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Abstract. Many important applications fall into the
broad class of iterative convergent algorithms. Paral-
lel implementations of these algorithms are naturally ex-
pressed using the Bulk Synchronous Parallel (BSP) model
of computation. However, implementations using BSP
are plagued by the straggler problem, where every tran-
sient slowdown of any given thread can delay all other
threads. This paper presents the Stale Synchronous Paral-
lel (SSP) model as a generalization of BSP that preserves
many of its advantages, while avoiding the straggler prob-
lem. Algorithms using SSP can execute efficiently, even
with significant delays in some threads, addressing the
oft-faced straggler problem.

1 Introduction

Machine learning algorithms are an important part of
many applications, including document classification,
movie recommendations, bioinformatics, and more (Ta-
ble 1). For instance, collaborative filtering algorithms
are used to recommend movies, songs, and other prod-
ucts to users based on their previous taste, purchases, and
browsing history. Sparse regression models are applied to
genomes to identify the genes most likely to be responsi-
ble for certain traits (e.g., Alzheimer’s).

As these applications become more ubiquitous, increas-
ingly complex algorithms are being deployed on larger
data sets, leading to performance problems. A state-
of-the-art document topic modeling algorithm may take
many hours to analyze a large corpus. For instance, run-
ning Latent Dirichlet Allocation [10] (LDA) over a corpus
of 300,000 documents [2] takes about 10 days [17].

To reduce computational time, application and algo-
rithm designers are turning to parallel and distributed im-
plementations running on clusters of servers [17]. While
the diversity of these algorithms and applications makes
it difficult to create a general-purpose method of paral-
lelizing them, many of them share some important traits.
This paper focuses on iterative convergent algorithms, the
class of algorithms that start with some guess as to the
problem solution and proceed through multiple iterations
that each improve this guess. The key property that makes
this approach work is convergence, which allows such
algorithms to find a good solution given any starting state.

Algorithm Example applications
Latent Dirichlet Allocation (LDA) News classification
Low-rank matrix factorization Movie/music recommendations
Sparse regression Genome-wide analysis
Conjugate gradient Linear system solvers
Principal eigenvector Web search/page rank
All-pairs shortest path Mapping and route planning

Table 1: Examples of iterative convergent algorithms, and
some of their applications.

Distributed implementations of iterative convergent al-
gorithms tend to follow the Bulk Synchronous Parallel
(BSP) computational model. In this model, the applica-
tion operates on a snapshot of the data produced by the
previous iteration, requiring all threads to execute the
same iteration at the same time. This per-iteration barrier
synchronization causes a straggler problem, which can
significantly reduce the performance of these algorithms.

Succinctly, a straggler problem occurs when a small
number of threads (the stragglers) take longer than the oth-
ers to execute a given iteration. Because all threads must
be synchronized, all threads will proceed at the speed of
the slowest thread in each iteration. This problem grows
with increased parallelism: as the number of servers in-
creases, the probability of having a straggler in any given
iteration also increases.

Existing systems address straggler problems in a num-
ber of ways. For consistent stragglers (e.g., less capable
nodes), proper load distribution (e.g., via work stealing)
or speculative execution (e.g., [22]) suffices. Speed vari-
ation due to transient effects, such as intermittent “back-
ground” activities or contention for shared resources, is
much more difficult. Some systems, typical in High-
Performance Computing, avoid using any hardware or
software components that may introduce “jitter”. Other
systems restrict the communication patterns and interde-
pendence between threads. Yet other systems allow the
threads to run asynchronously, avoiding stragglers, but
potentially complicating the algorithm.

We propose a middle ground between full synchroniza-
tion and no synchronization: allowing some threads to
proceed ahead of others, by a certain amount. The Stale
Synchronous Parallel model (SSP) relaxes consistency
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and freshness guarantees without completely eliminating
them. In many cases, an SSP-based system can behave
and perform like a best-effort system. However, it will
detect when data becomes too unsynchronized, and will
partially synchronize threads to avoid unbounded data
staleness. Initial experiments with a prototype system,
called LazyTables, show promise that SSP can mitigate
transient straggler effects.

2 Background

This section describes iterative convergent algorithms, the
types of applications that use them, and current models
for running these algorithms in parallel.
2.1 Iterative convergent algorithms

Iterative convergent algorithms typically search a space
of potential solutions (e.g. N-dimensional vectors of real
numbers) using an objective function that evaluates the
goodness of a potential solution. The goal is to find a so-
lution with a large (or in the case of minimization, small)
objective value. For some algorithms (e.g., eigenvector
and shortest path), the objective function is not explicitly
defined or evaluated. Rather, they continue to iterate until
the solution does not change (significantly) from iteration
to iteration.

These algorithms start with an initial state S0 with some
objective value f (S0). They proceed through a set of
iterations, each one producing a new state Sn+1 with a
potentially improved solution (e.g. greater objective value
f (Sn+1)> f (Sn)). Eventually they reach a stopping con-
dition and output the best known state.

A key property of these algorithms is that they will
converge to a good state, even if there are minor errors in
their intermediate calculations.
2.2 Bulk synchronous parallel

These algorithms are often parallelized with the Bulk
Synchronous Parallel model (BSP). As in the sequen-
tial version of the algorithm, BSP applications proceed
through a series of iterations. In BSP the algorithm state is
stored in a shared data structure (often distributed among
the threads) that all threads update during each iteration.

A single iteration of BSP consists of three steps. In
the computation phase, all threads compute on the previ-
ous iteration’s output in parallel. In the communication
phase, threads produce new output, sharing it either by
explicit communication, or by writing to a shared data
structure. Lastly, in the synchronization phase, threads
execute a barrier to ensure that they don’t begin the next
computation step until all other threads have finished the
communication step.

BSP provides a simple and easy-to-reason-about model
for parallel computation, and can be easily applied to
most iterative convergent algorithms.

2.3 Stragglers in BSP
A well-known problem with BSP is the straggler prob-

lem: because of the frequent and explicit synchronization,
each iteration proceeds at the pace of the slowest thread.
This problem only gets worse as the level of parallelism
is increased. Because of random variations in execution
time, as the number of threads increases, the probability
that one of them will run unusually slowly in a given iter-
ation increases. As a result, the entire application will be
delayed in every iteration.

Stragglers can occur for a number of reasons includ-
ing heterogeneity of hardware [14], hardware failures [7],
imbalanced data distribution among tasks, garbage collec-
tion in high-level languages, and even operating system
effects [4, 18]. Additionally, there are sometimes algorith-
mic reasons to introduce a straggler. Many algorithms use
an expensive computation as a stopping criterion. Even
if this computation is only run on a single thread, other
threads will have to wait for it to finish before they can
start the next iteration.
2.4 Existing solutions

The High Performance Computing community – which
frequently runs applications using the BSP model – has
made much progress in eliminating stragglers caused by
hardware or operating system effects [12, 13, 18, 23].
While these solutions are very effective at reducing “op-
erating system jitter”, they are not intended to solve the
more general straggler problem. For instance, they are
not applicable to programs written in garbage collected
languages, nor do they handle algorithms that inherently
cause stragglers during some iterations.

In large-scale networked systems, where variable node
performance, unpredictable communication latencies and
failures are the norm, researchers have explored relax-
ing traditional barrier synchronization. For example, Al-
brecht, et al., describe partial barriers, which allow a
fraction of nodes to pass through a barrier by adapting the
rate of entry and release from the barrier [6].

Another class of solutions attempts to reduce the need
for synchronization by restricting the structure of the com-
munication patterns. GraphLab [15, 16] programs struc-
ture the computation as a graph, where data can exist on
nodes and edges. All communication occurs along the
edges of this graph. If two nodes on the graph are suffi-
ciently far apart they may be updated without synchroniza-
tion. This model can significantly reduce synchronization
in some cases. However, it requires the application pro-
grammer to specify the communication pattern explicitly.

Considerable work has been done in describing and
enforcing relaxed consistency in distributed replicated
services. For example, the TACT model captures con-
tinuous consistency using three metrics: numerical error,
order error and staleness [21]. Replicas locally buffer
updates (each with an optional weight) before requiring
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remote communication. Numerical error is the maximum
weight of writes not seen by a replica. Order error is the
maximum weight of not-yet-communicated local writes.
Staleness is the maximum time before a replica sees a
write accepted by a remote replica. Although the context
differs (LazyTables relaxes consistency for iterative par-
allel computations to speed convergence rather than for
replicated data stores), the consistency models have some
similarities.

Lastly, it is possible to ignore consistency and synchro-
nization altogether, and rely on a best-effort model for
updating shared data. Yahoo! LDA [5] as well as most
solutions based around NoSQL databases rely on this
model. While this approach can work well in some cases,
it may require careful design to ensure that the algorithm
is operating correctly.

3 Stale Synchronous Parallel

To address the straggler problem without giving up the
benefits of synchronization, we propose a new compu-
tational model based on BSP, which we call Stale Syn-
chronous Parallel (SSP). Like BSP, SSP assumes that the
program consists of a number of threads, each proceed-
ing through the same number of iterations. During each
iteration each thread reads and updates some shared state.

However, programs using the SSP model must be aware
of some crucial differences in the consistency model that
can affect algorithm design as well as performance. These
differences can be described in terms of the following
properties [20].

Bounded staleness Data that is read by a thread may
be stale (missing some recent updates). In other words,
there is a delay between when an update operation com-
pletes, and when the effects of that update are visible.
An application can put an upper bound on how stale the
result of each read() operation may be. In SSP, this
bound is expressed in terms of the number of elapsed iter-
ations. This property is analogous to TACT’s numerical
error [21].

Read-my-writes If a thread updates a value, all sub-
sequent read() operations by that thread will see the
update (unless it is overwritten by a later update). In other
words, threads see their own updates immediately, even if
updates from other threads may be delayed (staleness).

Soft synchronization At the end of each iteration,
threads execute a “soft barrier”. Unlike a full barrier
(as in BSP), which blocks until all threads are caught up,
a soft barrier blocks the thread until all threads are within
a specified range of the current iteration. For instance,
a soft barrier with a parameter of “1” finishes when no
thread is more than 1 iteration behind the calling thread.

The Stale Synchronous Parallel computational model
can be thought of as BSP with the addition of bounded
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Figure 1: Diagram of Bulk Synchronous Parallel and
Stale Synchronous Parallel execution state. The thick
black bars indicate data that is visible to all threads. The
gray bars indicate data that may be visible, but is not
guaranteed. The lines indicate thread progress: arrows
are runnable threads, while blocked threads are terminated
with vertical lines.

staleness, read-my-writes, and soft synchronization. It
is important to note that reads in SSP are not historical
queries: the system may return fresher data than the spec-
ified bound. In fact, it may return fresher updates from
some threads, and stale updates from others. Specifically,
the system must incorporate all updates from the current
thread to implement read-my-writes.

Figure 1 illustrates these freshness properties. The BSP
diagram represents an application with 4 threads using the
BSP model. In this diagram, threads 2 and 4 are executing
in iteration 3, while threads 1 and 3 are blocked waiting
for them to finish. When these threads read data, they are
guaranteed to see all updates up to the end of iteration 2.

The SSP diagram shows the same application, but using
the SSP model with a fixed staleness of 1. In this diagram,
threads 2 and 4 are still executing in iteration 3. However,
because they are willing to use stale data, threads 1 and
3 did not have to wait for the other threads to complete
that iteration. Thread 1 is currently executing in iteration
4. Thread 3 is blocked at the start of iteration 5 because it
requires data from iteration 3 to continue.

3.1 LazyTables Prototype
We built a prototype system called LazyTables that im-

plements the Stale Synchronous Parallel model to support
distributed machine learning applications. LazyTables
provides the abstraction of a set of shared sparse matrices
that all processes access as a “parameter server” to store
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intermediate results.These matrices are stored in memory,
distributed across a set of servers.

LazyTables provides an API similar to the Piccolo [19]
system. It provides read and update operations including
get(), get row(), put() and increment(). While
Piccolo provides support for a generic update() opera-
tion, LazyTables currently supports only increment(),
which is sufficient for our test cases. Generic updates
are necessary for some other algorithms such as all-pairs
shortest-path, which uses “min” as the update operator.

4 Experiments with masking stragglers

The main goal of our initial experiments is to demonstrate
that the Stale Synchronous Parallel model can mask the
effects of stragglers on performance. Additionally, we
show example algorithms that are “staleness tolerant”,
and exploiting staleness can improve their convergence
behavior. However, a detailed examination of these latter
points is left as future work.

Our LazyTables prototype is written in C++, using Ze-
roMQ [3] for asynchronous communication. Data, on
both the servers and the client caches, is stored in RAM
using the C++ standard template library. All experiments
are conducted on virtual machines in the CMU OpenCir-
rus [9] cluster. These VMs are configured with 8 cores
and 15GB of RAM. No other applications or VMs are
running on the hosts concurrently with the experiments.
4.1 Stragglers

To demonstrate the effect of stragglers, we conducted
two experiments that introduced delays into LazyTables.
The first experiment simulates the effects of an “algorith-
mic” delay, where an expensive calculation (e.g. stopping
conditions) must be done regularly. In every iteration we
chose one thread to perform the “calculation” and forced
it to sleep. The choice was made in a round-robin fashion
so that the sleeps would be balanced between the threads
over the course of the execution.

The results of this experiment are shown in the top of
Figure 2(a). Observe that with a staleness bound of 0 (first
group of bars), even a small delay causes significant over-
all delay in the application. However, as more staleness is
introduced, the system is able to mask ever larger delays.

The second experiment simulates the effects of exter-
nal interference due to things like network contention,
transient hardware errors, operating system activity, and
garbage collection. To simulate these effects, we inserted
random sleeps into some iterations of the program. When
a thread is in a normal state, it may choose, with probabil-
ity 1/8 to enter a delayed state for 4 iterations. When in
a delayed state, at the end of every iteration it sleeps for
some number of seconds.

Figure 2(b) shows the results of this experiment. Ob-
serve that with increased staleness, the effects the delay
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Figure 2: Time to execute 50 iterations of LDA using the
aan short data set.

can be substantially reduced.
Figure 3 shows a “swimlane diagram” of the first 100s

of the LDA application for four different configurations.
(a) shows a synchronous execution (staleness 0) with no
delay. The vertical alignment of the bars is caused by
threads executing the same iteration at the same time.
(b) represents a synchronous execution with a 4s delay
round-robined between the threads. Like in the previous
diagram, all threads begin executing an iteration at the
same time. However, one thread is delayed in each iter-
ation, visible by the diagonal (upper-left to lower-right)
pattern of elongated bars. Other threads must wait for the
delayed thread to finish before they can start their next
iteration. As a result, fewer iterations are completed in
the 100s window shown, as seen in the smaller number of
stripes.

The bottom two diagrams show the asynchronous case
(staleness 1). (c) is the case with no delay. Unlike in
the synchronous case, threads are not waiting for one
another to finish before starting their next iteration. This
is visible in the raggedness of the vertical lines in the
diagram. Even without the artificial staleness, the reduced
synchronization improves iteration speed. (d) shows the
asynchronous execution with a 4s delay. Here, each thread
can proceed at its own pace, within the staleness bounds,
significantly reducing the impact of the stragglers.
4.2 Performance and convergence

Figure 4 shows the convergence behavior of the LDA
algorithm over time. These results were generated using
a cluster of 32 machines with 8 cores each, processing
the “20 Newsgroups” data set [1]. These results demon-
strate that LDA will converge when running partially
asynchronously. Furthermore, increased staleness im-
proves convergence performance: the staleness=3 setting
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Figure 3: Swimlane diagram of the first 100s of execution. Alternating gray and black bars indicate progress from one
iteration to the next. The frequency of stripes indicates iteration speed, so more stripes corresponds to faster iteration
execution.
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Figure 4: Time needed for LDA to converge to a particular
log likelihood value. Log-likelihood measures the prob-
ability of the current solution — a higher log-likelihood
means a higher probability, and thus better, solution.

often takes half the time to reach a particular log likeli-
hood, compared to the synchronous setting. However, the
bounds on staleness are important for the algorithm to
converge correctly. As the staleness setting was increased
past 4 the convergence behavior began to degrade (not
shown in graph). We ran a similar experiment for a sparse
regression algorithm (LASSO), and saw similar results
to LDA (omitted due to space constraints). We are also
experimenting with low-rank matrix factorization.

5 Open questions

Table 1 lists a number of algorithms that we believe can
tolerate staleness in their computations. Section 4.2 pro-
vides evidence that two of these applications can, in fact,
tolerate staleness, and their performance is improved as
a result. However, this list is not exhaustive. A formal
classification of staleness tolerant algorithms would be an

important contribution. We are investigating these prop-
erties both in the formal context of a convergence proof,
as well as trying to develop informal “rules of thumb” for
identifying staleness-tolerant algorithms.

Another interesting question involves the definition
of “staleness”. Due to the nature of the algorithms we
are targeting, SSP defines staleness in terms of iteration
count. However, many algorithms do not proceed in strict
iterations. Even among those that do, other notions of
staleness may be relevant. For instance, an application
may want to read a value, ensuring that the result is no
more than 10% different from the most up-to-date value.
Speculative execution could be used to allow threads to
proceed, while repeating work when values actually did
differ by more than the requested amount.

6 Conclusions

We propose Stale Synchronous Parallel as a new model
for parallel computation. SSP allows applications to spec-
ify a freshness requirement when reading shared data. By
exploiting the application’s tolerance for staleness, a sys-
tem implementing SSP can significantly reduce the effects
of stragglers on execution time. Initial experiments with a
parameter server prototype, called LazyTables, show that
SSP can significantly improve performance and is worth
further development and study.
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