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Abstract

Designing highly dependable systems requires a good
understanding of failure characteristics. Unfortunately, lit-
tle raw data on failures in large IT installations is publicly
available. This paper analyzes failure data recently made
publicy available by one of the largest high-performance
computing sites. The data has been collected over the past
9 years at Los Alamos National Laboratory and includes
23000 failures recorded on more than 20 different systems,
mostly large clusters of SMP and NUMA nodes. We study
the statistics of the data, including the root cause of fail-
ures, the mean time between failures, and the mean time to
repair. We find for example that average failure rates differ
wildly across systems, ranging from 20–1000 failures per
year, and that time between failures is modeled well by a
Weibull distribution with decreasing hazard rate. From one
system to another, mean repair time varies from less than an
hour to more than a day, and repair times are well modeled
by a lognormal distribution.

1 Introduction

Research in the area of dependable computing relies in
many ways on a thorough understanding of what failures
in real systems look like. For example, knowledge of fail-
ure characteristics can be used in resource allocation to im-
prove cluster availability [5, 25]. The design and analysis of
checkpoint strategies relies on certain statistical properties
of failures [8, 21, 23]. Creating realistic benchmarks and
testbeds for reliability testing requires an understanding of
the characteristics of real failures.

Unfortunately, obtaining access to failure data from
modern, large-scale systems is difficult, since such data is
often sensitive or classified. Existing studies of failures are
often based on only a few months of data, covering typically
only a few hundred failures [19, 24, 16, 18, 15, 7]. Many
of the commonly cited studies on failure analysis stem from
the late 80’s and early 90’s, when computer systems where

significantly different from today [3, 4, 6, 13, 19, 9, 11].
Finally, none of the raw data used in the above studies has
been made publicly available for use by other researchers.

This paper accompanies the public release of a large set
of failure data [1]. The data was collected over the past
9 years at Los Alamos National Laboratory (LANL) and
covers 22 high-performance computing (HPC) systems, in-
cluding a total of 4750 machines and 24101 processors. The
data contains an entry for any failure that occurred during
the 9-year time period and that required the attention of a
system administrator. For each failure, the data includes
start time and end time, the system and node affected, as
well as categorized root cause information. To the best of
our knowledge, this is the largest set of failure data studied
in the literature to date, both in terms of the time-period it
spans, and the number of systems and processors it covers.

Our goal is to provide a description of the statistical
properties of the data, as well as information for other re-
searchers on how to interpret the data. We first describe
the environment the data comes from, including the sys-
tems and the workloads, the data collection process, and
the structure of the data records (Section 2). Section 3 de-
scribes the methodology of our data analysis. We then study
the data with respect to three important properties of system
failures: the root causes (Section 4), the time between fail-
ures (Section 5) and the time to repair (Section 6). Section 7
compares our results to related work. Section 8 concludes.

2 Description of the data and environment

2.1 The systems

The data spans 22 high-performance computing sys-
tems that have been in production use at LANL between
1996 and November 2005. Most of these systems are
large clusters of either NUMA (Non-Uniform-Memory-
Access) nodes, or 2-way and 4-way SMP (Symmetric-
Multi-Processing) nodes. In total the systems include 4750
nodes and 24101 processors. Table 1 gives an overview of
the 22 systems.
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(I) High-level system information (II) Information per node category

HW ID Nodes Procs
Procs Production Mem

NICs
/node Time (GB)

A 1 1 8 8 N/A – 12/99 16 0
B 2 1 32 32 N/A – 12/03 8 1
C 3 1 4 4 N/A – 04/03 1 0

D 4 164 328
2 04/01 – now 1 1
2 12/02 – now 1 1

E

5 256 1024 4 12/01 – now 16 2
6 128 512 4 09/01 – 01/02 16 2

7 1024 4096

4 05/02 – now 8 2
4 05/02 – now 16 2
4 05/02 – now 32 2
4 05/02 – now 352 2

8 1024 4096
4 10/02 – now 8 2
4 10/02 – now 16 2
4 10/02 – now 32 2

9 128 512 4 09/03 – now 4 1
10 128 512 4 09/03 – now 4 1
11 128 512 4 09/03 – now 4 1

12 32 128
4 09/03 – now 4 1
4 09/03 – now 16 1

F

13 128 256 2 09/03 – now 4 1
14 256 512 2 09/03 – now 4 1
15 256 512 2 09/03 – now 4 1
16 256 512 2 09/03 – now 4 1
17 256 512 2 09/03 – now 4 1

18 512 1024
2 09/03 – now 4 1
2 03/05 – 06/05 4 1

G

19 16 2048
128 12/96 – 09/02 32 4
128 12/96 – 09/02 64 4

20 49 6152
128 01/97 – now 128 12
128 01/97 – 11/05 32 12
80 06/05 – now 80 0

21 5 544

128 10/98 – 12/04 128 4
32 01/98 – 12/04 16 4

128 11/02 – now 64 4
128 11/05 – 12/04 32 4

H 22 1 256 256 11/04 – now 1024 0

Table 1. Overview of systems. Systems 1–18 are
SMP-based, and systems 19–22 are NUMA-based.

The left half of Table 1 provides high-level information
for each system, including the total number of nodes and
processors in the system, and a system ID we use through-
out to refer to a system. The data does not include vendor
specific hardware information. Instead it uses capital letters
(A-H) to denote a system’s processor/memory chip model.
We refer to a system’s label as its hardware type.

As the table shows, the LANL site has hosted a diverse
set of systems. Systems vary widely in size, with the num-
ber of nodes ranging from 1 to 1024 and the number of pro-
cessors ranging from 4 to 6152. Systems also vary in their
hardware architecture. There is a large number of NUMA
and SMP based machines, and a total of eight different pro-
cessor and memory models (types A–H).

The nodes in a system are not always identical. While all
nodes in a system have the same hardware type, they might
differ in the number of processors and network interfaces
(NICs), the amount of main memory, and the time they were
in production use. The right half of Table 1 categorizes the
nodes in a system with respect to these properties. For ex-
ample, the nodes of system 12 fall into two categories, dif-
fering only in the amount of memory per node (4 vs 16 GB).

2.2 The workloads

Most workloads are large-scale long-running 3D sci-
entific simulations, e.g. for nuclear stockpile stewardship.
These applications perform long periods (often months) of
CPU computation, interrupted every few hours by a few
minutes of I/O for checkpointing. Simulation workloads are
often accompanied by scientific visualization of large-scale
data. Visualization workloads are also CPU-intensive, but
involve more reading from storage than compute workloads.
Finally, some nodes are used purely as front-end nodes, and
others run more than one type of workload, e.g. graphics
nodes often run compute workloads as well.

At LANL, failure tolerance is frequently implemented
through periodic checkpointing. When a node fails, the
job(s) running on it is stopped and restarted on a different
set of nodes, either starting from the most recent checkpoint
or from scratch if no checkpoint exists.

2.3 Data collection

The data is based on a “remedy” database created at
LANL in June 1996. At that time, LANL introduced a site-
wide policy that requires system administors to enter a de-
scription of every failure they take care of into the remedy
database. Consequentially, the database contains a record
for every failure that occurred in LANL’s HPC systems
since June 1996 and that required intervention of a system
administrator.

A failure record contains the time when the failure
started, the time when it was resolved, the system and node
affected, the type of workload running on the node and the
root cause. The workload is either compute for computa-
tional workloads, graphics for visualization workloads, or
fe for front-end. Root causes fall in one of the follow-
ing five high-level categories: Human error; Environment,
including power outages or A/C failures; Network failure;
Software failure; and Hardware failure. In addition, more
detailed information on the root cause is captured, such as
the particular hardware component affected by a Hardware
failure. More information on the root causes can be found
in the released data [1]. The failure classification and rules
for assigning failures to categories were developed jointly
by hardware engineers, administrators and operations staff.

Failure reporting at LANL follows the following proto-
col. Failures are detected by an automated monitoring sys-
tem that pages operations staff whenever a node is down.
The operations staff then create a failure record in the
database specifying the start time of the failure, and the sys-
tem and node affected, then turn the node over to a system
administrator for repair. Upon repair, the system admin-
istrator notifies the operations staff who then put the node
back into the job mix and fill in the end time of the fail-
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Figure 1. The breakdown of failures into root causes (a) and the breakdown of downtime into root causes (b). Each
graph shows the breakdown for systems of type D, E, F, G, and H and aggregate statistics across all systems (A–H).

ure record. If the system administrator was able to identify
the root cause of the problem he provides operations staff
with the appropriate information for the “root cause” field
of the failure record. Otherwise the root cause is specified
as “Unknown”. Operations staff and system administrators
have occasional follow-up meetings for failures with “Un-
known” root cause. If the root cause becomes clear later on,
the corresponding failure record is amended.

Two implications follow from the way the data was col-
lected. First, this data is very different from the error logs
used in many other studies. Error logs are automatically
generated and track any exceptional events in the system,
not only errors resulting in system failure. Moreover, error
logs often contain multiple entries for the same error event.

Second, since the data was created manually by system
administrators, the data quality depends on the accuracy of
the administrators’ reporting. Two potential problems in hu-
man created failure data are underreporting of failure events
and misreporting of root cause. For the LANL data we don’t
consider underreporting (i.e. a failure does not get reported
at all) a serious concern, since failure detection is initiated
by automatic monitoring and failure reporting involves sev-
eral people from different administrative domains (opera-
tions staff and system administrators). While misdiagnosis
can never be ruled out completely, its frequency depends
on the administrators’ skills. LANL employs highly-trained
staff backed by a well-funded cutting edge technology inte-
gration team, often pulling new technology into existence
in collaboration with vendors; diagnosis can be expected to
be as good as any customer and often as good as a vendor.

3 Methodology

We characterize an empirical distribution using three im-
port metrics: the mean, the median, and the squared coeffi-
cient of variation (C2). The squared coefficient of variation
is a measure of variability and is defined as the squared stan-
dard deviation divided by the squared mean. The advantage
of using the C2 as a measure of variability, rather than the

variance or the standard deviation, is that it is normalized by
the mean, and hence allows comparison of variability across
distributions with different means.

We also consider the empirical cumulative distribution
function (CDF) and how well it is fit by four probability
distributions commonly used in reliability theory1: the ex-
ponential, the Weibull, the gamma and the lognormal distri-
bution. We use maximum likelihood estimation to param-
eterize the distributions and evaluate the goodness of fit by
visual inspection and the negative log-likelihood test.

Note that the goodness of fit that a distribution achieves
depends on the degrees of freedom that the distribution of-
fers. For example, a phase-type distribution with a high
number of phases would likely give a better fit than any of
the above standard distributions, which are limited to one or
two parameters. Whenever the quality of fit allows, we pre-
fer the simplest standard distribution, since these are well
understood and simple to use. In our study we have not
found any reason to depend on more degrees of freedom.

4 Root cause breakdown

An obvious question when studying failures in computer
systems is what caused the failures. Below we study the
entries in the high-level root cause field of the data.

We first look at the relative frequency of the six high-
level root cause categories: human, environment, network,
software, hardware, and unknown. Figure 1(a) shows the
percentage of failures in each of the six categories. The
right-most bar describes the breakdown across all failure
records in the data set. Each of the five bars to the left
presents the breakdown across all failure records for sys-
tems of a particular hardware type2.

Figure 1 indicates that while the basic trends are similar
across system types, the actual breakdown varies. Hardware

1We also considered the Pareto distribution[22, 15], but didn’t find it to
be a better fit than any of the four standard distributions

2For better readability, we omit bars for types A–C, which are small
single-node systems.
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Figure 2. (a) Average number of failures for each system per year. (b) Average number of failures for each system per
year normalized by number of processors in the system. Systems with the same hardware type have the same color.

is the single largest component, with the actual percentage
ranging from 30% to more than 60%. Software is the sec-
ond largest contributor, with percentages ranging from 5%
to 24%. Type D systems differ most from the other systems,
in that hardware and software are almost equally frequent.

It is important to note that in most systems the root cause
remained undetermined for 20–30% of the failures (except
for type E systems, where less than 5% of root causes are
unknown). Since in all systems the fraction of hardware
failures is larger than the fraction of undetermined failures,
and the fraction of software failures is close to that of un-
determined failures, we can still conclude that hardware
and software are among the largest contributors to failures.
However, we can not conclude that any of the other failure
sources (Human, Environment, Network) is insignificant.

We also study how much each root cause contributes
to the total downtime. Figure 1(b) shows the total down-
time per system broken down by the downtime root cause.
The basic trends are similar to the breakdown by frequency:
hardware tends to be the single largest component, followed
by software. Interestingly, for most systems the failures
with unknown root cause account for less than 5% of the
total downtime, despite the fact that the percentage of un-
known root causes is higher. Only systems of type D and G
have more than 5% of downtime with unknown root cause.

We asked LANL about the higher fraction of downtime
with unknown root cause for systems of type D and G and
were told the reason lies in the circumstances surrounding
their initial deployment. Systems of type G were the first
NUMA based clusters at LANL and were commissioned
when LANL just started to systematically record failure
data. As a result, initially the fraction of failures with un-
known root causes was high (> 90%), but dropped to less
than 10% within 2 years, as administrators gained more ex-
perience with the system and the root cause analysis. Sim-
ilarly, the system of type D was the first large-scale SMP
cluster at LANL, so initially the number of unknown root
causes was high, but then quickly dropped.

The above example shows that interpreting failure data
often requires interaction with the people who run the sys-

tems and collected the data. The public release of the
data [1] includes a complete FAQ of questions we asked
LANL in the process of our work.

In addition to the five high-level root cause categories,
we also looked at the more detailed root cause information.
We find that in all systems memory related failures make up
a significant portion of all failures. For all systems, more
than 10% of all failures (not only hardware failures) were
due to memory, and in systems F and H memory caused
even more than 25% of all failures. Memory was the single
most common ”low-level” root cause for all systems, except
for system E. System E experienced a very high percentage
(more than 50%) of CPU related failures, due to a design
flaw in the type E CPU.

The detailed breakdown for software related failures
varies more across systems. For system F, the most com-
mon software failure was related to the parallel file system,
for system H to the scheduler software and for system E to
the operating system. For system D and G, a large portion
of the software failures were not specified further.

5 Analysis of failure rates

5.1 Failure rate as a function of system
and node

This section looks at how failure rates vary across differ-
ent systems, and across the nodes within the same system.
Studying failure rates across different systems is interesting
since it provides insights on the effect of parameters such
as system size and hardware type. Knowledge on how fail-
ure rates vary across the nodes in a system can be utilized
in job scheduling, for instance by assigning critical jobs or
jobs with high recovery time to more reliable nodes.

Figure 2(a) shows for each of the 22 systems the aver-
age number of failures recorded per year during the sys-
tem’s production time. The yearly failure rate varies widely
across systems, ranging from only 17 failures per year for
system 2, to an average of 1159 failures per year for system
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Figure 3. (a) Number of failures per node for system 20 as a function of node ID. (b) The corresponding CDF, fitted
with a Poisson, normal and lognormal distribution.

7. In fact, variability in the failure rate is high even among
systems of the same hardware type.

The main reason for the vast differences in failure rate
across systems is that they vary widely in size. Figure 2(b),
shows for each system the average number of failures per
year normalized by the number of processors in the sys-
tem. The normalized failure rates show significantly less
variability across systems, in particular across systems with
the same hardware type. For example, all type E systems
(systems 5–12) exhibit a similar normalized failure rate3, al-
though they range in size from 128–1024 nodes. The same
holds for type F systems (systems 13–18), which vary in
size from 128–512 nodes. This indicates that failure rates
do not grow significantly faster than linearly with system
size.

We next concentrate on the distribution of failures across
the nodes of a system. Figure 3(a) shows the total num-
ber of failures for each node of system 20 during the entire
system lifetime4. We first observe that nodes 21–23 expe-
rienced a significantly higher number of failures than the
other nodes. While nodes 21–23 make up only 6% of all
nodes, they account for 20% of all failures. A possible ex-
planation is that nodes 21–23 run different workloads than
the other nodes in the system. Nodes 21-23 are the only
nodes used for visualization, as well as computation, re-
sulting in a more varied and interactive workload compared
to the other nodes. We make similar observations for other
systems, where failure rates vary significantly depending on
a node’s workload. For example, for systems E and F, the
front-end nodes, which run a more varied, interactive work-
load, exhibit a much higher failure rate than the other nodes.

While it seems clear from Figure 3(a) that the behav-
ior of graphics nodes is very different from that of other
nodes, another question is how similar the failure rates of
the remaining (compute-only) nodes are to each other. Fig-

3The higher failure rates for systems 5–6 are due to the fact that they
were the first systems of type E at LANL and experienced a higher failure
rate during the initial months of deployment.

4Note that the lifetime of all nodes is the same, with the exception of
node 0, which has been in production for a much shorter time (see Table 1).

ure 3(b) shows the CDF of the measured number of failures
per node for compute only nodes, with three different dis-
tributions fitted to it: the Poisson, the normal, and the log-
normal distributions. If the failure rate at all nodes followed
a Poisson process with the same mean (as often assumed
e.g. in work on checkpointing protocols), the distribution of
failures across nodes would be expected to match a Poisson
distribution. Instead we find that the Poisson distribution is
a poor fit, since the measured data has a higher variability
than that of the Poisson fit. The normal and lognormal dis-
tribution are a much better fit, visually as well as measured
by the negative log-likelihood. This indicates that the as-
sumption of Poisson failure rates with equal means across
nodes is suspect.

5.2 Failure rate at different time scales

Next we look at how failure rates vary across different
time scales, from very large (system lifetime) to very short
(daily and weekly). Knowing how failure rates vary as a
function of time is important for generating realistic failure
workloads and for optimizing recovery mechanisms.

We begin with the largest possible time-scale by look-
ing at failure rates over the entire lifetime of a system. We
find that for all systems in our data set the failure rate as a
function of system age follows one of two shapes. Figure 4
shows a representative example for each shape.

Figure 4(a) shows the number of failures per month for
system 5, starting at production time. Failure rates are high
initially, and then drop significantly during the first months.
The shape of this curve is the most common one and is rep-
resentative of all systems of type E and F.

The shape of this curve is intuitive in that the failure rate
drops during the early age of a system, as initial hardware
and software bugs are detected and fixed and administrators
gain experience in running the system. One might wonder
why the initial problems were not solved during the typi-
cally 1–2 months of testing before production time. The
reason most likely is that many problems in hardware, soft-
ware and configuration are only exposed by real user code
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Figure 4. Two representative examples for how the failure rate changes as a function of system age (in months). The
curve on the left corresponds to system 5 which is representative for systems of type E and F. The curve on the right
corresponds to system 19 which is representative for systems of type D and G.

in the production workloads.
The curve in Figure 4(b) corresponds to the failures ob-

served over the lifetime of system 19 and represents the
other commonly observed shape. The shape of this curve
is representative for systems of type D and G, and is less
intuitive: The failure rate actually grows over a period of
nearly 20 months, before it eventually starts dropping. One
possible explanation for this behavior is that getting these
systems into full production was a slow and painful process.

Type G systems were the first systems of the NUMA era
at LANL and the first systems anywhere that arranged such
a large number of NUMA machines in a cluster. As a result
the first 2 years involved a lot of development work among
system administrators, vendors, and users. Administrators
developed new software for managing the system and pro-
viding the infrastructure to run large parallel applications.
Users developed new large-scale applications that wouldn’t
have been feasible to run on previous systems. With the
slower development process it took longer until the systems
were running the full variety of production workloads and
the majority of the initial bugs were exposed and fixed. The
case for the type D system was similar in that it was the first
large-scale SMP cluster at the site.

Two other observations support the above explanation.
First, the failure rate curve for other SMP clusters (systems
of type E and F) that were introduced after type D and were
running full production workloads earlier in their life, fol-
lows the more traditional pattern in Figure 4(a). Second, the
curve of system 21, which was introduced 2 years after the
other systems of type G, is much closer to Figure 4(a).

Next we look at how failure rates vary over smaller time
scales. It is well known that usage patterns of systems vary
with the time of the day and the day of the week. The ques-
tion is whether there are similar patterns for failure rates.
Figure 5 categorizes all failures in the data by hour of the
day and by day of the week. We observe a strong correlation
in both cases. During peak hours of the day the failure rate
is two times higher than at its lowest during the night. Simi-
larly the failure rate during weekdays is nearly two times as
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Figure 5. Number of failures by hour of the day (left)
and the day of the week (right).

high as during the weekend. We interpret this as a correla-
tion between a system’s failure rate and its workload, since
in general usage patterns (not specifically LANL) workload
intensity and the variety of workloads is lower during the
night and on the weekend.

Another possible explanation for the observations in Fig-
ure 5 would be that failure rates during the night and week-
ends are not lower, but that the detection of those failures is
delayed until the beginning of the next (week-)day. We rule
this explanation out, since failures are detected by an auto-
mated system, and not by users or administrators. More-
over, if delayed detection was the reason, one would expect
a large peak on Mondays, and lower failure rates on the fol-
lowing days, which is not what we see.

5.3 Statistical properties of time between
failures

In this section we view the sequence of failure events as
a stochastic process and study the distribution of its inter-
arrival times, i.e. the time between failures. We take two
different views of the failure process: (i) the view as seen by
an individual node, i.e. we study the time between failures
that affect only this particular node; (ii) and the view as
seen by the whole system, i.e. we study the time between
subsequent failures that affect any node in the system.

Since failure rates vary over a system’s lifetime (Fig-
ure 4), the time between failures also varies. We therefore
analyze the time between failures separately for the early
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Figure 6. Empirical CDF for inter-arrival times of failures on node 22 in system 20 early in production (a) and late
in production (b). Empirical CDF for inter-arrival times of failures for the system wide view of failures in system 20
early in production (c) and late in production (d).

production time, when failure rates are high, and the re-
maining system life, when failure rates are lower. Through-
out we focus on system 20 as an illustrative example.

We begin with the view of the time between failures as
seen by an individual node. Figure 6(a) and (b) show the
empirical distribution at node 22 in system 20 during the
years 1996–1999 and the years 2000–2005, respectively, fit-
ted by four standard distributions. We see that from 2000–
2005 the distribution between failures is well modeled by a
Weibull or gamma distribution. Both distributions create an
equally good visual fit and the same negative log-likelihood.
The simpler exponential distribution is a poor fit, as its C2

of 1 is significantly lower than the data’s C2 of 1.9.

For failure interarrival distributions, it is useful to know
how the time since the last failure influences the expected
time until the next failure. This notion is captured by a dis-
tribution’s hazard rate function. An increasing hazard rate
function predicts that if the time since a failure is long then
the next failure is coming soon. And a decreasing hazard
rate function predicts the reverse. Figure 6(b) is well fit by
a Weibull distribution with shape parameter 0.7, indicating
that the hazard rate function is decreasing, i.e. not seeing a
failure for a long time decreases the chance of seeing one in
the near future.

During years 1996-1999 the empirical distribution of the
time between failures at node 22 looks quite different (Fig-
ure 6(a)) from the 2000-2005 period. During this time the
best fit is provided by the lognormal distribution, followed
by the Weibull and the gamma distribution. The exponential

distribution is an even poorer fit during the second half of
the node’s lifetime. The reason lies in the higher variability
of the time between failures with a C2 of 3.9. This high
variability might not be surprising given the variability in
monthly failure rates we observed in Figure 4 for systems
of this type during this time period.

Next we move to the system wide view of the failures in
system 20, shown in Figure 6(c) and (d). The basic trend
for 2000-05 (Figure 6(d)) is similar to the per node view
during the same time. The Weibull and gamma distribution
provide the best fit, while the lognormal and exponential
fits are significantly worse. Again the hazard rate function
is decreasing (Weibull shape parameter of 0.78).

The system wide view during years 1996–1999 (Fig-
ure 6(c)) exhibits a distribution that is very different from
the others we have seen and is not well captured by any of
the standard distributions. The reason is that an exception-
ally large number (> 30%) of inter-arrival times are zero,
indicating a simultaneous failure of two or more nodes.
While we did not perform a rigorous analysis of correlations
between nodes, this high number of simultaneous failures
indicates the existence of a tight correlation in the initial
years of this cluster.

6 Analysis of repair times

A second important metric in system reliability is the
time to repair. We first study how parameters such as the
root cause of a failure and system parameters affect repair
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Figure 7. (a) Empirical CDF of repair times. (b) Mean repair time and (c) median repair time for each system.

Unkn. Hum. Env. Netw. SW HW All
Mean (min) 398 163 572 247 369 342 355

Median (min) 32 44 269 70 33 64 54
Std. Dev. (min) 6099 418 808 720 6316 4202 4854
Variability (C2) 234 6 2 8 293 151 187

Table 2. Statistical properties of time to repair as a
function of the root cause of the failure.

times. We then study the statistical properties of repair
times, including their distribution and variability.

Table 2 shows the median and mean of time to repair as
a function of the root cause, and as an aggregate across all
failure records. We find that both the median and the mean
time to repair vary significantly depending on the root cause
of the failure. The mean time to repair ranges from less
than 3 hours for failures caused by human error, to nearly
10 hours for failures due to environmental problems. The
mean time to repair for the other root cause categories varies
between 4 and 6 hours. The mean repair time across all fail-
ures (independent of root cause) is close to 6 hours. The rea-
son is that it’s dominated by hardware and software failures
which are the most frequent types of failures and exhibit
mean repair times around 6 hours.

An important observation is that the time to repair for all
types of failures is extremely variable, except for environ-
mental problems. For example, in the case of software fail-
ures the median time to repair is about 10 times lower than
the mean, and in the case of hardware failures it is 4 times
lower than the mean. This high variability is also reflected
in extremely high C

2 values (see bottom row of Table 2).
One reason for the high variability in repair times of soft-

ware and hardware failures might be the diverse set of prob-
lems that can cause these failures. For example, the root
cause information for hardware failures spans 99 different
categories, compared to only two (power outage and A/C
failure) for environmental problems. To test this hypothesis
we determined the C2 for several types of hardware prob-
lems. We find that even within one type of hardware prob-
lem variability can be high. For example, the C2 for repair
times of CPU, memory, and node interconnect problems is
36, 87, and 154, respectively. This indicates that there are
other factors contributing to the high variability.

Figure 7(a) shows the empirical CDF for all repair times
in the data, and four standard distributions fitted to the data.
The exponential distribution is a very poor fit, which is not
surprising given the high variability in the repair times. The
lognormal distribution is the best fit, both visually as well
as measured by the negative log-likelihood. The Weibull
distribution and the gamma distribution are weaker fits than
the lognormal distribution, but still considerably better than
the exponential distribution.

Finally, we consider how repair times vary across sys-
tems. Figure 7(b) and (c) show the mean and median time
to repair for each system, respectively. The figure indicates
that the hardware type has a major effect on repair times.
While systems of the same hardware type exhibit similar
mean and median time to repair, repair times vary signifi-
cantly across systems of different type,

Figure 7(b) and (c) also indicate that system size is not
a significant factor in repair time. For example, type E sys-
tems range from 128 to 1024 nodes, but exhibit similar re-
pair times. In fact, the largest type E systems (systems 7–8)
are among the ones with the lowest median repair time.

The relatively consistent repair times across systems of
the same hardware type are also reflected in the empirical
CDF. We find that the CDF of repair times from systems of
the same type is less variable than that across all systems,
which results in an improved (albeit still sub-optimal) ex-
ponential fit5.

7 Comparison with related work

Work on characterizing failures in computer systems dif-
fers in the type of data used; the type and number of systems
under study; the time of data collection; and the number of
failure or error records in the data set. Table 3 gives an
overview of several commonly cited studies of failure data.

Four of the above studies include root cause statistics
[4, 13, 16, 7]. The percentage of software-related failures
is reported to be around 20% [3, 13, 16] to 50% [4, 7].
Hardware is reported to make up 10-30% of all failures

5Graphs omitted for lack of space.



Study Date Length Environment Type of Data # Failures Statistics

[3, 4] 1990 3 years Tandem systems Customer data 800 Root cause
[7] 1999 6 months 70 Windows NT mail server Error logs 1100 Root cause
[16] 2003 3-6 months 3000 machines in Internet services Error logs 501 Root cause
[13] 1995 7 years VAX systems Field data N/A Root cause
[19] 1990 8 months 7 VAX systems Error logs 364 TBF
[9] 1990 22 months 13 VICE file servers Error logs 300 TBF
[6] 1986 3 years 2 IBM 370/169 mainframes Error logs 456 TBF
[18] 2004 1 year 395 nodes in machine room Error logs 1285 TBF
[5] 2002 1-36 months 70 nodes in university and Internet services Error logs 3200 TBF
[24] 1999 4 months 503 nodes in corporate envr. Error logs 2127 TBF
[15] 2005 6–8 weeks 300 university cluster and Condor[20] nodes Custom monitoring N/A TBF
[10] 1995 3 months 1170 internet hosts RPC polling N/A TBF,TTR
[2] 1980 1 month PDP-10 with KL10 processor N/A N/A TBF,Utilization

Table 3. Overview of related studies

[4, 13, 16, 7]. Environment problems are reported to ac-
count for around 5% [4]. Network problems are reported
to make up between 20% [16] and 40% [7]. Gray [4] re-
ports 10-15% of problems due to human error, while Op-
penheimer et al. [16] report 14-30%. The main difference
to our results is the lower percentage of human error and
network problems in our data. There are two possible ex-
planations. First, the root cause of 20-30% of failures in our
data is unknown and could lie in the human or network cate-
gory. Second, the LANL environment is an expensive, very
controlled environment with national safety obligations and
priorities, so greater resources may be put into its infras-
tructure than is put into commercial environments.

Several studies analyze the time between failures [18, 19,
5, 24, 15, 10]. Four of the studies use distribution fitting and
find the Weibull distribution to be a good fit [5, 24, 9, 15],
which agrees with our results. Several studies also looked at
the hazard rate function, but come to different conclusions.
Some of them [5, 24, 9, 15] find decreasing hazard rates
(Weibull shape parameter < 0.5). Others find that hazard
rates are flat [19], or increasing [18]. We find decreasing
hazard rates with Weibull shape parameter of 0.7–0.8.

Three studies [2, 6, 18] report correlations between
workload and failure rate. Sahoo [18] reports a correlation
between the type of workload and the failure rate, while
Iyer [6] and Castillo [2] report a correlation between the
workload intensity and the failure rate. We find evidence for
both correlations, in that we observe different failure rates
for compute, graphics, and front-end nodes, for different
hours of the day and days of the week.

Sahoo et al. [18] also study the correlation of failure rate
with hour of the day and the distribution of failures across
nodes and find even stronger correlations than we do. They
report that less than 4% of the nodes in a machine room
experience almost 70% of the failures and find failure rates
during the day to be four times higher than during the night.

We are not aware of any studies that report failure rates
over the entire lifetime of large systems. However, there ex-
ist commonly used models for individual software or hard-

ware components. The failures over the lifecycle of hard-
ware components are often assumed to follow a “bathtub
curve” with high failure rates at the beginning (infant mor-
tality) and the end (wear-out) of the lifecycle. The failure
rate curve for software products is often assumed to drop
over time (as more bugs are detected and removed), with
the exception of some spikes caused by the release of new
versions of the software [13, 12]. We find that the failure
rate over the lifetime of large-scale HPC systems can differ
significantly from the above two patterns (recall Figure 4).

Repair times are studied only by Long et al. [10]. Long et
al. estimate repair times of internet hosts by repeated polling
of those hosts. They, like us, conclude that repair times are
not well modeled by an exponential distribution, but don’t
attempt to fit other distributions to the data.

An interesting question that is beyond the scope of our
work is how system design choices depend on failure char-
acteristics. Plank et al. [17] study how checkpointing strate-
gies are affected by the distribution of time between fail-
ures, and Nath et al. [14] study how correlations between
failures affect data placement in distributed storage systems.

8 Summary

Many researchers have pointed out the importance of an-
alyzing failure data and the need for a public failure data
repository [16]. In this paper we study a large set of fail-
ure data that was collected over the past decade at a high-
performance computing site and has recently been made
publicly available [1]. We hope that this data might serve
as a first step towards a public data repository and encour-
age efforts at other sites to collect and clear data for public
release. Below we summarize a few of our findings.

• Failure rates vary widely across systems, ranging from
20 to more than 1000 failures per year, and depend
mostly on system size and less on the type of hardware.

• Failure rates are roughly proportional to the number
of processors in a system, indicating that failure rates



are not growing significantly faster than linearly with
system size.

• There is evidence of a correlation between the failure
rate of a machine and the type and intensity of the
workload running on it. This is in agreement with ear-
lier work for other types of systems [2, 6, 18].

• The curve of the failure rate over the lifetime of an
HPC system looks often very different from lifecycle
curves reported in the literature for individual hard-
ware or software components.

• Time between failure is not modeled well by an expo-
nential distribution, which agrees with earlier findings
for other types of systems [5, 24, 9, 15, 18]. We find
that the time between failure at individual nodes, as
well as at an entire system, is fit well by a gamma
or Weibull distribution with decreasing hazard rate
(Weibull shape parameter of 0.7–0.8).

• Mean repair times vary widely across systems, ranging
from 1 hour to more than a day. Repair times depend
mostly on the type of the system, and are relatively
insensitive to the size of a system.

• Repair times are extremely variable, even within one
system, and are much better modeled by a lognormal
distribution than an exponential distribution.

We hope that our first step in analyzing the wealth of in-
formation provided by the data, together with the public re-
lease of the raw data [1], will spark interesting future work.
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