 path++;
162 }
163

164 while( (sl = strchr( path, ’/’ )) ){
165 char *dir;
166 dir = path;
167 *sl = ’\0’;
168 path = sl + 1;
169 if( *dir )
170 do_elem( dir );
171 if( *path == ’\0’ )
172 break;
173 }
174

175 if( *path ){
176 printf("path = %s.. calling do_elem\n", path);
177 do_elem( path );
178 }
179 printf("mapped_path = %s\n", mapped_path);
180

181 if (strlen(mapped_path) >= MAXPATHLEN){
182 printf("ALERT: mapped_path[MAXPATHLEN] has been overflowed!\n");
183 }
184

185 if( (ret = chdir( mapped_path )) < 0 ){
186 printf("couldn’t chdir to %s !\n", mapped_path);
187 strcpy(mapped_path, old_mapped_path );
188 printf("mapped_path changed to %s\n", mapped_path);
189 }
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190
191 return ret;
192 }
193
194

195 #define getwd(d) mapping_getwd(d)
196 #define getcwd(d,u) mapping_getcwd((d), (u)) /* NEW */
197

198 #endif /* MAPPING_CHDIR */
199
200

201 /* Define pwd */
202
203 void
204 #ifdef __STDC__
205 pwd(void)
206 #else
207 pwd()
208 #endif
209 {
210 int canary = 7;
211 char path[MAXPATHLEN + 1]; /* Path to return to client */
212
213 #ifndef MAPPING_CHDIR
214 #ifdef HAVE_GETCWD
215 extern char *getcwd();
216 #else
217 #ifdef __STDC__
218 extern char *getwd(char *);
219 #else
220 extern char *getwd();
221 #endif
222 #endif
223 #endif /* MAPPING_CHDIR */
224
225 #ifdef HAVE_GETCWD
226 if (getcwd(path,MAXPATHLEN) == (char *) NULL) /* call is made to mapping_getcwd */
227 {
228 printf("wu-ftpd: Illegal path supplied!\n");
229 }
230 #else
231 if (getwd(path) == (char *) NULL)
232 #endif
233 {
234 printf("path = %s\n", path);
235 printf("Current directory = %s\n", path);
236 printf("max len of path is %d, strlen(path) = %d\n", MAXPATHLEN, strlen(path));
237 printf("Canary should be 7. Canary = %d\n", canary);
238 if (canary != 7)
239 printf("ALERT: path[MAXPATHLEN + 1] has been overflowed!\n");
240 }
241 }
242
243

244 int main(int argc, char **argv){
245

246 char orig_path[MAXPATHLEN + 20];
247 FILE *f;
248

249 f = fopen("pathfile", "r");
250 fgets(orig_path, MAXPATHLEN + 20, f); /* get path name */
251 fclose(f);
252

253 printf("orig_path = %s\n", orig_path);
254

255 mapping_chdir(orig_path); /* this can overflow mapped_path[] and pathspace[] */
256 pwd(); /* get current working directory.. this calls getwcd = mapping_getwd*/
257 /* mapping_getwd may overflow path[] */
258
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259
260 return 0;
261

262 }
263 /*
264 </source>
265 */

A.3 Fixed Version: Our Fix

Listing A.4. mapped-path-bad.c file in Zitser’s WU-FTPD “mapping chdir” bug, with PCFIRE-C-prescribed safety-
checks inserted.

1 /*
2 MIT Copyright Notice
3
4 Copyright 2003 M.I.T.
5
6 Permission is hereby granted, without written agreement or royalty fee, to use,
7 copy, modify, and distribute this software and its documentation for any
8 purpose, provided that the above copyright notice and the following three
9 paragraphs appear in all copies of this software.

10
11 IN NO EVENT SHALL M.I.T. BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
12 INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE
13 AND ITS DOCUMENTATION, EVEN IF M.I.T. HAS BEEN ADVISED OF THE POSSIBILITY OF
14 SUCH DAMANGE.
15
16 M.I.T. SPECIFICALLY DISCLAIMS ANY WARRANTIES INCLUDING, BUT NOT LIMITED TO
17 THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
18 AND NON-INFRINGEMENT.
19
20 THE SOFTWARE IS PROVIDED ON AN "AS-IS" BASIS AND M.I.T. HAS NO OBLIGATION TO
21 PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22

23 $Author: tleek $
24 $Date: 2004/01/05 17:27:52 $
25 $Header: /mnt/leo2/cvs/sabo/hist-040105/wu-ftpd/f1/mapped-path-bad.c,v 1.1.1.1 2004/01/05

17:27:52 tleek Exp $
26 */
27 /*
28 WU-FTPD Copyright Notice
29
30

31 Copyright (c) 1999,2000 WU-FTPD Development Group.
32 All rights reserved.
33

34 Portions Copyright (c) 1980, 1985, 1988, 1989, 1990, 1991, 1993, 1994
35 The Regents of the University of California.
36 Portions Copyright (c) 1993, 1994 Washington University in Saint Louis.
37 Portions Copyright (c) 1996, 1998 Berkeley Software Design, Inc.
38 Portions Copyright (c) 1989 Massachusetts Institute of Technology.
39 Portions Copyright (c) 1998 Sendmail, Inc.
40 Portions Copyright (c) 1983, 1995, 1996, 1997 Eric P. Allman.
41 Portions Copyright (c) 1997 by Stan Barber.
42 Portions Copyright (c) 1997 by Kent Landfield.
43 Portions Copyright (c) 1991, 1992, 1993, 1994, 1995, 1996, 1997
44 Free Software Foundation, Inc.
45
46 Use and distribution of this software and its source code are governed
47 by the terms and conditions of the WU-FTPD Software License ("LICENSE").
48
49 If you did not receive a copy of the license, it may be obtained online
50 at http://www.wu-ftpd.org/license.html.
51
52

53 $Author: tleek $
54 $Date: 2004/01/05 17:27:52 $
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55 $Header: /mnt/leo2/cvs/sabo/hist-040105/wu-ftpd/f1/mapped-path-bad.c,v 1.1.1.1 2004/01/05
17:27:52 tleek Exp $

56 */
57 /*
58 <source>
59 */
60 //#define SYSCALL
61
62 #ifdef SYSCALL
63 #include <ctype.h>
64 #include <stdlib.h>
65 /*#include <pwd.h> */ /* Using custom made pwd() */
66 #include <string.h>
67 #include <unistd.h>
68 #include <sys/stat.h>
69 #include <fcntl.h>
70 #include <assert.h>
71 #include <stdio.h>
72 #else
73 #define NULL ((void *) 0)
74 #endif
75 #include "my-include.h"
76 #include <sys/types.h>
77
78 #define MIN_SAFE_MEM 0x9000
79 #define WORD_SIZE 4
80 #define ABS_MAX_SAFE_MEM 0xBF000000
81 #define MAX_SAFE_MEM ((unsigned int) (ABS_MAX_SAFE_MEM - WORD_SIZE))
82

83 #define GET_STACK_POINTER(dest_var) \
84 asm ( "mov r5,r13" \
85 : "=r" (dest_var) \
86 : /* no inputs */ \
87 : /* no clobber */)
88 #define GET_FRAME_POINTER(dest_var) \
89 asm ( "mov r4,r11" \
90 : "=r" (dest_var) \
91 : /* no inputs */ \
92 : /* no clobber */)
93

94 /* Dummy chdir function to silence syscalls
95 * pwd is localized, so chdir effectively does nothing except
96 * check that an actual directory was created by the Makefile
97 */
98 #ifndef SYSCALL
99 int chdir(const char *path) {

100 return 0;
101 }
102 #endif
103
104 #ifdef MAPPING_CHDIR
105 /* Keep track of the path the user has chdir’d into and respond with
106 * that to pwd commands. This is to avoid having the absolue disk
107 * path returned, which I want to avoid.
108 */
109 char mapped_path[ MAXPATHLEN ] = "/";
110
111 char *
112 #ifdef __STDC__
113 mapping_getwd(char *path)
114 #else
115 mapping_getwd( path )
116 char *path;
117 #endif
118 {
119
120 #ifdef SYSCALL
121 printf("Copying %d chars into buffer path[] whose size = %d\n", strlen(mapped_path) + 1,

MAXPATHLEN + 1);
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122 #endif
123

124 /* BAD */
125 strcpy( path, mapped_path ); /* copies mapped_path to path without doing a size check */
126 return path;
127 }
128

129 /* Make these globals rather than local to mapping_chdir to avoid stack overflow */
130 char pathspace[ MAXPATHLEN ]; /* This buffer can get overflowed too */
131 char old_mapped_path[ MAXPATHLEN ];
132
133 void
134 #ifdef __STDC__
135 /* appends /dir to mapped_path if mapped_path != /, else appends simply dir */
136 do_elem(char *dir)
137 #else
138 do_elem( dir )
139 char *dir;
140 #endif
141 {
142 /* . */
143 register unsigned int r11_val asm ("r4");
144

145 if( dir[0] == ’.’ && dir[1] == ’\0’ ){
146 /* ignore it */
147 return;
148 }
149

150 /* .. */
151 if( dir[0] == ’.’ && dir[1] == ’.’ && dir[2] == ’\0’ ){
152 char *last;
153 /* lop the last directory off the path */
154 if (( last = strrchr( mapped_path, ’/’))){
155 /* If start of pathname leave the / */
156 if( last == mapped_path )
157 last++;
158 GET_FRAME_POINTER(r11_val);
159 if ((((unsigned int) last) >= MIN_SAFE_MEM) && (((unsigned int) last) <=

MAX_SAFE_MEM) &&
160 (((unsigned int) last) <= (r11_val-(3*WORD_SIZE))) && (r11_val >= (3*

WORD_SIZE))) {
161 *last = ’\0’;
162 }
163 }
164 return;
165 }
166

167 /* append the dir part with a / unless at root */
168 if( !(mapped_path[0] == ’/’ && mapped_path[1] == ’\0’) )
169 /* BAD */
170 strcat( mapped_path, "/" ); /* no bounds checking is done */
171 /* We do not check to see if there is room in mapped_path for dir */
172 /* BAD */
173 strcat( mapped_path, dir ); /* no bounds checking is done */
174 }
175
176 int
177 #ifdef __STDC__
178 mapping_chdir(char *orig_path)
179 #else
180 mapping_chdir( orig_path )
181 char *orig_path;
182 #endif
183 {
184 int ret;
185 char *sl, *path;
186 register unsigned int r11_val asm ("r4");
187
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188 #ifdef SYSCALL
189 printf("Entering mapping_chdir with orig_path = %s\n", orig_path);
190 #endif
191

192 strcpy( old_mapped_path, mapped_path ); /* old_mapped_path is initially / */
193 path = &pathspace[0];
194

195 /* BAD */
196 strcpy( path, orig_path ); /* suppose path = orig_path = /x/xx/xxx/xxxx/... */
197 #ifdef SYSCALL
198 printf("Copying orig_path to path....max strlen(path) = %d. strlen(path) = %d\n",

MAXPATHLEN - 1, strlen(path));
199 if (strlen(path) >= MAXPATHLEN){
200 printf ("ALERT:pathspace[MAXPATHLEN] has been overflowed!\n");
201 }
202 #endif
203

204 /* set the start of the mapped_path to / */
205 if( path[0] == ’/’ ){
206 char *c;
207 c = &(mapped_path[0]);
208 GET_FRAME_POINTER(r11_val);
209 if ((((unsigned int) (c)) >= MIN_SAFE_MEM) && (((unsigned int) (c)) <=

MAX_SAFE_MEM) &&
210 (((unsigned int) (c)) <= (r11_val-(4*WORD_SIZE))) && (r11_val >= (4*WORD_SIZE))

) {
211 *c = ’/’;
212 }
213 c = &(mapped_path[1]);
214 GET_FRAME_POINTER(r11_val);
215 if ((((unsigned int) (c)) >= MIN_SAFE_MEM) && (((unsigned int) (c)) <=

MAX_SAFE_MEM) &&
216 (((unsigned int) (c)) <= (r11_val-(4*WORD_SIZE))) && (r11_val >= (4*WORD_SIZE))

) {
217 *c = ’\0’;
218 }
219 path++;
220 }
221
222 #ifdef SYSCALL
223 printf("so far mapped_path = %s\n", mapped_path);
224 #endif
225

226 while( (sl = strchr( path, ’/’ )) ){
227 char *dir;
228 dir = path;
229 GET_FRAME_POINTER(r11_val);
230 if ((((unsigned int) sl) >= MIN_SAFE_MEM) && (((unsigned int) sl) <=

MAX_SAFE_MEM) &&
231 (((unsigned int) sl) <= (r11_val-(4*WORD_SIZE))) && (r11_val >= (4*

WORD_SIZE))) {
232 *sl = ’\0’;
233 }
234 path = sl + 1;
235 if( *dir )
236 do_elem( dir ); /* appends directory names to mapped_path */
237 if( *path == ’\0’ )
238 break;
239 }
240 if( *path )
241 {
242 #ifdef SYSCALL
243 printf("path = %s.. calling do_elem\n", path);
244 #endif
245 do_elem( path ); /* we’re in root and path is of the form aaaaa ... mapped_path

becomes /aaaa.. */
246 }
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247 #ifdef SYSCALL
248 printf("mapped_path = %s\n", mapped_path);
249 #endif
250 #ifdef SYSCALL
251 if (strlen(mapped_path) >= MAXPATHLEN){
252 printf("ALERT: mapped_path[MAXPATHLEN] has been overflowed!\n");
253 }
254 #endif
255
256

257 if( (ret = chdir( mapped_path )) < 0 ){ /* change to the specified path */
258 #ifdef SYSCALL
259 printf("couldn’t chdir to %s !\n", mapped_path);
260 #endif
261 strcpy( mapped_path, old_mapped_path ); /* change mapped_path back to original, i.e

root */
262 #ifdef SYSCALL
263 printf("mapped_path changed to %s\n", mapped_path);
264 #endif
265 }
266
267 return ret;
268 }
269
270

271 /* From now on use the mapping version */
272

273 #define getwd(d) mapping_getwd(d)
274 #define getcwd(d,u) mapping_getwd(d)
275

276 #endif /* MAPPING_CHDIR */
277
278
279

280 /* Define pwd */
281
282 void
283 #ifdef __STDC__
284 pwd(void)
285 #else
286 pwd()
287 #endif
288 {
289 int canary = 7; /* used to see if path[] gets overflowed */
290 char path[MAXPATHLEN + 1]; /* Path to return to client */
291
292 #ifndef MAPPING_CHDIR
293 #ifdef HAVE_GETCWD
294 extern char *getcwd();
295 #else
296 #ifdef __STDC__
297 extern char *getwd(char *);
298 #else
299 extern char *getwd();
300 #endif
301 #endif
302 #endif /* MAPPING_CHDIR */
303
304 #ifdef HAVE_GETCWD
305 if (getcwd(path,MAXPATHLEN) == (char *) NULL) /* mz: call to mapping_getwd might overflow

path */
306 #else
307 if (getwd(path) == (char *) NULL) /* mz: call to mapping_getwd might overflow path buf

*/
308 #endif
309 {
310 #ifdef SYSCALL
311 printf("Couldn’t get current directory!\n");
312 #endif
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313 }
314 else{
315 #ifdef SYSCALL
316 printf("Current directory = %s\n", path);
317 printf("max strlen(path) is %d, strlen(path) = %d\n", MAXPATHLEN-1, strlen(path));
318 printf("Canary should be 7. Canary = %d\n", canary);
319 if (canary != 7)
320 printf("ALERT: path[MAXPATHLEN + 1] has been overflowed!\n");
321 #endif
322 }
323 }
324
325

326 int main(int argc, char **argv){
327
328 #ifdef SYSCALL
329 char orig_path[MAXPATHLEN + 20];
330 FILE *f;
331

332 assert (argc == 2);
333 f = fopen(argv[1], "r");
334 assert(f != NULL);
335

336 fgets(orig_path, MAXPATHLEN + 20, f); /* get path name */
337 fclose(f);
338
339 #ifdef SYSCALL
340 printf("orig_path = %s\n", orig_path);
341 #endif
342 #else
343 char orig_path[MAXPATHLEN + 20] = {0x2f,
344 0x74,0x6d,0x70,0x2f,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,
345 0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x61,0x00};
346 #endif
347

348 mapping_chdir(orig_path); /* this overflows mapped_path[] and pathspace[] */
349 pwd(); /* get current working directory.. this calls getwcd = mapping_getwd*/
350 /* mapping_getwd overflows path[] */
351
352
353 return 0;
354

355 }
356 /*
357 </source>
358 */

Listing A.5. string.c file in Zitser’s WU-FTPD “mapping chdir” bug, with PCFIRE-C-prescribed safety-checks in-
serted.

1 #include <string.h>
2 #include <stddef.h>
3 #include <sys/types.h>
4
5 #define MIN_SAFE_MEM 0x9000
6 #define WORD_SIZE 4
7 #define ABS_MAX_SAFE_MEM 0xBF000000
8 #define MAX_SAFE_MEM ((unsigned int) (ABS_MAX_SAFE_MEM - WORD_SIZE))
9

10 #define GET_STACK_POINTER(dest_var) \
11 asm ( "mov r5,r13" \
12 : "=r" (dest_var) \
13 : /* no inputs */ \
14 : /* no clobber */)
15 #define GET_FRAME_POINTER(dest_var) \
16 asm ( "mov r4,r11" \
17 : "=r" (dest_var) \
18 : /* no inputs */ \
19 : /* no clobber */)
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20

21 //typedef char reg_char
22

23 // simple implementation
24 void* memcpy(void *dest, const void *source, size_t num) {
25 int i = 0;
26 register unsigned int r11_val asm ("r4");
27 // casting pointers
28 char *dest8 = (char *)dest;
29 char *source8 = (char *)source;
30 for (i = 0; i < num; i++) {
31 GET_FRAME_POINTER(r11_val);
32 if ((((unsigned int) (dest8 + i)) >= MIN_SAFE_MEM) && (((unsigned int) (dest8 + i)) <=

MAX_SAFE_MEM) &&
33 (((unsigned int) (dest8 + i)) <= (r11_val-(2*WORD_SIZE))) && (r11_val >= (2*

WORD_SIZE))) {
34 dest8[i] = source8[i];
35 }
36 }
37 return dest;
38 }
39
40

41 char *strchr(register const char *s, int c)
42 {
43 do {
44 if (*s == ((char)c)) {
45 return (char *) s; /* silence the warning */
46 }
47 } while (*s++);
48
49 return NULL;
50 }
51
52 char *
53 strcpy(char *s1, const char *s2)
54 {
55 register unsigned int r11_val asm ("r4");
56 int res;
57 char *s = s1;
58 do {
59 res = 0;
60 GET_FRAME_POINTER(r11_val);
61 if ((((unsigned int) s) >= MIN_SAFE_MEM) && (((unsigned int) s) <= MAX_SAFE_MEM) &&
62 (((unsigned int) s) <= (r11_val-(3*WORD_SIZE))) && (r11_val >= (3*WORD_SIZE))) {
63 res = (*s++ = *s2++);
64 }
65 } while (res != 0);
66 // while ((*s++ = *s2++) != 0)
67 // ;
68 return (s1);
69 }
70
71 #undef strcat
72

73 /* Append SRC on the end of DEST. */
74 char *
75 strcat (dest, src)
76 char *dest;
77 const char *src;
78 {
79 register unsigned int r11_val asm ("r4");
80 char *s1 = dest;
81 const char *s2 = src;
82 char c;
83

84 /* Find the end of the string. */
85 do
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86 c = *s1++;
87 while (c != ’\0’);
88

89 /* Make S1 point before the next character, so we can increment
90 it while memory is read (wins on pipelined cpus). */
91 s1 -= 2;
92
93 do
94 {
95 char *tmp_dst;
96 c = *s2++;
97 tmp_dst = ++s1;
98 GET_FRAME_POINTER(r11_val);
99 if ((((unsigned int) (tmp_dst)) >= MIN_SAFE_MEM) && (((unsigned int) (tmp_dst)) <=

MAX_SAFE_MEM) &&
100 (((unsigned int) (tmp_dst)) <= (r11_val-(3*WORD_SIZE))) && (r11_val >= (3*

WORD_SIZE))) {
101 *tmp_dst = c;
102 }
103 }
104 while (c != ’\0’);
105
106 return dest;
107 }
108
109 #undef strrchr
110

111 /* Find the last occurrence of C in S. */
112 char *
113 strrchr (const char *s, int c)
114 {
115 register const char *found, *p;
116

117 c = (unsigned char) c;
118

119 /* Since strchr is fast, we use it rather than the obvious loop. */
120

121 if (c == ’\0’)
122 return strchr (s, ’\0’);
123
124 found = NULL;
125 while ((p = strchr (s, c)) != NULL)
126 {
127 found = p;
128 s = p + 1;
129 }
130

131 return (char *) found;
132 }
133
134
135 #undef strlen
136 /* Return the length of the null-terminated string STR. Scan for
137 the null terminator quickly by testing four bytes at a time. */
138 size_t
139 strlen (str)
140 const char *str;
141 {
142 const char *char_ptr;
143 const unsigned long int *longword_ptr;
144 unsigned long int longword, himagic, lomagic;
145

146 /* Handle the first few characters by reading one character at a time.
147 Do this until CHAR_PTR is aligned on a longword boundary. */
148 for (char_ptr = str; ((unsigned long int) char_ptr
149 & (sizeof (longword) - 1)) != 0;
150 ++char_ptr)
151 if (*char_ptr == ’\0’)
152 return char_ptr - str;
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153

154 /* All these elucidatory comments refer to 4-byte longwords,
155 but the theory applies equally well to 8-byte longwords. */
156

157 longword_ptr = (unsigned long int *) char_ptr;
158

159 /* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
160 the "holes." Note that there is a hole just to the left of
161 each byte, with an extra at the end:
162 bits: 01111110 11111110 11111110 11111111
163 bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
164 The 1-bits make sure that carries propagate to the next 0-bit.
165 The 0-bits provide holes for carries to fall into. */
166 himagic = 0x80808080L;
167 lomagic = 0x01010101L;
168 if (sizeof (longword) > 4)
169 {
170 /* 64-bit version of the magic. */
171 /* Do the shift in two steps to avoid a warning if long has 32 bits. */
172 himagic = ((himagic << 16) << 16) | himagic;
173 lomagic = ((lomagic << 16) << 16) | lomagic;
174 }
175 if (sizeof (longword) > 8)
176 abort ();
177

178 /* Instead of the traditional loop which tests each character,
179 we will test a longword at a time. The tricky part is testing
180 if *any of the four* bytes in the longword in question are zero. */
181 for (;;)
182 {
183 longword = *longword_ptr++;
184

185 if (((longword - lomagic) & ~longword & himagic) != 0)
186 {
187 /* Which of the bytes was the zero? If none of them were, it was
188 a misfire; continue the search. */
189

190 const char *cp = (const char *) (longword_ptr - 1);
191

192 if (cp[0] == 0)
193 return cp - str;
194 if (cp[1] == 0)
195 return cp - str + 1;
196 if (cp[2] == 0)
197 return cp - str + 2;
198 if (cp[3] == 0)
199 return cp - str + 3;
200 if (sizeof (longword) > 4)
201 {
202 if (cp[4] == 0)
203 return cp - str + 4;
204 if (cp[5] == 0)
205 return cp - str + 5;
206 if (cp[6] == 0)
207 return cp - str + 6;
208 if (cp[7] == 0)
209 return cp - str + 7;
210 }
211 }
212 }
213 }
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