Ganesha: Black-Box Diagnosis of MapReduce Systems

Xinghao Pan, Jiagi Tan, Soila Kavulya, Rajeev Gandhi, Priya Narasimhan
Electrical & Computer Engineering Department, Carnegie Mellon University
Pittsburgh, PA 15213

xinghao@cmu.edu, jiagi.tan@alumni.cmu.edu, {spertet, rgandhi,
priyan}@andrew.cmu.edu

ABSTRACT

Ganesha aims to diagnose faults transparently (in a black-
box manner) in MapReduce systems, by analyzing OS-level
metrics. Ganesha’s approach is based on peer-symmetry un-
der fault-free conditions, and can diagnose faults that man-
ifest asymmetrically at nodes within a MapReduce system.
We evaluate Ganesha by diagnosing Hadoop problems for
the Gridmix Hadoop benchmark on 10-node and 50-node
MapReduce clusters on Amazon’s EC2. We also candidly
highlight faults that escape Ganesha’s diagnosis.

1. INTRODUCTION

Performance problems in distributed systems can be hard to
diagnose and to localize to a specific node or a set of nodes.
There are many challenges in problem localization (i.e., trac-
ing the problem back to the culprit node) and root-cause
analysis (i.e., tracing the problem further to the underlying
code-level fault or bug, e.g., memory leak, deadlock). As we
show, performance problems can originate at one node in the
system and then start to manifest at other nodes as well, due
to the inherent communication across components—this can
make it hard to discover the original culprit node.

A black-bor diagnostic approach aims to discover the cul-
prit node by analyzing performance data from the OS or
network, without having to instrument the application or
to understand its semantics. The most interesting problems
to diagnose are not necessarily the outright crash (fail-stop)
failures, but rather those that result in a “limping-but-alive”
system, i.e., the system continues to operate, but with de-
graded performance.

We describe Ganesha, our black-box diagnostic approach
that we apply to diagnose such performance problems in
Hadoop [3], the open-source implementation of MapReduce
[1]. Ganesha is based on our hypothesis (borne out by obser-
vation) that fault-free nodes in MapReduce behave similarly.
Ganesha looks for asymmetric behavior across nodes to per-
form its diagnosis. Inevitably, this black-box approach will
not have coverage—faults that do not result in a consistent
asymmetry across nodes will escape Ganesha’s diagnosis.

Black-box diagnosis is not new. Other black-box diag-
nostic techniques [14, 12, 13] determine the root-cause of
a problem, given the knowledge that a problem exists in
the system (the techniques differ in how they “know” that
a problem exists). In a MapReduce system with its po-
tentially long-running jobs, the system might not provide
us with quick indications of a job experiencing a problem.
Thus, in contrast with other techniques, Ganesha attempts
to determine, for itself, whether a problem exists and, if so,

traces the problem to the culprit node(s).

In this paper, we describe Ganesha’s black-box diagnos-
tic approach, based on our (experimentally substantiated)
hypotheses of a MapReduce system’s behavior. We eval-
uate our diagnosis approach on the well-accepted, multi-
workload Gridmix Hadoop benchmark on a 10-node and a
50-node MapReduce cluster on Amazon’s EC2. Our evalua-
tion is performed by injecting and studying real-world prob-
lems that have been reported either in the Hadoop issue
tracker or the Hadoop users’ mailing list. We demonstrate
the black-box diagnosis of faults that manifest asymmetri-
cally at “peer” Hadoop slave nodes in the system. We discuss
equally our experiences with faults that escape Ganesha’s di-
agnosis, and suggest how Ganesha can be synthesized with
white-box metrics extracted by SALSA, our previously de-
veloped Hadoop log-analysis tools [9].

2. TARGET SYSTEM: MAPREDUCE

Hadoop [3] is an open-source implementation of Google’s
MapReduce [1] framework that enables distributed, data-
intensive, parallel applications by decomposing a massive
job into smaller tasks and a massive data-set into smaller
partitions, such that each task processes a different parti-
tion in parallel. Hadoop uses the Hadoop Distributed File
System (HDFS), an implementation of the Google Filesys-
tem [2], to share data amongst the distributed tasks in the
system. The Hadoop framework has a single master node
running the NameNode (which provides the HDFS names-
pace) and JobTracker (which schedules Maps and Reduces
on multiple slave nodes) daemon. Each slave node runs a
TaskTracker (execution) and a DataNode (HDFS) daemon.
We evaluate Ganesha’s problem-diagnosis approach on the
Gridmix Hadoop benchmark on a 10-node and a 50-node
MapReduce cluster on EC2. Gridmix is an increasingly
well-accepted Hadoop benchmark that is used to validate
performance across different Hadoop upgrades, for instance.
Gridmix models a cluster workload by generating random
data and submitting MapReduce jobs that mimic the ob-
served data-access patterns in user jobs. Gridmix comprises
5 different jobs, ranging from an interactive workload to a
large sort of compressed data. We scaled down the size of the
dataset to 2MB of compressed data for the 10-node cluster
and 200MB for the 50-node cluster so that the benchmark
would complete in 30 minutes. For lack of space, we omit
our results with other Hadoop benchmarks (that are simpler
than Gridmix), such as RandWriter, Sort, Nutch and Pig.

3. PROBLEM STATEMENT & APPROACH

MASTER SLAVES

TaskTracker TaskTracker
DataNode DataNode

JobTracker

Operating System

A4

Operating System Operating System

Figure 1: Architecture of Hadoop, showing our in-
strumentation points.

We seek to understand whether Ganesha can localize per-
formance problems accurately and non-invasively, and what
are the limitations of black-box diagnosis for Hadoop.

Hypotheses. We hypothesize that (1) Hadoop slave nodes
exhibit a small number of distinct behaviors, from the per-
spective of black-box metrics; in a short interval (e.g. 1s)
of time, the system’s performance tends to be dominated
by one of these behaviors; and (2) under fault-free opera-
tion, Hadoop slave nodes will exhibit similar behavior (peer-
symmetry) over moderately long durations. We exploit these
hypotheses for Ganesha’s fault diagnosis. We make no claims
about peer-symmetry or lack thereof under faulty condi-
tions. (That is, we claim that fault-free operation results
in peer-symmetry, but that faulty conditions may or may
not also result in peer-symmety). Both our hypotheses are
grounded in our experimental observations of Hadoop’s be-
havior on Sort, RandWriter, Pig, Nutch and Gridmix bench-
marks for Hadoop clusters of 10 and 50 nodes on EC2.

Goals. Ganesha should run transparently to, and not re-
quire any modifications of, both Hadoop and its applica-
tions. Ganesha should be usable in production environ-
ments, where administrators might not have the luxury of
instrumenting applications but could instead leverage other
(black-box) data. Ganesha should produce low false-positive
rates, in the face of a variety of workloads for the system
under diagnosis, and more importantly, even if these work-
loads fluctuate!, as with Gridmix. Ganesha’s data-collection
should impose minimal instrumentation overheads on the
system under diagnosis.

Non-Goals. Ganesha currently aims for (coarse-grained)
problem diagnosis by identifying the culprit slave node(s).
Clearly, this differs from (fine-grained) root-cause analysis,
which would aim to identify the underlying fault or bug,
possibly even down to the offending line of code. While
Ganesha can be supported online, this paper is intentionally
focused on Ganesha’s offline analysis for problem diagnosis.
We also do not target faults on the master node.

Assumptions. We assume that Hadoop and its applica-
tions are the dominant source of activity on every node. We
assume that a majority of the Hadoop nodes are problem-

M'Workload fluctuations can often be mistaken for anomalous
behavior, if the system’s behavior is characterized in terms
of OS metrics alone. Ganesha, however, can discriminate
between the two because fault-free peer nodes track each
other under workload fluctuations.

user % CPU time in user-space
system % CPU time in kernel-space
iowait % CPU time waiting for I/O job
ctxt Context switches per second
rung-sz Number of processes waiting to run
plist-sz Total number of processes and threads
Idavg-1 | system load average for the last minute
eth-rxbyt Network bytes received per second
eth-txbyt | Network bytes transmitted per second
pgpgin KBytes paged in from disk per second
pgpgout KBytes paged out to disk per second
fault Page faults (major+minor) per second
bread Total bytes read from disk per second
bwrtn Total bytes written to disk per second

Table 1: Gathered black-box metrics (sadc-vector).

free and that all nodes are homogeneous in hardware.

4. DIAGNOSTIC APPROACH

For our problem diagnosis, we gather and analyze black-box
(i.e., OS-level) performance metrics, without requiring any
modifications to Hadoop, its applications or the OS. For
black-box data collection, we use sysstat’s sadc program
[5] to periodically gather a number of metrics (14, to be
exact, as listed in Table 1) from /proc, every second. We
use the term sadc-vector to denote a vector of values of
these metrics, all sampled at the same instant of time. We
collect the time-series of sadc-vectors from each slave node
and then perform our analyses to determine whether there
is a performance problem in the system, and then to trace
the problem back to the culprit Hadoop slave node.

4.1 Approach

MapReduce nodes exhibit a small number of distinct behav-
iors, from the perspective of black-box metrics. In a short
interval (e.g. 1s) of time, the system’s performance tends to
be dominated by one of these behaviors. Hadoop’s perfor-
mance, over a short interval of time, can thus be classified
into K distinct profiles corresponding to these distinct be-
haviors. Effectively, these profiles are a way to classify the
observed sadc-vectors into K clusters (or centroids). While
profiles do not represent semantically meaningful informa-
tion, they are motivated by our observation that, over a
short interval of time, each Hadoop slave node performs
specific resource-related activities, e.g., computations (CPU-
intensive), transfering data (network-intensive), disk access
(I/O-intensive). The profiles, thus, represent a way to cap-
ture Hadoop’s different behaviors, as manifested simulta-
neously on all of the 14 metrics. We use n to denote the
number of slave nodes.

There are two phases to our approach — training and
deployment — as shown in Figure 2. In the training phase,
we learn the profiles of Hadoop by analyzing sadc-vector
samples from slave nodes, gathered over multiple jobs in
the fault-free case. In the deployment phase, we determine
whether there is a problem for a given job, and if so, which
slave node is the culprit. We validate Ganesha’s approach by
injecting various faults at one of the Hadoop slave nodes, and
then determining whether we can indeed diagnose the culprit
node correctly. The results of our validation are described
in Section 5.1.

Training. We apply machine-learning techniques to learn

Source] Reported Failure

Fault Name] Fault Injected

Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resulted
rom running master and slave daemons on same machine

CPUHog| Emulate a CPU-intensive task that con-
sumes 70% CPU utilization

[Hadoop users’ mailing list, Sep 26 2007] Excessive messages
logged to file during startup

[DiskHog] Sequential disk workload writes 20GB of
data to filesystem

[HADOOP-2956] Degrade network connectivity between DataN-
odes results in long block transfer times

[PacketLossb/50] Induce 5%, 50% packet losses by
dropping all incoming/outgoing packets with prob-
abilities of 0.05,0.5

[HADOOP-1036] Hang at TaskTracker due to an unhandled ex-
ception from a task terminating unexpectedly. The offending
TaskTracker sends heartbeats although the task has terminated.

[HANG-1036] Revert to older version and trigger
bug by throwing NullPointerException

[HADOOP-1152] Reduces at TaskTrackers hang due to a race
condition when a file is deleted between a rename and an attempt

[HANG-1152] Emulate the race by flagging a re-
named file as being flushed to disk and throwing

to call getLength() on it.

exceptions in the filesystem code

Table 2: Injected faults, and the reported failures that they emulate. HADOOP-xxxx represents a Hadoop

bug database entry.

multiple jobs —
(gathered under — — -

fault-free operation) =

0 1
=z K-means clustering ‘
3 !
~ | initial centroid selection |
‘ EM clustering ‘
K profiles (from
training phase)
DEPLOYMENT
\/ o generated
:'lll / \ alarms /T
/= 223, AMr
=|— > — >
5 |4
o W 15
N B |AMN| S
Pl — 232.] 8 i}ﬁ 2
— —» c > 5 | g [”
S 2 : =3 2
= 5 S 8
e 1] o = c [»
time-series of = (@] o))
sadc-vectors) e @® indictment
from (%} © 1S ~ f culprit
n slave nodes © = © o s%vceunpode
for ane job &) 87 . (o))
- e
y N T
n — .3,2,2.. ;{}ﬂ:
=g BN »> —> >
\ J -

Figure 2: Ganesha’s approach.

the K profiles that capture Hadoop’s behavior. We model
our training data (a collection of sadc-vector time-series of
fault-free experimental runs) as a mixture of K Gaussian dis-
tributions. The fault-free training data is used to compute
the parameters—means and covariance matrices—of the K
Gaussians. We enforce an equal prior over the K Gaussians,
since the prior distributions of the K Gaussians may differ
over different workloads. We do not assume that our train-
ing data is labeled, i.e., we do not know, a priori, which
of the K Gaussians each gathered sadc-vector is associated
with. Instead, we use the expectation-maximization (EM)
algorithm [6] to learn the values of the unknown parameters
in the mixture of Gaussians. Since the convergence time of

the EM algorithm depends on the “goodness” of the initial
values of these unknown parameters, we use K-means clus-
tering to determine the initial values for the EM algorithm.
In fact, we run the K-means clustering multiple times, with
different initializations for the K-means clustering, in or-
der to choose the best resulting centroid values (i.e., those
with minimum distortion) as the initial values for the EM
algorithm. The output of the EM algorithm consists of the
means and covariance matrices, (s, 2;), respectively of each
of the K Gaussians. We chose a value of K = 7 in our ex-
periments?.

Deployment. Our test data consists of sadc-vectors col-
lected from the n slave nodes for a single job. At every
sampling interval, Ganesha classifies the test sadc-vector
samples from each slave node into one of the K profiles,
i.e., each test sadc-vector is mapped to the best Gaussian,
(i, Xs). If the test sadc-vector differs significantly from all
of the K Gaussians, it is classified as “unknown”. For each
of the n slave nodes, we maintain a histogram of all of the
Gaussian labels seen so far. Upon receiving a new classi-
fied sadc-vector for a slave node j, Ganesha incrementally
updates the associated histogram, Hj, as follows. The his-
togram count values of all the labels are multiplied by an
exponential decay factor, and 1 is added to the count value
of the label that classifies the current sadc-vector. From
our peer-symmetry hypothesis, slave nodes should exhibit
similar behavior over moderately long durations; thus, we
expect the histograms to be similar across all of the n slave
nodes. If a slave node’s histogram differs from the other
nodes in a statistical sense, then, Ganesha can indict that
“odd-slave-out” as the culprit.

To accomplish this, at each time instant, we perform a
pairwise comparison of the histogram, H;, with the remain-
ing histograms, H;,l # j, of the other slave nodes, . The
square root of the Jensen-Shannon divergence, which is a
symmetric version of the Kullback-Leibler divergence and is
known to be metric?, is used as the distance measure to com-
pute the pairwise histogram distance between slave nodes.
An alarm is raised for a slave node if its pairwise distance is

2We discovered that as we increased K, the mean squared
error of K-means decreases rapidly for K < 7 and slowly
for K > 7. Our choice of K = 7 is guided by the ‘elbow’
rule-of-thumb: an additional cluster does not add significant
information.

3A distance between two objects is ‘metric’ if it exhibits
symmetry, triangular inequality, and non-negativity.

Ganesha performance

- o
W 10 nodes
O 50 nodes

TP Ratio
0.6
|

0.4

0.2

FP Ratio

0.2

CPU Disk HANG HANG Packet Packet
hog hog 1036 1152 loss50 loss5

Figure 3: Diagnosis results for Ganesha on faults
injected in Hadoop for fault-workload pairs.

more than a threshold value with more than ”T_l slave nodes.
An alarm is treated merely as a suspicion; repeated alarms
are needed for indicting a node. Thus, Ganesha maintains
an exponentially weighted alarm-count raised for each of the
slave nodes in the system. Ganesha indicts a node as the
culprit if that node’s exponentially weighted alarm-count ex-
ceeds a predefined threshold value.

S. EXPERIMENTAL VALIDATION

We analyzed system metrics from two (10-slave nodes and
50-slave nodes) clusters running Hadoop 0.18.3. Each node
consisted of an AMD Opeteron 1220 dual-core CPU with
4GB of memory, Gigabit Ethernet, and a dedicated 320GB
disk for Hadoop, running amd64 Debian/GNU Linux 4.0.
We selected our candidate faults from real-world problems
reported by Hadoop users and developers in: (i) the Hadoop
issue tracker [4] from February 2007 to February 2009, and
(ii) 40 postings from the Hadoop users’ mailing list from
September to November 2007. We describe our results for
the injection of the six specific faults listed in Table 2. For
each injected fault, we collected 20 traces on the 10-node
cluster and 6 traces on the 50-node cluster, with Hadoop’s
speculative execution enabled for half of the traces. We
demonstrate that Ganesha is able to detect three of the in-
jected faults (CPUHog, DiskHog and HANG-1036), and dis-
cuss Ganesha’s shortcomings at detecting the other three
faults (PacketLoss5, PacketLoss50 and HANG-1152).

5.1 Results

We evaluated Ganesha’s approach using the true-positive
(TP) and false-positive (FP) ratios across all runs for each
fault. Figure 3 summarizes our results. A node with an
injected fault that is correctly indicted is a true-positive,
while a node without an injected fault that is incorrectly
indicted is a false-positive. Thus, the true-positive and false-
positive ratios are computed as:

P — # faulty nodes correctly indicted

nodes with injected faults

nodes without faults incorrectly indicted

FP =
nodes without injected faults

Speculative execution did not have a significant effect on
our results. Thus, we present results without discriminating
experiments by whether speculative execution was enabled.

Figure 3 demonstrates that Ganesha was able to achieve
almost perfect TP ratios of 1.0 and FP ratios of 0.0 for
CPUHog, DiskHog, and HANG-1036 on all cluster sizes. For
PacketLoss50, Ganesha achieved high TP and FP ratios.
Conversely, both TP and FP ratios for HANG-1152 and
PacketLoss5 were low. We discuss these results in Section 6.

In addition, we compute the the false-alarm rate to be
the proportion of slave nodes indicted in fault-free runs; this
turns out to be 0.03 in both the 10-node and 50-node cases.
These low false-alarm rates across both cluster sizes suggest
that, in the case where nodes are indicted by Ganesha, a
fault is truly present in the system, albeit not necessarily at
the node(s) indicted by Ganesha.

6. DISCUSSIONS

Here, we candidly discuss some of the injected faults that
Ganesha was less effective at diagnosing. Ganesha achieved
low true-positive ratios at diagnosing HANG-1152, indicat-
ing that our view of the faulty node was obscured such that,
under the injected fault, the behavior of the faulty node did
not deviate significantly from the fault-free nodes. This is
due to the relationship between the workload and the in-
jected faults: specifically, the injected fault occurs late in
the processing cycle, during the later part of a Reduce. The
manifestations of HANG-1152 are internal to the processing
of each Reduce, and are triggered only near the end of each
Map-to-Reduce processing cycle, where the jobs would have
ended, thus squelching the manifestation of the fault before
the fault can cause significant deviation in behavior on the
faulty nodes.

This is in contrast to HANG-1036, which is a hang trig-
gered at the beginning of Map processing, which we detect
with an almost perfect true-positive ratio. This is a limi-
tation of diagnosing using only black-box operating system
performance counters, which limits us from utilizing applica-
tion specific information to obtain finer-grained views. How-
ever, we have experienced more success at diagnosing appli-
cation hangs using white-box finer-grained information from
Hadoop’s natively-generated logs [9], and we intend to study
how white-box and black-box information can be jointly syn-
thesized to diagnose failures more effectively.

Ganesha also achieved a high FP ratio for PacketLoss50,
reflecting the highly correlated nature of the fault. Nodes
that attempted to communicate with the culprit node also
exhibited a slowdown in activity as they waited on the cul-
prit node. A non-culprit slave node appears anomalous, as
compared to other slave nodes, whenever it communicates
with the culprit node. Hence, Ganesha indicts a significant
number of non-culprit nodes as well. However, by using
white-box metrics extracted from Hadoop’s logs, we show in
[11] that we can identify the culprit node with high accuracy,
even under such correlated faults.

On the other hand, Ganesha achieves low TP and FP ra-
tios for PacketLoss5, because TCP is resilient against minor
packet losses, but not against major packet losses. Hence,
the minor packet losses are masked by TCP’s own reliable
delivery mechanisms and the faulty node does not deviate
significantly from other nodes.

7. RELATED WORK

We compare Ganesha with two sets of related work. First,
we discuss other work on performance debugging for MapRe-
duce systems. We then discuss other failure diagnosis tech-
niques, most which target multi-tiered enterprise systems.

Performance debugging for MapReduce. [7] is an in-
tegrated tracing framework which requires modifications to
code and network protocols. It has been applied to Hadoop
to build and visualize request paths. [8] is a framework for
collecting, storing and visualizing logs, and allows for plug-in
statistical modules for analysis. Ganesha could potentially
be implemented as one such module. However, [7, 8] do
not automatically diagnose failures in MapReduce systems.
Instead, they present information that aids the user in de-
bugging performance problems.

Our prior work, SALSA [9] also performs automated fail-
ure diagnosis, but uses white-box metrics as extracted from
Hadoop’s logs. SALSA and Ganesha are complementary
approaches; [11] shows how the two may be integrated to
achieve better diagnosis results. Mochi [10] builds on state-
machine models extracted by SALSA to build conjoined
causal control- and data-flow paths of Hadoop’s execution.

Other failure diagnosis work. Ganesha collects black-
box performance counters from the OS. It models “normal”
behavior as that observed on the majority of slave nodes;
that is, Ganesha performs peer comparison for failure diag-
nosis. Like Ganesha, [12, 13] also collect resource utiliza-
tion metrics. However, this is done at the thread level in
[12]. Further, [12] captures events at the kernel, middleware
and application layers. An anomaly is detected when a new
request does not match any previously observed cluster of
requests. [13] requires additional measurement of whether
service-level objectives are violated. Problems are identified
by comparing their signatures to previously observed clus-
ters of signatures. However, MapReduce systems allow for
arbitrary user code and thus does not lend itself well to the
historical comparisons used in [12, 13].

[14, 15] collect only request path information. [14] infers
paths from unmodified messaging layer messages; [15] col-
lects messages at the middleware layer. [14] aims to isolate
performance bottlenecks rather than detecting anomalies.
[15] performs historical and peer comparison of path shapes
to detect anomalies. However, paths in MapReduce follow
the same Map to Reduce shape (except in straightforward
cases of outright crashes or errors). Performance problems
are not likely to result in changes in path shape, thus ren-
dering a technique based on path shapes less useful in a
MapReduce setting than in multi-tiered enterprise systems
targetted in [15].

8. CONCLUSION AND FUTURE WORK

We describe Ganesha, a black-box diagnosis technique that
examines OS-level metrics to detect and diagnose faults in
MapReduce systems. Ganesha relies on experimental obser-
vations of MapReduce behavior to diagnose faults. The two,
experimentally-based key hypotheses — peer symmetry of
slave nodes and a small number of profiles of MapReduce
behavior — drive Ganesha’s diagnosis algorithm.

We are currently extending Ganesha to diagnose corre-
lated faults by using data- and control-flow dependencies
extracted by our Hadoop log-analysis tools [9]. Also, we are
integrating Ganesha with other diagnosis techniques to en-

able improved diagnosis [11]. Also, Ganesha’s learning phase
assumes metrics with Gaussian distributions; we plan to in-
vestigate if the diagnosis can be improved by using other,
possibly non-parametric, forms of clustering. We also expect
to run Ganesha online by deploying its algorithms within our
ASDF online problem-diagnosis framework [16].

9. REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: Simplified

data processing on large clusters. In OSDI, pp
137-150, San Francisco, CA, Dec 2004.

[2] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. In SOSP, pp 29-43, Lake George, NY, Oct
2003.

[3] Hadoop. http://hadoop.apache.org/core.

[4] Apache’s JIRA issue tracker, 2006.
https://issues.apache.org/jira.

[5] S. Godard. SYSSTAT, 2008.
http://pagesperso-orange.fr/sebastien.godard.

[6] D. R. A. Dempster, N. Laird. Maximum likelihood
from incomplete data via the em algorithm. J. of the
Royal Statistical Society, 39:1,38, 1977.

[7] R. Fonseca, G. Porter, R. Katz, S. Shenker, and
I. Stoica. X-Trace: A pervasive network tracing
framework. In NSDI, Cambridge, MA, Apr 2007.

[8] G. F. Cretu-Ciocarlie, M. Budiu, M. Goldszmidt.
Hunting for Problems with Artemis. In USENIX
Workshop on Analysis of System Logs, San Diego, CA,
Dec 2008.

[9] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and
P. Narasimhan. SALSA: Analyzing logs as state
machines. In USENIX Workshop on Analysis of
System Logs, San Diego, CA, Dec 2008.

[10] J. Tan, X. Pan, S. Kavulya, R. Gandhi, P.
Narasimhan. Mochi: Visual Log-Analysis Based Tools
for Debugging Hadoop. HotCloud, San Diego, CA,
Jun 2009.

[11] X. Pan, Blind Men and the Elephant: Piecing
Together Hadoop for Diagnosis. Masters Thesis,
Carnegie Mellon University, 2009. Technical Report:
CMU-CS-09-135, Carnegie Mellon University, May
2009

[12] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for request extraction and workload
modelling. In OSDI, San Francisco, CA, Dec 2004.

[13] L. Cohen, S. Zhang, M. Goldszmidt, J. Symons,

T. Kelly, and A. Fox. Capturing, indexing, clustering,
and retrieving system history. In SOSP, pp 105-118,
Brighton, U.K., Oct 2005.

[14] M. K. Aguilera, J. C. Mogul, J. L. Wiener,

P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed system of black boxes. In
SOSP, pp 74-89, Bolton Landing, NY, Oct 2003.

[15] E. Kiciman and A. Fox. Detecting application-level
failures in component-based internet services. IEEE
Trans. on Neural Networks, 16(5):1027-1041, Sep
2005.

[16] K. Bare, M. Kasick, S. Kavulya, E. Marinelli, X. Pan,
J. Tan, R. Gandhi, and P. Narasimhan. ASDF:
Automated online fingerpointing for Hadoop.
Technical Report CMU-PDL-08-104, Carnegie Mellon
University, May 2008.

